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ABSTRACT. We consider Volterra integral equations hav-
ing a finite dimensional feature space. This provides us flex-
ibility to construct an orthonormal basis with small support
that can be preserved by the Volterra integral operator. Un-
der the projection method, such a basis yields a sparse dis-
cretization matrix for the Volterra integral operator. When
the feature space is refinable, we introduce a construction of
such an orthonormal basis from existing references. Finally,
we present applications to numerical differentiation for which
we obtain a quasi-linear lossless compression of the discretiza-
tion matrix.

1. Introduction. Denote by R the field of real numbers, on which
we shall work throughout the paper. Let K : [0,1] x [0,1] — R be a
continuous function and A the Volterra integral operator from L?[0, 1]
to itself defined by the kernel K as

L) (AH)®) ;:/0 K(t,s)f(s)ds, te[0,1], f e L2[0,1].

Given g € L?[0,1], we consider the Volterra integral equation of the
first kind

(1.2) Au =g,
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where u is an unknown function in L?[0,1] to be solved. Widely used
methods for solving (1.2) include the Tikhonov regularization method,
regularization methods of a Volterra type, and iterated methods. For an

elegant survey and extensive collection of references on these methods,
see [17].

Among all those available methods, the Tikhonov regularization [14,
15, 17, 26, 31] stands out for its advantages in convergence analy-
sis and a posteriori selections of regularization parameters. However,
the discretization scheme in the Tikhonov regularization method for
(1.2) usually leads to a full matrix (see, for example, [17, 20]). Con-
sequently, computational complexity in the Tikhonov regularization
method might be much affected. Regularization methods of a Volterra
type for (1.2) that are able to yield a lower triangular discretization
matrix can be found in [17] and the references cited therein. There is,
however, rarely a complete theoretical analysis of these methods except
for some particular cases where the operator A is one-smoothing [17]
or accretive [27]. Even in those special cases, no a posteriori paramet-
ric selection strategies are available when the smoothness of the exact
solution is unknown [20].

We shall follow the Tikhonov regularization method in this paper
while still aiming at a sparse discretization matrix. We consider the
special situation that the kernel K has a finite dimensional feature space

(1.3) Sk :=span{K(t,-) : t € [0, 1]}.

This gives us flexibility to construct an orthonormal basis for L?[0, 1]
such that the basis functions have small support and the majority
of them is orthogonal to the feature space Sk. As will be seen by
Lemma 2.1, the support of those basis functions is preserved by the
operator A. It is hence expected that the discretization matrix of the
Tikhonov regularization method for (1.2) is sparse. The multilevel
augmentation method developed in [8] can then be employed to solve
the linear system resulting from the Tikhonov regularized equation of
(1.2). The method is based on a multiscale decomposition of the Hilbert
space L?[0,1] and a matrix splitting scheme. It provides fast, accurate
and stable numerical algorithms for solving the linear system [7-10].

An important example of (1.2) for which the kernel K has a finite
dimensional feature space comes from the classical problem of numerical
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differentiation [1, 13, 20, 29, 30, 33, 35]. Suppose that g is a smooth
function on the unit interval [0, 1] and we have its noisy data gs. Note
that if we only know the noisy sample of g at a discrete set of points
then g5 can be obtained by an interpolation of the discrete sample data
(see, for example, [20]). Our purpose is to approximate the derivative
g™ of g using the known data gs. Three kinds of methods have been
proposed in the literature for this problem: difference methods [2, 20],
interpolation methods [28, 30] and regularization methods [13, 16,
20, 29, 34| and their equivalences [1].

The problem of numerical differentiation can be formulated into
solving a Volterra integral equation of the first kind. To see this, we
recall by the Taylor series of g at the origin with a Lagrange remainder
that

=Gy .t _ gt
g(t)—zg j!(O)tJ :/0 g<">(s)u ds, tel0,1].

(v—-1)

Suppose that the initial data () (0), j = 0,1,...,v — 1, are known or
calculated in advance. Without loss of generality, let us assume that
there holds

g9 0)=0, j=0,1,...,v—1.

