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IN SEVERAL VARIABLES

ALBRECHT BOTTCHER AND PETER DORFLER

Communicated by Kendall Atkinson

1. Introduction and main results. Markov-type inequalities give
upper bounds for the derivatives of an algebraic polynomial by the
polynomial itself. To be more precise, they provide a constant C such
that [|[D” f|| < CJ|f|| for all polynomials of degree at most n, where D
is the operator of differentiation. The constant C' depends on n, on the
order v of the derivative, and on the norm || - ||. We here consider the
case where || - || is one of the classical L? norms and study the problem
of extending such inequalities to the situation when f is a polynomial
of several variables and DY is replaced by a partial differential operator.

Let P, be the linear space of all polynomials f(t) = X7 f;jt/ of
degree at most n with complex coefficients f;. We equip P, with one
of the classical Hermite, Laguerre, or Gegenbauer norms. These are
defined by

1) nﬂﬁz/m|ﬂm%%ﬂm

— 00

(2) HﬂF:A FOPEet dt,
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—1

where o > —1 is a parameter. Given a polynomial

p(&) = €™ 4+ pm 1™+ + po,
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we can consider the differential operator p(D) on P,,. The best constant
C such that ||p(D)f]| < C||f]| for all f € P, is clearly nothing but the
norm of the operator p(D) : P,, = P,. This constant will be denoted
by 1. (p(D)), An(p(D)), vn(p(D)) in dependence on whether the norm
Il -1l is (1), (2), (3). In [4], we showed that

(D)) _ gz,
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where L, o and Gy, are the Volterra integral operators on L*(0,1)
that are given by

(4)
(Lo f)(@) = ﬁ / /2y 2y )™= (y) dy,
(5)

(Gonaf) () :

1

_ 1/24a,1/2—a(,2 _ ,.2\ym—1 d
=—— [ =z x

st [ = ) ) dy
and ||-||o denotes the operator norm. Note that these operators are just
the iterates (= powers) of their m = 1 versions, that is, Ly, o = L7,

and G0 = Vo

Let [0,1]Y be the N-dimensional cube. Given a closed subset E of
[0,1]", we define P,,(E) as the linear space of all polynomials f of the
form

flli, o stn) = D fa ot £

(i1/n,... in/n)EE

with complex coefficients. We will always assume that E contains a
point in the interior of [0, 1]V and that E contains together with each
of its points (z1,... ,zy) also the cube [0,z1] x - -+ x [0, zy]. The most
canonical choice of F is

Qn Z:{(Q}‘]_,... ,CEN)E[O,l]le—f——i—:UNSl}
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For § > 0, we define E° = {(z9,...,2%) : (z1,...,2x) € E}. For
example,
QY ={(1,...,zn) € [0, s 23+ + 2% <13,
Q%\/’:{(xla axN) € [Oal]N : vl‘1+"'+\/1‘N S ]-}
We endow P, (E) with the N-dimensional versions of the norms (1),
(2), 3):
(6)

2 2
7 = [ (e e et et

(7)
1£11? :/( ” £ty tN) P 80N et e N ity - dt

)
2= [ e )P )7 (L) e

)

where a; > —1 for all j.
Take a polynomial
(9) p(‘fla"' a‘EN): Z Pui,....vn 1V1 Il(TN'
vi+--+vnN<M

Here v1 4+ - - - + v, < M means that the sum is taken over all N-tuples

(v1,...,vn) of nonnegative integers v; whose sum does not exceed M.
The differential operator on P, (E) given by
PO, ON) = D Do OO

vi+-+vn<M

may be written in the form

p(B,...,0Nn) = Z Do D' @ - @ D'V | P (E),
vi+--+vn<M

where | denotes restriction to a subspace. In dependence of the choice
of the norm || - || from (6), (7), (8), we let

77(17(31, aaN) | Pn(E))’ )‘(p(ala 761\7) ‘ Pn(E)))
’Y(p(al,... ,81\{) |Pn(E))
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denote the best constant C' for which

IOy, -, ON)fIl < ClIf| - for all f € Py(E).

Of course, this constant is just the norm of p(di,...,0n) as an
operator on P,(E). Our standing assumption that E contains the
cube [0, 2] X - -+ X [0,z 5] together with each of its points (z1,... ,znN)
guarantees that p(9y, ... ,dy) maps P,(E) into itself.

If Ay,..., Ay are operators on L2(0,1), their tensor product A :=
A;®---® Ay on L%((0,1)%) is defined in the usual way. If L%(E) is an
invariant subspace for A, we denote by A | L?>(E) the restriction of A
to L2(E). The notation a,, ~ b, means that a, /b, — 1 as n — oo.

We need one more definition. Let v := (v4,... ,vy) be an N-tuple of
nonnegative integers. We put |v| = v + -+ + v and always suppose
that |v| > 1. Let vj,...,v; (j1 < --+ < jk) denote the nonzero
integers among v1,...,vy. Given a point (z1,...,zx) € [0,1]F, we
define (z1,...,7), as the point in [0,1]V whose fth coordinate is
0if v, = 0 and ,, if £ = j,,. For example, if v = (0,12,0,0,vs)
with nonzero v, and vs, then k = 2, j; = 2, jo = 5 and (x1,22), =
(0,21,0,0, z2). Finally, given E C [0, 1]V, we put

B, ={(z1,...,x) €[0,1]% : (z1,... ,2x), € E}.

Note that if £ is [0,1]V, Qn, Q%, then E, is simply [0,1]*, Q, O3,
respectively.

Theorem 1.1. The best constants for 07 - - - 0% have the asymptotic
behavior

(10)
n(oy - %Y | Pu(E)) ~ nlv1/2 max (23;1)"11/2 . (ka)l’jkﬂ,

(wlv--- 7wk)eEV

(11)
(@Y 0% | Po(E)) ~ 0l |Lu;, 0y, ® ® Luy, s, | L*(E,)|lcos
(12)

N(OY - KN | Pu(E)) ~ 2| |G ® @Gy, a | L*(E,) |-

Vi1 ®j1
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If E is [0,1]V, then the maximum in (10) is 2//2, and if E = Q3
then this maximum equals

<21/‘5le )6Vj1/2 <21/5ij )5ij/2
vl v '

Thus, in the Hermite case the coefficient in the asymptotic formula is
explicitly available. Theorem 1.2 will show that the Gegenbauer case
can be reduced to the Laguerre case.