Under the above initial condition, one can see that g(*) is the unique
solution of the following Volterra integral equation of the first kind

(14)  gt) = (Au)(t) == /0 K (t, s)u(s)ds, te[0,1],

where the integral kernel K, is defined by

(t—s)v1

(1.5) K, (t,s) = O

t,s €0,1].

When v = 1, the above Volterra integral equation approach for ap-
proximating g’ was discussed, for example, in [14, 20, 26, 29]. Our
formulation here enables us to deal with derivatives of any order by
the Tikhonov regularization method. Note that the feature space Sk,
is the space of all the polynomials of degree at most v — 1 and has
dimension v. Equation (1.4) hence falls into our special consideration.
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Therefore, besides enjoying the general advantages of the Tikhonov
regularization method, our approach will lead to a quasi-linear lossless
compression of the discretization matrix for (1.4).

The exposition of the paper is organized as follows. We introduce the
Tikhonov regularization and elaborate our motivation in the next sec-
tion. Kernels K for which the feature space (1.3) is finite dimensional
are also characterized in Section 2. Under the assumption that the
finite dimensional feature space is refinable with respect to a class of
contraction mappings on [0, 1], we present in Section 3 an orthonormal
basis for L?[0, 1] with the two desired properties mentioned above. Us-
ing this basis, we shall obtain a quasi-linear lossless compression of the
discretization matrix of the Tikhonov regularization method for (1.2).
In the last section, we discuss applications to numerical differentiation.

2. Tikhonov regularization and feature spaces of finite
dimension. The problem of solving (1.2) is usually ill-posed [5, 15,
17] in the sense that either g is not in the range of A, A is not injective
or A does not have a bounded inverse. We hence turn to its minimum
norm least square question aiming at finding u, € L?[0, 1] such that

(2.1) A*Au, = A%g, ||us|| = min{||ul| : A¥Au = A%g},

where A* denotes the adjoint operator of A and |u|| := (u,u)'/? with
(-,+) being the inner product on L2[0, 1] defined for all u,v € L?[0, 1] as

(u, v) 1= /0 w(t)o(t) dt.

We assume that the orthogonal projection of g into the closure of ran A
lies in ran A. Thus there exists a unique u, € L?[0, 1] satisfying (2.1).

It often occurs that we only have at hand a noisy data gs € L2[0,1]
of g such that ||gs — g|| < §, where § is a positive constant representing
the level of the noise. By the ill-posedness of the problem, we use the
Tikhonov regularized solution us,, of

(2.2) (o + A" A)us,o = A% gs

as an approximation of u,. Here I is the identity operator on L?[0,1]
and « is a positive regularization parameter. Typical approaches of
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solving the operator equation (2.2) involve the projection method. To
present the method, we let N be the set of all the positive integers,
Z := NU{0} and assume that we have a nested sequence of subspaces
V, C L?[0,1], n € Z,, whose union is dense in L?[0,1]. We also set P,
the orthogonal projection from L?[0,1] onto V,,, A, := P, A*AP, and
g5y = P,A*gs. The projection method is to obtain an approximation
ug , € Vi of ug o by solving the equation

(2.3) (al + An)ug o = g5

The success of the above Tikhonov regularized projection method is
assured by the well-known fact that

lim lug o — us]| = 0.
atda" /250 “ :
n— oo
For simplicity, we shall enumerate finite sets with N, := {1,... ,n}

and later on with Z,, := {0,... ,n—1}, n € N. Let d,, be the dimension
of V,, and wy,, ¢ € Ny, an orthonormal basis for V,,. The solution ug"a

of (2.3) is determined by its Fourier coefficients m?’; = (UG o Wni),
i € Ng,. Similarly, we define y}"* := (g7, wn;), i € Ng,. The vectors
xy, = [zy, :i € Ng,] and y} = [y5" : i € Ng,] satisfy the linear
system

(2.4) (alg, + Mn)xga =yy,

where I, denotes the d,, X d,, identity matrix and M,, is the discretiza-
tion matriz defined as

(25) Mo = /0 (Awni)(€) (Awn;)(6) dt, 1,5 € Nu..

A key issue in the Tikhonov regularized projection method described
above is computational complexity, which depends mainly on the
sparsity of M,,. It is desirable to choose the trial space V,, and its basis
so that M, does not have too many nonzero entries. As in the finite
element methods [11], we are inclined to select basis functions that have
small support. The major difficulty is that even a function f € L?[0,1]
has small support, after operation by an integral operator, the support
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of Af may spread all over the unit interval [0,1]. Consequently, one
usually ends up with a full matrix (see, for example, [17, 20]). Our
main idea is to use basis functions whose support will be preserved
by the integral operator A. It is motivated by the following simple
observation.

Recall that a function f € L2[0,1] is said to be supported on a
subinterval [8,7v] C [0,1] if it vanishes almost everywhere on [0, 1]\

[3,7]-

Lemma 2.1. If f € L?(0,1] is orthogonal to Sk and is supported on
[8,7] € [0,1] then function Af is also supported on [3,7].

Proof. Since f vanishes almost everywhere on [0, 3], it is clear by
definition (1.1) that (Af)(t) = 0 for ¢ € [0, 8]. Likewise, since f equals
zero almost everywhere on [v, 1], we observe for each ¢ > v that

N0 = [ Kt ds= [ K1) ds = (0.

The last term above vanishes by the assumption that f is orthogonal
to Sk. O

Denote by supp f the support of a function f € L?[0,1]. We say that
the Volterra integral operator A preserves the support of f € L?[0,1] if

supp Af C [minsupp f, maxsupp f].

We see by Lemma, 2.1 that A preserves the support of functions that are
orthogonal to Sk. A simple fact below justifies such a consideration.

Proposition 2.2. There does not exist a continuous function K on
[0,1] x [0,1] for which the Volterra integral operator A defined by (1.1)
is nontrivial and preserves the support of any function f € L%[0,1].

Proof. Assume that there is a continuous function K on [0, 1] x [0, 1]
such that the Volterra integral operator A defined by (1.1) preserves
the support of any function f € L2[0,1]. Fix 3 € (0,1) and t € [3,1].
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By the assumption, we have for any f € L?[0,1] with supp f C [0, 3]
such that

/0 K(t,s)f(s)ds:/o K(t,5)f(s) ds = (Af)(t) = 0.

It follows by the arbitrariness of f and the continuity of K that
K(t,s) = 0 for every s € [0,8]. Since 8 and ¢ can be arbitrarily
chosen, we get that K(¢t,s) = 0 for all 0 < s < ¢ < 1. Therefore, the
Volterra integral operator A is trivial. o

For a better understanding of Proposition 2.2, we consider kernels K
of a convolution type. Those are kernels of the form

(2.6) K(t,s)=f(t—s), t,s€][0,1],

where f is a continuous function on [—1,1]. Set 71 := min{t € [0,1] :
t € supp f}, 72 := maxsupp f and g € L?[0,1]. The Titchmarsh
convolution theorem [19, 32] says that if K has the form (2.6) and
Y2 + maxsupp g < 1 then

minsupp (Ag) = 71 + minsuppg, maxsupp (Ag) = y2 + maxsuppg.

The above equalities yield that

max supp (Ag) —minsupp (Ag) = (max supp g —minsupp g) + (y2 —71)-

Note that if A is nontrivial then v, —7; > 0. Therefore, if A is nontrivial
then the support of Ag will be longer than the support of g by a fixed
positive length.

By Lemma 2.1 and Proposition 2.2, we require a finite dimensional
feature space Sk in order to construct an orthonormal basis ¢,,, n € N
for L2[0, 1] such that

(2.7) lim (max supp ¢, — minsupp ¢,,) =0

n—oo

and the majority of them are orthogonal to Sgi. Let us characterize K
having such a property.
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Theorem 2.3. Let K be a continuous function on [0,1] x [0,1].
Then the feature space Sk is of finite dimension if and only if there
exist finitely many pairs of continuous functions ¢;,¢; on[0,1], j € N,
such that

(2.8) K(t,s) = Z w;i(t);(s), s,tel0,1].