When dealing with the coefficients in the asymptotics, we have k
dimensions instead of N. To avoid double subscripts, we assume in this
context that we are given a k-tuple v = (v4, ... , ) of positive integers
and a k-tuple o = (o, ... , o) of real numbers such that a; > —1 for
all j. The set E is now a closed subset of [0, 1]* which contains a point
of (0,1)* and which contains [0, 1] x - - - x [0, x| together with each of
its points (z1,... ,zk). Recall that E? = {(z%,... ,22) : (z1,... ,2k) €
E}. Henceforth we also make use of the abbreviations

Lya=Ly,a ® ® Lyy,a, GV,OL = GVLOQ ®--® Gkaak'

Theorem 1.2. The Gegenbauer and Laguerre cases are related by
the equality

1Gya | L2 (B)lloo = 27| Ly | L*(E?)|cc-

Bounds for ||L, . | L?(E)||« are delivered by the trivial inequalities

L3 o Lo | L*(E)|2
1w, | L2(E)|2
where || - ||2 stands for the Hilbert-Schmidt norm. Here L

adjoint of L, o | L*(E), that is, by Lj
L2(E))"

(13)

< v | L2 (B)lloo < [ L | L*(E)]l2,

o 18 the

o we actually mean (L, |

Theorem 1.3. We have

ﬁ I( aJ +1)I(2p; — DI'(26v;)

(e +2v5)0(v5)?

Lya L2 Q§ 2
L | O = (o il
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and

100 Lva | L2(95)||§

ﬁ T'(a; + 1)2T(2v; — 1)2T'(46v;)

45|u\ +1) 44 (o + 2v5)% (e + 2v5 + 1) (v))*

J=1

Inserting the expressions from Theorem 1.3 in (13) we get bounds
b (0,0 < L | ()l < oy, 25)
If k,0,a1,. .., 0 remain fixed and v; — oo for all j, then

ba (v, o, 22) n/t

14 ~ (276)k—1)/4 )
(14) TR I P I

For k = 1, the right-hand side of (14) is 1, but for & > 2 it increases
(though moderately). The following result reveals that the upper bound
by (v, @, Qi) is asymptotically sharp as v goes to infinity along a straight
line.

Theorem 1.4. Let v = (o17,...,0rT) where g1,... , 0k are positive
real numbers. Then as T — 00,

1w | L2 (@)oo ~ Il Lo | L2(20)]l2-

If, for example, kK = 2, § = 1, oy = ag = 0, v; = vy =: v, then
Theorems 1.1, 1.3, 1.4 yield

o (271'1/)1/4 1 1 2v
(15) ANO7 05 | Pn(822)) 4 222 T'(v)? "

In the case k£ = 1 we infer from the same theorems that

(16) A | Pal6ke)) = MO% | Pu(@)) ~ g
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It is easily seen that always
(17) A(07 05 | Pu(Q22)) < (07 | Pa(22))A(05 | Pu(2))-
However, from (15) and (16) we obtain that

(0705 | Pr($22)) _ (2m)V/4
A0 | Pa(Q2))M05 | Pa(2)) 92

which is much smaller than 1 if v is large and hence much sharper than
(17).

We finally turn to linear combinations of partial derivatives. Let

po(&r,. .. éN) = > Do £ ERY

vitetuy=M

be the principal part of polynomial (9). We write a, =~ b, if there
exist constants 0 < ¢; < ¢ < oo such that ¢1b, < a, < czb, for all
sufficiently large n. The following theorem reveals that the asymptotic
behavior of the best constants for linear partial differential operators
with constant coefficients is completely determined by their principal
parts.

Theorem 1.5. Let C stand for n, A, or v and put o = 1/2 in the
Hermite case, o = 1 in the Laguerre case, and o = 2 in the Gegenbauer
case. Then

(18) C(po(01,--- ,0N) | Pu(E)) ~n"M
and

(19)  C(p(dy,...,0n) [ Pu(E)) ~ C(po(0y; ... ,0n) | Pn(E)).

The paper is organized as follows. Section 2 is devoted to comments
on previous work and the results and methods of this paper. Sections
3 to 7 contain the proofs of Theorems 1.1 to 1.5 and in Section 8 we
list some problems we have to leave open.
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2. Remarks on the history. The problem of finding upper bounds
for the derivatives of functions in terms of the functions themselves
has a long and rich history. Nowadays one speaks of Bernstein-
type inequalities if the functions are trigonometric polynomials and
of Markov-type inequalities in the case of algebraic polynomials. The
Markov brothers [24, 25] found the best constant C' in the inequality
ID™f|| < C| f|| when || -] is the L® norm on some finite interval.
We refer to [2, 15, 26, 27, 29, 30] for more on the subject and here
confine ourselves to the asymptotics of the best constants in Markov-
type inequalities with L? norms.

An L2 version of a Markov-type inequality was first established by
Erhard Schmidt [31] and subsequently for LP norms by Hille, Szegd
and Tamarkin [17]. In 1944, Schmidt [32] proved that

ma(D) = V2n, A(D)~ 2n, (D)~ Ln2
i i

assuming «a = 0, and even provided the next two terms in the asymp-
totics of A\, (D) and 7, (D). Schmidt also observed that for the Hermite
weight the problem is more or less trivial. Shampine [33] then showed
that, again for a = 0, A\, (D?) ~ n?/ud and v, (D?) ~ n*/(4u?) where
to is the smallest positive root of the equation 1 + cosp coshpu = 0.
For the exact values of A, (D) and v,(D) in the case @ = 0 see [17,
21, 36]. The idea that the best constants in question are the largest
singular value (= operator norm) of certain matrices was developed in
[7, 8, 9] and used to derive bounds for

A (D™
lim inf g, lim sup
n—00 nm n— o0

An(D™)

for general m and «. In [3, 4] we proved that A\,(D™)/n™ and
Y (D™)/n*™ converge to a limit as n — oo and identified these limits
as the operator norms of certain Volterra integral operators.

The appearance of Volterra operators in this context connects us with
another field of research. Paul Halmos [16] was probably the first to
state explicitly that the operator norm of the operator

1
(Liof)(z) = / F(y) dy
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on L?(0,1) is 2/m. Combining this result with our formula A, (D) ~
|L1,0]|s0 1 reproduces Schmidt’s formula A, (D) ~ (2/m) n. Halmos also
raised the question of determining the operator norms of the iterates
LTy = Ly ,o. This problem was subsequently studied by many authors,
including [1, 12, 18, 22, 23, 35]. The much earlier paper [14] was
detected by Thorpe [35] to be also of relevancy in connection with
the matter. The reader may consult [3, 4] for details. In the course
of these investigations sharp bounds for ||L, ||« and the asymptotic
formula ||Ly,0llcc ~ 1/(2m!) were established. In [4] we solved the
corresponding problems for the norms ||L, ollcc and ||Gmallc- In
particular, the N = 1 versions of Theorems 1.2, 1.3, 1.4 are already in
[4]. We also want to note that Halmos’s ||L1 ¢|lcc = 2/m was in [10]
and [4] extended to the equality || L1 q|lcc = 1/jo(c) where jo(c) is the
smallest positive zero of the Bessel function J,_1)/2-

The literature on multivariate Markov-type inequalities is immense,
a main topic of research being inequalities for the L>° norm on multidi-
mensional regions and manifolds. See, for example, [19, 20, 28]. How-
ever, we are not aware of publications dealing with best constants in
multivariate Markov-type inequalities with the L2 norm and for partial
derivatives of arbitrary order. Note that even the one-dimensional ver-
sions of the results of this paper were established only in [3, 4]. Clearly,
for E = [0,1]"V our Theorems 1.1 to 1.4 simply follow from their one-
dimensional counterparts by taking tensor products. However, passage
to the simplex £ = Qy makes things nontrivial. Moreover, Theo-
rem 1.2 even motivates consideration of the entire scale E = Q‘Isv.