JEN,

Proof. Clearly, if K is of the form (2.8) for some continuous functions
@j,j on [0,1], j € N, then the feature space Sk is contained by

span{¢; : j € N}

and is hence finite dimensional. Conversely, suppose that K is non-
trivial and Sg is of finite dimension. Let n be the dimension of Sg.
There hence exist distinct points t; € [0,1], j € N,, such that K(¢;,),
J € N, constitute a basis for Sx. We set ¢; := K(t;,-), j € N,. For
each t € [0, 1] there exist unique constants c;;, j € N, such that

K(t,s) = Z citi(s), se€][0,1].

JEN,

Denote by ¢; the function t — ¢;; j € Ny,. The function K now has the
form (2.8). It remains to prove that ¢; is continuous for each j € N,,.
To this end, we recall that any two norms on the finite dimensional
space Sk are equivalent. This fact yields that there exists a positive
constant ¢ satisfying for all ¢,¢ € [0,1] that

D leit) =it < el K () — K(t,-)I*.
jEN,

Since ||K(t,-) — K(t',+)|| goes to zero as t' tends to ¢, we prove the
continuity of ¢; for each j € N,,. The proof is complete. o

We next consider kernels K that are positive definite on [0,1] in the
sense that for all finite distinct points ¢; € [0, 1], j € N,, the matrix

[K(tjatk) : Jak € Nn]
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is symmetric and positive semi-definite. Positive definite kernels are
crucial to the theory of learning [4, 12, 36]. We are interested in
positive definite kernels with a finite dimensional feature space.

Proposition 2.4. Let K : [0,1] x [0,1] — R be continuous. Then K
is a positive definite kernel on [0,1] with a finite dimensional feature
space Sk if and only if there exist finitely many continuous functions
Y, j € Ny such that

(2.9) K(t,s) = Z Yi(t)Y;(s), t,se€]0,1].

JEN,

Proof. Suppose that K has the form (2.9). Then by Theorem 2.3,
the feature space Sk is finite dimensional. We also check for any
finite set {t; : j € N,} C [0,1] and constants ¢; € R, j € Ny,
that K(t;,tx) = K(tk,t;), j,k € Ny, and

Z cickK (tj,t,) = Z cjCk Zwi(tj)dli(tk)

7, k€N, J,k€ENp, 1EN,

-y (x cjz/}i(tj))Z > 0.

1EN, “jEN,

Therefore, K is positive definite. On the other hand, suppose that K is
a positive definite kernel on [0, 1] and the feature space Sk is of finite
dimension. We introduce the integral operator K on L?[0, 1] by setting
for each f € L?[0,1]

1
Kf:= /0 K(-,s)f(s)ds.

The Mercer theorem in the theory of positive definite kernels (see, for
example, [12]) asserts that K is a positive self-adjoint compact operator
on L?[0,1] and as a consequence, there exist countable eigenfunctions
¢;, j € N with corresponding nonnegative eigenvalues A;, 7 € N such

that
K(t,s) = Z )‘j¢j(t)¢j(s)’ t,s €[0,1].

JEN
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Since K has a finite dimensional feature space, by Theorem 2.3, the
range of /C is finite dimensional. It is implied that there are at most
finitely many nonzero A; in the equation above. Thus we see that K is
of the form (2.9). mi

Finally, we discuss kernels defined by a function of one variable, that
is, we investigate kernels K given by

(2.10) K(t,s) := f(at+bs+c), t,s€][0,1],

where a, b, ¢ are constants with ab # 0 and f is a continuous function
on [—|a| — |b| + ¢,|a| + |b] + ¢]. We see that when a =1, b = —1 and
¢ =0, K is of a convolution type. Kernels of a convolution type and a
finite dimensional feature space have an important application to the
Bedrosian identity, [37].

Proposition 2.5. Suppose that K is given by (2.10) through a
continuous function f. Then Sk is finite dimensional if and only if
there ewist constants Aj,v; € R and polynomials pj,q;, j € N, for
somen € N such that

oy 107 T (et s i),

t € [=la| = [b] + ¢, |a| + [b] + c].

Proof. Tt was proved in [3] that if f is a continuous function on the
whole R then
span{f(t —-) :t € R}

is of finite dimension if and only if f has the form (2.11). The proof
works for the general case here. ]

3. Orthonormal bases with small support. We assume in this
section that Sk is a subspace of L?[0, 1] with dimension v € N and ¢;,
j € N, form an orthonormal basis for Sg. Our purpose is to extend
this basis to an orthonormal basis ¢,,, n € N for L?[0, 1] such that (2.7)
holds.
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Let 1 be a positive integer greater than 1. We introduce p contraction
mappings on [0, 1] by setting

otk

(3.1) P (t) : p

te0,1], ke Z,.

We call ¢ := [¢; : j € N,|:[0,1] = RY a refinable vector field [25]
with respect to the class (3.1) of contraction mappings if there exists
for each k € Z,, a v x v matrix By, such that

(3.2) ¢ oY = Byo.

Set for each k € Z,, Iy, := [(k/p), (k +1)/p] and denote by X;, , its
characteristic function. We introduce p bounded linear operators T,
k € Z, on L?[0,1] as

Tif = /uxr,  fovy', feL?0,1].
It can be verified directly that there holds

(33) T,:/Tk = 6k7k/I, k, K ¢ ZH'

With the settings above, we shall present a construction [23, 24,
25] of orthonormal wavelet bases for L?[0,1] satisfying (2.7). The
construction has proven useful to collocation methods for Volterra
integral equations, [6, 7]. To this end, we set Vy := Sk and notice
for all n € N by (3.3) that T}V,_1, k € Z, are orthogonal to each
other. We hence define recursively V;, to be the orthogonal direct sum
of T, Vi1, k € Zy, namely,

(3.4) Vo= P TiVaa, neN.
kEZ,

The refinement equations (3.2) ensure that V;,_; is indeed a subspace
of V,,, n € N. Moreover, the union of V,,, n € Z is dense in L?[0, 1] if
there exist constants ¢;, j € N, such that >, c;é; =1, [25].

Let W,, be the orthogonal complement of V,,_; in V,,, n € N. By
(3.4), the dimension d,, of V,, is vu™. Thus, the dimension d,, of W, is
given by

d, =dy,—d, 1 =v(p— 1", neN.
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A recursive construction of an orthonormal wavelet basis wy;, i € Nd%
for W,, was provided in [23, 24, 25]. The construction starts with an
arbitrary orthonormal basis wy;, i € Ny, for Wy. It follows by (3.4)
that there holds

Woii= @ TuW,, neN.
k€Z,

Therefore,
(35) Trwni, ©€ Nd;»’ ke ZM

form an orthonormal basis for W, 1. We reindex this basis as w, 1),
1 € Nd'+1' Under this construction, each wyi, n € N, i € Ng is

supported on [i/(u" 1), (i +1)/(u"~1)], where
i:=(i—1)modp™"', i€ Ngy.
Note that

(36) Vo=V @ W
1€EN,

Thus, if we set wo; := ¢;, j € N, and dj := v then w;j;, (i,j) € I, :=
{(4,7) : © € Zy11, j € Ny} form an orthonormal basis for V,,, n € N.
Using this basis we shall det a quasi-linear lossless compression of the
discretization matrix (2.5).

Theorem 3.1. Let the trial space V, and its basis be defined as
above. Then the number of nonzero entries in the discretization matric
M, defined by (2.5) is of O(dylogd,) = O(nu").

Proof. By definition, an entry M;; ./, (¢,7), (', j') € I, has the form

Migiy = [ (i) Oy )01 .