The approach employed in [3, 4] and also in Section 4 of this
paper is based on an idea by Harold Widom [37, 38, 39], which
was independently also introduced by Lawrence Shampine [33, 34].
In order to find the asymptotic behavior of spectral quantities of a
sequence of n X n matrices A, they associated an integral operator
Wa, on L%(0,1) with each matrix A,, and then studied whether, after
appropriate scaling, the operators Wy, converge uniformly to some
limiting operator. In this way Widom and Shampine were able to
express asymptotic properties of A, in terms of the limiting operator.
In particular, Shampine [33] considered Wy _ where A, is the matrix
representation of the operator (D?)*D?. For (D™)* D™ with m > 2, the
matrices become more complicated and hence we have the limitation
to m = 2 in [33]. What is new in our approach is that we exploit the
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fact that the replacement A, — W, _ is an algebraic homomorphism
that preserves also tensor products. Thus, we simply consider the
operator W4, for A, being the matrix representation of D and show
that, after scaling, W4, converges to some limiting operator. Once
this has been done, we can easily pass to adjoints, sums, products, and
tensor products.

The reasoning in Section 5 is similar to the one of [3, 4]. The
argument used in Section 6 is different from [3, 4] and based on a
strategy that was in another context pursued in [6].

3. Hermite weights. In this section we prove the assertion of
Theorem 1.1 that concerns the Hermite case. This case is particularly
simple.

An orthonormal basis in P,, with the norm (1) is {ho,h1,...,h,}
where hy, is the kth normalized Hermite polynomial. We have

T(i+1)

2 D'h; =2v/% | — )
(20) I'i—v+1)

hi—u

for v <i. As usual, h;, ® --- ® h;,, is defined by
(hiy ® - @ Ry )(t1, -+« stn) = hiy (t1) -+ hiy (EN)-

Then {h;, ® -+-® hiy : (i1/n,... ,in/n) € E} is an orthonormal basis
in P,(E). For

F=Y firinhis ® - @ hiy € Pu(E),
we then get

(21) (D" ®---@ D")f|?
D" ®-"®DVN)f,(DV1 ®...®DVN)f)

= ((
- <Zfi1y---7iN Dylhil & ®DVNhiN7
kah"-ka Dylhkl ®"'®DVNhk:N>

= ZZf“, 71'ka1,--- ,kN(DUIhiuDylhkl) e
X (DVNhiN, DVNhkN).
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Using (20) and the orthonormality of hg, hy,... ,hy, we see that (21)
equals

S e M) T
b N (21 — U + 1) F(ZN — UN =+ 1),
the sum over iy > v1,..., ixy > vy, (i1/n,...,in/n) € E. It follows

that the operator norm of D"* ® --- ® D~ on P, (E) is given by

D" ®---@ D" | Pa(E)|%

[(iy +1) T(iy +1)
F(il—ljl—f—l) F(ZN—VN+1)
=2V maxi;(iy — 1)+ (iy —vi + 1)+

XiN(iN—l)---(iN—I/N—i-l),

= max 2"/

the maximum over iy > vy,..., iy > vn, (i1/n,...,in/n) € E.
Consequently,

(22) (07" - 0K | Pu(E))/(20)

(v Ly iy vw =l
n n n n n
=) () (D)
n n n
ij

v
max ziteeealy = max RS
(z1,...,zN)EE (1,000 ,z1)EE,

The limit of (22) is

which proves (10).

4. Laguerre and Gegenbauer weights. This section is devoted
to the proof of Theorem 1.1 in the Laguerre and Gegenbauer cases and
to the proof of Theorem 1.2.

Suppose first that v; > 1 for all j. In that case £, = E. We
denote by p,; the ith normalized Laguerre or Gegenbauer polynomial
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in the norm (2) or (3), respectively. Then {pa,0,Pa,1;--+ 3Pa,n} is an
orthonormal basis in P,. Let D, , be the matrix representation of the
operator D : P, — P, in this basis. Given a matrix A, = (aik)?,kzm
we denote by W, the integral operator on L?(0,1) with the piecewise
constant kernel (n + 1)a[(n41)],[(n+1)y], Where [£] is the integral part of
€. Recall that Ly, , and G, are given by (4) and (5). Put 0 = 1 and
T, = L, in the Laguerre case and 0 = 2 and T, = Gy, in the
Gegenbauer case. In [4] we showed that

(23) [(n+1)""Wpm  — Tm,alle —> 0 as n — oco.
An orthonormal basis in P, ([0, 1]V) is
F = {pahil R QPay,in * (il, Ce ,’LN) S STILV}

where S,, := {0,1,...,n}. If A is a linear operator on P,([0,1]"),
we denote by A, = (aik)iresy its matrix representation in this basis.
Thus, if ¢ = (i1,...,in) and k = (k1,... ,kn), then

Ak = (A(pahkl & ®pC\tN7kN)7p0t1,i1 - ®paN,iN)'
In the case where A = 0{*--- 0y = D" ® --- ® D"V, the matrix
representation A, is just the Kronecker product D% = ® -+ ® DX~

a1,n an,n"”
We associate with A,, the integral operator W, on L2((0,1)") given
by

(Wa, f)(@1,...,2N)
N
=(n+1) / A[(n+1)21],.. [+ D)on ] [(n+ Dyal,ees [(n+Dyn]
(0,1)N

x f(y1,---,yn) dy.

Throughout what follows ||A||« denotes the operator norm if A is an
operator and the spectral norm in case A is a matrix.

Lemma 4.1 (Widom and Shampine). If C,...,Cy are linear
operators on P,, A, B are linear operators on P,([0,1]), and o, 3 €
C, then

Waa,+8B, = aWa, +BWp,,

Wa, B, =Wa, Wg,,

Wicy)ne-Cn)n = Wci)n @ @ Wicy),
Wa,lloo = [[Anlloo-
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Proof. Let I, be the interval (k/(n + 1), (k+1)/(n + 1)), denote by
X the characteristic function of I, and consider the operators

R:C"" — 12(0,1), {z}ior— vVn+1 Z:L‘ka,
k=0

S:L%0,1) — C"  fr— {\/n—i—l f(:t:)dac}
Iy

n

k=0

It can be verified straightforwardly that |R||cc = ||S|lec = 1, that
SR = I, and that R(C;),S = Wc,, and (R® --- ®@ R)X,(S ®
.- ® 8) = Wy, for every linear operator X on P,([0,1]V). It
follows that Woa,+8B, = aWa, + Wa,, Wa,B, = Wa,Wp,, and
W e -a@n)n = Wien, €@ Wy, Since

Wa,lloe =(R®- - @R)An(S® - ® F)loc < [ Anll
=[(S®- - @SWa, (RO - @ R)loo < [Wa,lloo,

we arrive at the equality [|[Wy_ |lco = ||4n]|co- u]

From (23) we infer that
||(n + 1)70\V| WDZIM R ® WD(L;JJV\] L TV1,(11 X -
® TVN,aN ||oo — 07
and from Lemma 4.1 we therefore deduce that
—olv| . vy — .
(24) [[(n+1) Wpat gopi = Tnen @ @Tyxanlloo — 0.

ap,n

Lemma 4.2. Let X be a Banach space and suppose X is the direct
sum of two closed subspaces U and V, X =U@V. Let K be a bounded
linear operator on X which has U as an invariant subspace. Then, with
Py denoting the projection of X onto U parallel to 'V,

1K [ Ulloe = [[KPylloo-

Proof. The decomposition X = U @ V allows us to represent K by a
2 x 2 operator matrix. Since U is an invariant subspace, the 2,1 entry
of this matrix is zero. Thus,

K_<g‘ g)
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Clearly, K |U = A and

A B I 0 A0
KTb“(o (7><0 0)“(0 0)‘
This shows that ||K | Ulls = || K Pvlso- O

We may think of P, (E) as a subspace of P,([0,1]"). Moreover, in
the orthonormal basis F we may identify P, ([0, 1]) with ¢2(SY) and
P, (E) with ¢3(I,,) where S,, = {0,1,... ,n} and

11, = {(’Ll, ,iN) S STILV : (zl/n, ,iN/n) S E}

We are interested in the norm || DX} | ®@---@DyN | £3(II,,)||o- Let P,

a1,n

be the orthogonal projection of £2(SY) onto ¢%(1,,). By Lemma 4.2,

||Dzl::11,n ®---® D;%,n ‘ gz(nn)Hoo
=(Dg,n ® -+ ®DgY )P, [l

a1, an,n

where the norm on the right is taken over ¢2(S.Y). We denote the
matrix representation of Prr, in the orthonormal basis F also by Pr,,
although strict use of notation would require to denote it by (P, )n.
A little thought reveals that

1 ifi=kell
25 Pu)in = )
(25) (P, i {0 otherwise.

Lemma 4.3. The operators Wp, — converge strongly (= pointwise)
on L%((0,1)N) to the operator

f(z) ifrekE,

P (0" — (0.1, (Peie) {7 T2

Proof. By Lemma 4.1, [Wp; |lco = ||P11,[lcc = 1. Hence it suffices to
prove that Wp, f — Pgf for all f in some dense subset of L*((0,1)"),
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say for f € C([0,1]"). Thus, fix f € C([0,1]Y) and € > 0. For
i=(i1,...,in) €{0,1,...,n}V, put

N TR A SO S
Tin4+1"n+1 n+1" n+1 )

‘We have
20 W= PegP= 3 [ Wi ) - o)
,in=0
If 2 = (z1,... ,2N) € Qi then [(n+ Vx| = dy,...,[(n+ )zn] = in
and hence
(Wey, f)(z)

= (n + 1)N /(0 . (PHH)[(n-Q—l)zl],... J(n+Dzn],[(n+1)y1],...,[(n+1)yn]
x f(y)dy

=(n+ 1)N/ (Pr1, )iy o i [t D)ya]ees s[(n Dy f (9) dy-
(0,1)¥

By virtue of (25),

(Wen, £)(@) = (0 + 1) / (BuJivs imivn in f () dy

i

If (i/(n+1),...,in/(n+1)) ¢ E then (i1/n,... ,in/n) ¢ E. Thus,
in this case we have i = (iy,...,iy) ¢ II, and @; C [0,1]V \ E.
Consequently, (P, );; = 0 and (Pgf)(z) = 0 for € Q;, which implies
that

| Wy, 1) - Pef(e)ds =o.
Suppose ((i1 +1)/n,...,(in +1) n) € E. Then i = (i,...,iy) € II,
and since ((i;y +1)/(n+1),...,(in +1)/(n + 1)) € E, it follows that
Qi C E. Thus, (Pm,)i; = l and (Prf)(z) = f(z) for © € Q;. This
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gives
| 10We, 1(a) = (Pef)@)Pda
1 2
Shyy 2 |(Wen, )(2) = (Pef)(2)|
1

= — Su
(n+ 1)N Zegi

1 €
e L, I I S g

2

(n+ 1) / (f(y) — f(2)) dy

i

<

if only n > ny = ny(e). It follows that the sum of the terms

| Wr, 1) = Pose)as

i

over ((iy +1)/n,...,(ixn +1)/n) € E is at most n™V(¢/(2n)) = £/2
for all n > n;. We are left with the case where

. . S . 1
no N Nep, (PR T ep
n+1 n+1 n n
These points (i1,... ,ix) are all in a small shell around the boundary

of nE and hence their number is O(nV~!). Summing up over these
points we get

S [ 0., 1)) ~ (P o)
< (2.55.170) e

— 0 (2_max If(fc)>2( !

z€[0,1]N n+ 1)N’

which is smaller than /2 if n > na = na(e). In summary, (26) is
smaller that ¢ if n > max(ny, ng). ]

We are now in a position to prove (11) and (12) of Theorem 1.1. It
is well known that if K is a compact operator, ||K, — K||oc — 0,
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and C; — C* strongly (the asterisk denoting the adjoint), then
|K,Cr — KClloo — 0 (see, e.g., [5, Lemma 2.8]). Put

= —olvlw . v
Kn (n + 1) WDall,n®"'®DaJXr,n’
K = TVlyal Q- ® TVNyaN
Cp=Ci=Wp,, C=C"=Pp

It is easily seen that all T, », are Hilbert-Schmidt operators. (Here
we are using our assumption that v; > 1 for all j.) This implies
that 1), o, ® -+ ® T}y oy is also Hilbert-Schmidt and thus compact.
From (24) we know that ||K,, — K|l — 0, and Lemma 4.3 states that
Cr — C* strongly. Consequently,

e+ D)~ Wpis oapiy W,

- (Tul,al Q- TVN7(1N)PE||0° — 0.
This yields that

(n+ 1)7(7'”‘ ||WD;11’H®---®DZ%’HWPHH oo

— [[(Toy,00 ® - @ Ty an ) Pl -
From Lemma 4.1 we infer that
”WD;ll,n@---@D;II\\’,mWPnn ||<>o = H(D;ll,n - ® DC,:IXr,n)PHn”W’

and since n/(n + 1) — 1, Lemma 4.2 gives the desired result.