By Lemma 2.1, the support of Aw;; and Awyj; is contained in
[G/w 1), G+ 1) /(=] and [§7/(u" 1), (7 + 1)/ (1" ~1)], respectively.
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Therefore, M;; ;1;; does not vanish only if these two intervals overlap.
By this observation, we calculate that the number of nonzero entries in
M, is less than or equal to

vA(2u™ — 1) + Zd; |:I/(p, -1)+2 Z v(p— 1);/"].

i'=i+1
The above quantity can be simplified as
(3.7) 2% (= Dnp™ — 12 (p = Dp” + o,

Thus the number of nonzero entries in M, is of O(np™). O

With the multiscale decomposition (3.6), the linear system (2.4) or
equivalently the operator equation (2.3) can be solved by the multilevel
augmentation method developed in [8]. For a brief description of
the method, see [10]. It starts with an exactly computed u} , for a
chosen £ € N much smaller than n. The augmentation algoritﬁm then
generates an approximate solution ulg’g*k of ug ,- The algorithm has
been proven to be efficient when a spérse discretization matrix M, is
available. In particular, it has been shown in [8] that the number of
multiplications required to obtain u’(;’g_k is of O(nu™). For the error
analysis, it can be seen from the proof of Theorem 3.4 in [10] under
some assumptions (see hypotheses H-1, H-2 therein) that there exists
a constant C independent of «, § such that

(38 o™ =] < Ca” + =,

where p € (0,1] is a constant such that w, is contained in the range
of (A*A)P. The constant p represents the smoothness of the exact
solution w,. When this smoothness is known, a priori choice a =
O(6%/(?r+1)) gives the optimal convergence rate O(§%?/(2P+1)). When p
is unknown, based on the bias-variance structure of the approximation
error (3.8), we can still use the Lepskii principle for a posteriori choice
the regularization parameter « to achieve the optimal convergence rate.
The Lepskii principle has been extensively developed to solve ill-posed
operator equations in [18, 21, 22] and has recently been applied to
numerical differentiation in [20]. We refer the readers to [20, 21, 22]
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and the references cited therein for a detailed description and analysis
of the principle.

We conclude that a complete numerical algorithm for the Volterra
equation (1.2) has been proposed under the assumptions that the fea-
ture space Sk is finite dimensional and its basis functions constitute a
refinable vector field. It consists of applying the Tikhonov regulariza-
tion to (1.2), constructing a basis for L?[0,1] based on the multiscale
decomposition (3.6), solving the linear system (2.4) by the multilevel
augmentation method, and the Lepskii principle for a posteriori choice
of the regularization parameter.

4. Applications to numerical differentiation. In this section,
we discuss applications to numerical differentiation. Specifically, given
a noisy data gs of g such that |gs — g|| < 6, we shall employ the
algorithm described in the last section to solve u = g(*) from (1.4).

Recall that for the kernel K, given by (1.5), the feature space Sk, is
the space of all the polynomials of degree at most v—1. An orthonormal
basis for Sk, is provided by

qu(t) = 2_] — 1P],1(2t — 1), t e [0, 1], ] S ]N-,/7

where P,, denotes the Legendre polynomials defined as

1 da
Py(t) =1, P,(t) := gl din
The vector field ¢ := [¢; : j € N,] is refinable with respect to the
contraction mappings (3.1) since for all j € N, k € Z,, ¢; o ¢y is
still a polynomial of degree at most ¥ — 1. The construction method
in Section 3 can hence be applied to generate an orthonormal wavelet
basis for L?[0,1]. By Theorem 3.1, this basis results in a quasi-linear
lossless compression of the discretization matrix M,,. The multilevel
augmentation method and the Lepskii principle can then be employed
to solve the linear system (2.4) and choose the regularization parameter,
respectively.

[(#*-1)"], teR, neN.

We next present numerical experiments for the following chosen
functions

t2

T L X S PR e

t te((1/2),1],
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t 2 2t
)=c(t-1P° -+t ——+ -, te[0,1].
ga(t) = gt —1)° = T+ 3° =+ 5, te 0]

We shall calculate the first derivative of g1, g2 and the second derivative
of g3 with the noise level § = 0.001. To this end, we specify v = 2, our
trial space to be Vo and p = 2. The orthonormal wavelet basis for W
and Wj is given respectively as

wor(t) =1, woalt) i= 2\/§<t - %) teo,1],

and

onf)=-6(1- 3) + 2 (1~ 1),

wia(t) = 4\/5‘15 _ %‘ ~V3, te,1),

where the signum function sgn (¢) takes the value —1, 0 or 1 for ¢ < 0,
t = 0 ort > 0, respectively. Orthonormal wavelet bases for W,,,
n € Ny \ {1} can be generated recursively from wy; and wi2 by (3.5).