We are left with the case where some of the numbers vy,... ,vy are
zero. We assume without loss of generality that vq,...,v; > 1 and
Vk+1 = ... = vy = 0. Note that then

B, ={(z1,...,xx) € [0,1]% : (zy,... ,2x,0,...,0) € E}.
For the sake of definiteness, we consider the Laguerre case. Let
Cn = A0 -+ 0" | Pu(Ey))
be the norm of 9;* ...0;* on Py, (E,). We have already proved that

(27) Co v 1 | Ly @ - ® Ly | (Bl
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There exists a polynomial g € P,(E,) such that [|9;*...9;%g| =
Cyhllgll. Define f € P,(E) by f(t1,...,tn) = g(t1,...,tx). Then
ot .. O f=0{"...0%g and hence

/(0 . [(OF -+ O F) (b )P otk e e e Bty - dity,

=C? / |ty )P et e e iRty - - diy,
(0,00)
for each point (tgi1,...,tn) € (0,00)NY "%, Multiplying this equality
by

Qr+1 a —t —t
(28) tk+1 ---tNNe k1, .. 7N

and integrating the result over (0,00)N~* we get ||0}*--- %N fII? =
CRIIfII?. Thus, A(0;* -+ O | Pn(E)) = Cn.

On the other hand, every polynomial f € P,,(E) may be written as

(29) fty,... ty) = Zpih___,ik(tkﬂ,... (N i
where
Dix,. i (Ebt1s -+ EIN) = Zpil,...,ik,eHl,...,eNtin tfv”
and (i1/n,...,ik/n, lkr1/n, ... ,€n/n) € E. This implies that (i;/n,
. ,ik/n) € E, and that hence the polynomial (29) belongs to P, (E.)

for each fixed point (txi1,...,tn) € (0,00)¥"*. We obtain that, for
fixed (tk+1, e ,tN) S (0, OO)Nik,

/ |(aill B 'aIVVNf)(tla- . 7tN)|2t(111 . "tgk€7t1 . "€7tkdt1 .. dtk
(0,00)*
< CZ / . ‘f(tl, . ,tN)|2t?1 .- 'tgke_tl .. ‘6_tkdt1 - dty,
(0,00)

which after multiplication by (28) and integration over (0,00)"N %

becomes the inequality [|0;" --- %Y fI|* < CZ||f||*. This proves that
A@Y --- O | Pu(E)) < Co.
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In summary, we have A(0;* - - - 0%y | Pn(E)) = Cy, which in conjunc-
tion with (27) completes the proof of Theorem 1.1.

Here is the proof of Theorem 1.2. The operator
U:L*(E?) — LX(E), (Uf)(ty,... tx) =286 62 F(83,... 2)
is an isometry and the inverse operator acts by the rule
(Uﬁlg)(acl, ey TE) = 27’“/2331_1/4 cen x;1/4g(x}/2, . ,x,lc/Q).
The kernel of the integral operator G, , | L*(E) is

1/2 1/2—
x/+a1y/ @ )

k
K(T1ye oo s Ty Y15 e -+ Yk) H (i —23)" ' x(y; — z;)

Vi~

where X(§) = 1 for £ > 0 and X(§) = 0 for & < 0. Thus, for
z=(21,...,2,) € E,

(UYGy .o | LA(B)Uf)(x)
k
= 2_k/2 H 'TJ'_I/4/ Ii(-Ti/2a v 1/2 NI 7tk)(Uf)(t1’ T ’tk) dt
) E
j=

and the integral equals

1
1/2 1/2 1/2 1/2 1/2
R ON )

71/2dy
1/2 /2 1/2 1/2
:/E2n(:cl/ ,...,xk/ ,yl/ ,...,yk/ ) 2k/2

k k
1 _
< [Tw Flvs- - w) —kH S dy.
) i1

IIEw
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Consequently, U 'G, ,U is the integral operator on L?(E?) with the
kernel

k

<H 14, 1/4> @22 g

_ —1/4 —1/4, 1/4+a;/2 1/4—a;/2
T 9k H 2:/]711-\ Yi % ’ Yj ’

Ui 1/2 1/2
x(yj—xnf x(y;? - 2j%)

Lk
:2_1;[

As this is just 1/2/*| times the kernel of L, «, the proof of Theorem 1.2
is complete.

a]/2 —aJ/2(

yj — ;)" X (y; — ;).

5. Bounds. In this section we prove Theorem 1.3.

Thus, let v = (v1,...,vx) with natural numbers v; > 1 and o =
(a1,...,04) with real numbers o; > —1. The operator L, , has the
kernel

k an/Qy—aJ/Q .
H (i — )" X(y; — @)

The adjoint of the operator L, o | L*(E) is L}, , | L*(E) where L}, , is
the integral operator with the kernel

k x—aJ/anJ/Q o
[ =" — v)" "X(x; — v)-

Jj=1

Recall that Q0 = {z € [0,1]% : 2}/° + .- + 2}/° < 1}. In what follows
we will make frequent use of Euler’s formula

! L'(p)I
/ tp71(1 _ 2f)qfl dt = (p) (q)
0 T(p+q)
and of Dirichlet’s formula

- §*T(6py) -~ - T'(Spx)
30 et gl T e = :
(30) /95 ! T v L(dp1 +---+ 0pr + 1)
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The Hilbert-Schmidt norm ||[K | L?(E)||2 of an integral operator is
the L? norm of its kernel over E x E. We therefore have

k
(TLre9?) i | 2@
k

- (e, )ana @)
/95 /95 H z; Yy (zg — y) X (2 — yy) dy da.

kj=1

If (z1,...,2;) € Qf and y; < =z; for all j, then (yi,...,y;) is
automatically in Q. Thus, (31) is

k
_ H I'(a; +1)I'(2v; — / H 201 4
) (o) + 2v5) Qs

kj=1
and formula (30) now implies the equality asserted in Theorem 1.3.

To prove the inequality stated in Theorem 1.3, note first that the
kernel of the integral operator L; ,L, q | L? (Qi) is

/m g(t,z)g(t,y)dt

k

where
k tO‘J /2 7(1] /2

t Z H — tj)uj_lX(Zj — tj).

Consequently,

2
(32 L aLea | HODIE= [ [ ( / g(t,x)g(t,wdt) dz dy.
Q Jol \Ja
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The inner integral in (32) is

(33)
'—aj/Qy'—aj/2

ne= (T )

k
X /m (Htj‘f(yj — ;)" Ny — ) X (y; — t5)X(z; —tj)> dt.
k j=1

Put u; = min(z;,y;). If  and y are in Q2, then (ug, ... ,ux) is also in
Q2. Therefore the integral in (33) is

ko
12 = H/ t?j (yj - tj)yjil(l'j — tj)yjildtj.
j=1"0
If y; < z; then u; = y; and
ws
B [ =) )
Yi «j vi—1 vi—1
:/0 ti (g —t5)7 7 (w5 — )" dt;

1
- / Y soy (1 = 5) Hwy — yy)Yty; ds.
0

Since z; — yjs > xz; —xjs for 0 < y; < z; and 0 < s < 1, integral (34)
is at least

1
(39) [ty e st
0
F(Oéj =+ l)I‘(21/J — ].) yc.tj+yj1‘l-lj_1
F(aj + 21/]) 7 J
Mo+ D)I'2v; — 1) o4, v,—
(a]+ ) ( Vj )U-]+ T 1’
F(Olj + 2l/j) J J
where w; = max(z;,y;). The integral I5 is symmetric in z and y and
hence (35) will also result in the case y; > x;. Thus,

k
IZ 2 Fu,a u?j+ij;‘/j717
j=1
k
.= H [(a; +DI'(2v; — 1)
' [(ay + 2v5)
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Letting C, = H?ZI(I/F(VJ-)), we obtain that

v v,a j

k
I} > Cpr? H acj_a"yj_ajugajwu"w?"j_Q
j=1

k
_ C4F2 H u(?tj+2ij2‘ijaj72
i .

vv,a J
Jj=1

Consequently, a lower bound for (32) is

k
(36) Cff,z,a/ / < u?j+2ij]2-ujaj2> dz dy.
T JagJog

Jj=1

For each j, we have, up to sets of measure zero, the two possibilities
y; < zj or y; > x;. This gives 2* possibilities for all j. Accordingly,
we may partition Qf x Q2 into 2¥ domains B; (i = 1,...,2%). For a
fixed j, we have either u; = z; and w; = y; or u; = y; and w; = z;
throughout each domain B;. Thus,

dry - -dxgdyy - - - dyr = duy - - - dug dwy - - - dwy,

in each B;. This implies that each B; makes the same contribution to
(36) and that hence (36) equals

k
(37) 2kcir? / ( uo-‘j+2"jw2-'/jaj2> du dw
B

vt J J
Jj=1

where By = {(u,w) € Qf x Q2 : u; < wj for all j}. If w € Qf and
uj < w; for all j, then u is automatically in Q. This shows that (37)
is equal to

ko oaws
J
2kC;lFl21a/ <H/ u‘f‘JJr Vi gy 2Vi % duj) dw
: s J j
o \jZiJo

k 4Vj—1

w .
=2kCir? / — ) dw.
vene Qs HO(]+21/J+1 v

k ~j=1



24 ALBRECHT BOTTCHER AND PETER DORFLER

From (30) we infer that

k
/ H 4V7_1dw o T'(46v,)
Qs (46\y| +1) i)

kj=1 j=1

Putting things together we arrive at the inequality in Theorem 1.3.

Here is, for the sake of completeness, a proof of (14). The squares of
the bounds by := by (v,,Q)) and by := ba(v, a, Q2) are

p_ o ﬁ T(a; + 1)I(2v; — 1)T(26v;)

27 D(20[v| + 1) le (o + 2v;)(v))? ’
p_ 2T(28v| 41 ﬁ I'(a; + 1)I(2v; — 1)T'(46;)

! L(48lv|+1) 44 D(aj + 2v5) (a5 + 2vj + 1)T'(v;)T(20v;5)’

and the quotient of these two bounds is

b2 (6\" Doy +1) L T'(26v;)?
38) 2=(2) T 2wj 4+ 1) Frst
(88) % (2) (28] 1 1)2 1;[ % 2+ D5,
Suppose k,d, o, ... ,q; remain fixed and v; — oo for all j. Taking

into account that

F(?/},) ~ 22;}, ﬁ

()2 e as p — oo,
we see that (38) is
5k 48|y|T(48]v]) I'(26v;)2
—_— 2v 1) 7
2 16212 T(20]v|)2 H vt (451/,)

0 1 (201 ’“H 1 v
2k §|v| 4 g 2(51/

which is the same as (14).
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6. Asymptotics. In this section we present a proof of Theorem 1.4.

Let 01, ..., 0k be positive real numbers. For a real number 7 > 0, we
consider the integral operator L. with the kernel

— 2 2 S
z; Py @y — i) X (w5 — )

sz

on L?(Q2). Clearly, L, is nothing but

k
( H F(QjT)> (LZ1T,061 Q- ® szr,ak) | LZ(Q"E:)
j=1

The function H 97 attains its maximum on 2 at the point

(p1,-..,pk) and nowhere else. This point lies on the boundary of Qi
and is given by

5
0
pbj = <ﬁ> ol =01+ + ok

We denote by H, the integral operator on L?(Q2$) whose kernel is

k ojT—1
—aj/2 aj/2 ejT—1 Yj
he(e,y) = [[o; % Py 2al” (1 - p—J> X(pj — y5)-
J

As h.(z,y) is of the form a(z)b(y), the operator norm of H, is the
product of the L? norms of a and b. Thus, using the Dirichlet and
Euler formulas,

2 2QT a;—2 2072
(30) |, % /H ; deH/ ( ) dy,

ok H].:1 (260, — (aj + 1)6)
(25|Q|T —>(aj +1)6+1)

% H a]+1 F(aJ + 1)F(2Q] — ].)
L(a; + 2¢;7)

)
j=1
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the sum over j = 1,... ,k. From Theorem 1.3 we infer that
||L ”2 _ s* ‘ F(aj + 1)F(29jT — 1)F(2(59j7_)
127 P(260]7 4+ 1) et ['(aj + 2¢;7) '

Consequently, by Stirling’s formula,

|2 T+ 1)
IL.I3 ~ T(lelr — Y-(; + 1)5 + 1)

k
aj+1 F(2(5Qj7’ — (Oéj + 1)(5)
<117 I(260;7)

k
~ (20]olr) 20 T pg ™ (26;7) (02

j=1

k

; +1 —(ct;+1)8

= |o2= s+ D)8 e e; (e +1)
j=1

= | |Z(aj+1)5 ﬁ <ﬁ>5(aﬁl) “(a+1)8 _
0 g 0 ,
that is, ||Hr|lco = || L+||2(1 + 0(1)). Now suppose we had shown that
(40) |ILr = H[l3 = o[l Hy||2)-
It would follow that ||L, — H;||co = o(||H+||cc) and hence