Under the above settings, the discretization matrix My is of size
1024 x 1024. It is counted that the number of nonzero entries in My
is 34824, which is exactly equal to (3.7) for our choice p = v = 2 and
n = 9. Thus the compression rate is approximately equal to 30 and the
space savings is

34824

We sketch in Figure 1 the distribution of nonzero entries in the matrix
My. It can be seen that they are rather sparse in My. In the calculation
of the numerical derivatives of g;, 7 € N3, we use the multilevel
augmentation method in [10] and the adaptive a posteriori choice of
regularization parameters in [18, 21]. The results obtained are shown
in Figures 2, 3 and 4, respectively. In particular, function g, was used
in [20, 34] to locate the discontinuity points of derivatives. We observe
from Figure 3 that our result correctly identifies the discontinuity point
t = 0.5.
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FIGURE 1. Nonzero entries in Mg. = FIGURE 2. Numerical example for g;.
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FIGURE 3. Numerical example for g2. FIGURE 4. Numerical example for g3.

For a more detailed illustration of our method, we shall choose v = 1,

).

t> + dcos(1000t), ¢ € [0,1],

g(t) := sin (

sin (

where various values of ¢ will be specified in the numerical experiments.
One can see that u, = ¢’ is contained by the range of A*A. Thus the
optimal convergence rate is 0(52/ 3), which will be attained by our
method. The regularization parameter o will be chosen by the Lepskii
principle. We tabulate the numerical results below.

Q
=2
—
=
I
oy Ny
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TABLE 1. Numerical results for g = sin((7/2)t).

) ko2ntlop a e e/8%/3
0.05 4 128 5.81 0.2479 0.4214 3.105
0.01 4 256 9.84 0.06527 0.1540 3.319
0.005 5 5/12 17.06 0.04053 0.1010 3.453
0.001 5 1024 30.12 0.01291 0.03429  3.429
0.0005 6 2048 53.76 0.008018 0.02155  3.420
0.0001 6 4096 97.09 0.002555 0.006958 3.229

The parameter k in the above table is the initial level in the multilevel
augmentation method. Columns 3 and 4 give the size and compression
rate of the discretization matrix, respectively. We also let e denote

the error ||u, — ulgy’a"_kH. The last column indicates that the optimal

convergence rate O(62/3) is attained.

Finally, we compare our method with the one in the recent reference
[20], where piecewise linear functions are used to discretize the operator
equation (2.3). Since discretization by piecewise linear functions leads
to a full positive definite matrix, the resulting linear system will
be solved by a Cholesky decomposition of the discretization matrix,
followed by solving two linear systems with a lower triangular and upper
triangular coefficient matrix. The number of multiplications required
is of O(IV?) if the discretization matrix is of size N x N. By contrast
our method requires only O(N log V) multiplications.

For numerical comparison, again we shall employ example (4.1). The
difference is that the regularization parameter o will be chosen as §%/3
based on a priori information that g’ is contained by the range of A*A.
In our numerical experiments, we fix the initial level k£ to be 6 and n
to be 10. To assure the same convergence rate, the number of knots
for the piecewise linear functions in [20] is chosen to be 1024. The
numerical results are presented in Table 2.
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TABLE 2. Numerical results for the comparison.

) o e t €2 ta

0.01 0.04642 0.1141 0.086 0.1147 0.24
0.001  0.01000 0.02674 0.079 0.02743 0.25
0.0001 0.002154 0.005873 0.078 0.006635 0.25

Here, e; and ¢; denote the error measured by the norm of L2[0,1] and
consuming time in seconds of solving the discretization linear system
in our method. Parameters eq,t; denote those of the method in [20].
As can be seen from Table 2, our method also achieves the optimal
convergence rate and is superior in computational complexity. Note
that the advantage in computation complexity of our method becomes
more important if a posteriori choices of regularization parameters are
engaged. The reason is that one usually has to select the parameter
from a prescribed set. Thus several discretization linear systems need
to be solved.
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