17 l[co = [[Hrlloo + o([[ Hrloo)
= [[Hr[loo (1 4 0(1)) = [|L+[2(1 + o(1)),

as desired. Thus, we are left with (40).
We have

L i = [ [ (6 2gh 42 dy e
@ /a7

= |IL, |2 2 / / grhr dy e + || H, |13
Q5 /a5
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We already showed that ||L.|%/|/H.||% — 1, and since the kernel of
H, is of the form a(x)b(y) we may conclude that ||H,|]3/||H.||% = 1.
Consequently, estimate (40) will follow as soon as we have proved that

(41) //gTthydac/HHTHgo—)l.
Qf Jp

The integral in (41) equals

k
/ H xgjr—aj—l
J
Qo

k j=1

k pj o;T—1
aj Yj T —
X <H/ Y; <1— —]> X(z;j — y;)(@; — ;) 1dyj> dz.
j=170 pj

To tackle the inner integrals, we use that if « > —1 and 0 < 8 < 1,
then

/1 (L= BN1— e = SO TD L o)
: @A) e T

as A — oo, the o(1) being unform in 8 € [0, 1]; see, for example, [11,
Section 2.4]. If z; < pj, the jth inner integral is

Tj v, o;T—1
o Py
/ y;’ (1 - —J> (zj —y;)¥7 tdy;
0

b
1 4\ 271
= x?j“”/ £ <1 - ‘”—”) L o-rta
0 b
o I'(aj; +1) 1
ajte;T J
=, 1+ 0(1)),
! 1+ /pj)*itt (gim)™tt (1+0(1))

while for z; > p; it is

T E ] QjT_l( )y,
Y; , Tj—Yj Yi
0 pj

1 a;+1 ! 1 A\

0;T—1 «y . JU— '

=z p;’ / %9 (1 —1)%7 (1 - ) dt
0 J

7—1 a;+1 F(aJ + 1) 1
=z’ -7 1+o0(1
i P W fay)e T (gt (1+o(1)
wior  Tla;+1 1
_ gouter Do+ 1) (1+0(1)).

! (L+a;/pj)ott (o5m)itt
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Thus, the integral in (41) is asymptotically equal to

k
aj l
(42) 115, =g ) P —

k]l

ZQJT 1

dz.
1+a: /pj)eitt

Taking into account that H:c?j has its maximum at (pi,...,px) one
can employ standard methods, for example, such as in [13, Section I1.4],
to show that the integral in (42) is asymptotically equal to

ZQJT 1

20;7— 1
(43) /QJH l+p /pj) a+1 H2°‘J+1 /QJH !

k j=1
By Dirichlet’s formula (30), the integral on the right of (43) is

5k

_— I'(260;7).
T(20]o7 + 1) (200;7)

.
— =
L

In summary, the integral in (41) equals
k

) H I'(aj + 1)I'(260,7) (1 + o(1)).

I'(20]elm + 1) 201 (gyT)itt

This in conjunction with (39) gives that the left-hand side of (41) is
asymptotically equal to

L'28lo|7 — Y (aj +1)6 + 1)
I'(20)o|7 + 1)

ﬁ T'(260,7)L(a; + 20,7)
=1 2}7]9] a7+lr(269]’7— - (aj + 1)6)F(2Qj7- - l)

ﬁ (280;7)(@iTVI(29;7) i1

(25|Q|7') (2510 ) (2pjo)tt
k " 4 k
- 1[0 \@Y po
- H a5+ \ gl H aJ+1 ’
j=1P;j j=1Pj

which completes the proof.
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7. Linear combinations. Here is the proof of Theorem 1.5.

Let m > 1 be an integer and o > —1 a real number. We put
Tm,a = Lm o in the Laguerre case and T}, = G, in the Gegenbauer
case. Let M;,ym/> be the operator of multiplication by (2z)™/? on
L?(0,1), and put T o = M(2,)m/2 in the Hermite case; clearly, in that
case Tp, o does actually not depend on a. In either case, we let T ., be
the identity operator. We finally use the abbreviation

(44) Cn(p) = C(p(01, ... ,0N) | Pn(E)).

In Section 4 we introduced the matrix representations D, , of the
operator of differentiation on P,, in the Laguerre and Gegenbauer cases.
We use the notation D, , also for the matrix representation of the
operator D : P,, — P, in the Hermite basis (where in fact there is no
dependence on «).

Lemma 7.1. We have
(n+ 1)*"|”‘WD;1M Q- WD;%,H — 0 @@ Tyy an

strongly on L*((0,1)V) as n — oo.

Proof. Let I, be the (n + 1) x (n + 1) identity matrix. It is easily
seen that Wy, — I strongly. In the Laguerre and Gegenbauer cases, we
know from (23) that (n+4 1) 7™ Wpm — T}, o in the norm provided
m > 1. This implies the lemma in these two cases. Let us consider the
Hermite case. For z € Q; := [j/(n+1),(j +1)/(n + 1)), we obtain
from (20) that

Woz, e) =0+ DY [ (D2 w)dy

= (n+1) /Q (D) 5m ] () dy

j+m

= (n+1) /QW 2’"”,/—“@?31) f(y)dy

=<n+1>/Q o2 [ m) G+ 1) £(y) dy,

jt+m
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provided 7 +m < n. Thus,
(n+1)""*Wpp f)()

j 1
1) 2m/2/ iy dy.
(n+ Q]+m\/ n+1 n+1> <n+1+n+1 fy)dy

If f is in C[0,1] and n is large, then the right-hand side of this equality
is approximately equal to 2/2¢™/2 f (z). It is not difficult to make this
precise and to show that

[(n+1)"™2Wpy f— Mggymsfl| — 0

for every f € C]0,1]. Since, by Lemma 4.1 and the result known for
the one-dimensional case,

H(’I’L+ l) m/2WDm ||oo - (n+ ]-) m/2||Da n||00
=(n+1)" m/znn(Dm) ~ 2m/27

it follows that (n + 1)™™/*Wpm — M(y,)m/> strongly on L2(0,1).
Tensoring we get the assertion in the Hermite case. i

Since (n +1)/n — 1, Lemmas 4.1, 4.3 and 7.1 give that

—oly|
E n Puy,... VNVV(DQL1 n®@DEN )P,
it tun <M

- Z pl’lv---vVN(TVlyOtl ®"'®TVN7O¢N)PE
vit+--+vN<M
strongly, which in turn implies that
oM
(45) n 7 Z pyl"" ’VNW( 0‘1 n®: ®Do¢N n)PHn
vi+tvn=M

— Z Pvy,....un (Tylyal X ® TVNJIN)PE
vyt tvn=M

strongly. From the Banach-Steinhaus theorem we therefore obtain that

D —oM
liminf n > PaewWinl eeoDiy P,
vi+-+vn=M [e’e]
> E : Puy,....vn (TV1,0¢1 X ® TVNyaN)PE

vitetun=M o0
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The right-hand side of this inequality is strictly positive and the left-
hand side is just liminf n =¥ (), (py) due to Lemma 4.1. Hence

liminf n=7 M, (po) > 0.

Lemma 7.2. If p and q are any two polynomials, then C,(p+ q) <
Cn(p) + Cn(q).

Proof. Obvious. O

Lemma 7.2 in conjunction with Theorem 1.1 shows that
limsupn= M C,,(py) < 0.

Thus, at this point we have proved (18). From Lemma 7.2 we also get

Cn(p) < Cn(po) + > Pur, on |C (O - 0N | Pu(E)),

vi+--+rvn<M—1

Cn(po) < Culp) + > Bos.. o |C(OY - 8% | Po(E)),

vite v <SM—1

and Theorem 1.1 therefore yields that C,(p) = C,(po) + O(n?M~1),
which together with (18) gives (19) and thus completes the proof of
Theorem 1.5.

Remark 7.3. The arguments used in this section reveal the difference
between the Hermite case on the one hand and the Laguerre and
Gegenbauer cases on the other. In contrast to the Laguerre and
Gegenbauer cases, the limiting operators in the Hermite case are no
longer (compact) integral operators, but multiplication operators, and
secondly, in the Hermite case the convergence is no longer uniform, but
only strong. In this light it comes as a fortune that the Hermite case
can be disposed of by the simple reasoning presented in Section 3.



32 ALBRECHT BOTTCHER AND PETER DORFLER

8. Open problems.

Problem 8.1. Let N = 2 and consider the operator

p(01,0:2) = P303§’ +p218f32 +P12313% +p0333
+ Z Puiw, 0105

v1+r2<2

The principal part is po(d1,82) = p3005 + p210302 + p120103 + posds.
Theorem 1.5 tells us that, with abbreviation (44),

Cn(p) ~ Cn(pO) ~ n307

and as long as one of the terms p3g05 and p303 is present, we cannot
say more. However, if p3g = pps = 0 and if we are in the Laguerre
or Gegenbauer cases, then the convergence in (45) is uniform because
all occurring 7}, o, are compact integral operators. Consequently, in
these cases there is no need in having recourse to the Banach-Steinhaus
theorem, since we can rather conclude straightforwardly that

Cr(po) ~ 17 ||p21T2,0, ® T1,0p + P12T1,01 @ T | LP(E)|]co-

However, in the general case we must leave as an open problem the
replacement of “~" in (18) by “~ times a constant.”

Problem 8.2. The most embarrassing message is that our approach
fails for the Laplace operator. This failure is of course connected with
Problem 8.1. Let, for example, N = 2 and A = 97 + 92. From
Theorem 1.5 we deduce that

C(A| Pu(E)) ~n*7,

but we cannot even prove that C(A | P,,(E))/n?% converges to a limit.

On the credit side we have a few modest estimates. From (45) we get

(46)  liminf

n— oo W Z ||T2,a1 ®I+I®T2ya2 | LQ(E)HOO’
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while the combination of Theorem 1.1 and Lemma 7.2 yields that
(47)

lim sup
n—r o0

C(A | Pu(E))

oy < Ta00 | L2 (B2.0)lloo + 1 T2,0 | L (Eo,2)]lo0-

Suppose a1 = a2 = 0 and E = Q. In that case Ez o = Ep2 = [0, 1].
For the Hermite weight, the right-hand sides of (46) and (47) become
1Moz 420, | L(Q2)l|loo =2 and  2[[Ma | L*(0,1)]|0 = 4,

respectively, which results in the estimates

5 < limint T Pn(R)) o cp MATPn(22))

n—00 n n—o00 n

< 4.

Let us turn to the Laguerre weight. In that case the right-hand side
of (47) is
2||Lao | L*(0,1)] 0o = 2 x 0.284-- - < 0.569

(see [33] or [3]). On the right of (46) we now have the operator norm
of the operator Log ® I + 1 ® Lag on L?*(Q3). Let f be identically 1
on Q3. Then ||f||* = 1/2 and for (z1,z2) € Qa,

(Lro@T+18 Lig)ena) = [ (01— n)fne) dn
+/0 2($2_y2)f(x17y2)dy2
= /wl(ﬂh —yl)dy1
0
+/0 (x2 — y2) dy2 =

m%—i—m%
2

Thus,
L2 ® I +1® Lag | L*(Q2)]|%
=[[L3p @I +T® L5, | L*(2)]%

2 + 22 2 7
> 9 272 ) deydoy = — > 0.1972.
= /Q < 2 > 1T =790
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It follows that

0197 < liminf MNP 2) gy o MA[Pu(2))

2 < 0.569.

n—oo n n— oo
In the Legendre case (= Gegenbauer case for oy = a2 = 0) we obtain
analogously that

V(A | Pn($2))

nt

0.091 < liminf MI(QZ))
n

n—oo

< lim sup < 0.143.

n— oo

We remark that for the N-dimensional Laplace operator A = 97 +
-+ + 0% the estimates obtained in this way become worse and worse:
in the Hermite case the right-hand sides of (46) and (47) are 2 and 2N,
respectively, whereas in the Laguerre and Gegenbauer cases the upper
bounds go to infinity and the lower bounds approach zero as N — co.
Thus, in general we cannot answer even the question whether

lim inf —C(A | PH(QN)), lim sup —C(A AY)

N— 00 n2tr 300 n2(r

converge to zero, increase to infinity, or remain bounded and bounded
away from zero as N — oo.

Problem 8.3. Consider the wave operator (1 = 97 — 93 on P, ().
The linear operator

S Pa(@) = Pul@), (SP)(trt2) = f<t1 Tt b - t2>

V2 V2

is an isometry when taking the Hermite norm. Moreover, the factor-
ization

07 — 03 = (01 + 02)(01 — 02)
may be written as the identity 209,02 S = S(8% — 92). 1t follows that

(O] Pu(Qe)) = max [|(9F - 95)f]| =  ax 1S(0% — 3) £

I71= ISfl=1
— Imax 28162 Sf — max 261629
15 fll=1 | | llgll=1 | H

=2n(0102 | Pp(€22))
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and from Theorem 1.1 we obtain that

(0102 | Pn(Q2)) ~2n  max vdzize = 2n.

(z1,22)EQ

The following problems remain open. What can be said about C(O |
Pn(Q2)) if C = X or C = 4?7 What happens if 0 is the more general
operator 07 — c205? Can one tackle the Laplace operator by using the
factorization A = (9; + 105)(0; — i02)?
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