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ABSTRACT. Tikhonov regularization is one of the most
popular approaches to solve discrete ill-posed problems with
error-contaminated data. A regularization operator and a
suitable value of a regularization parameter have to be chosen.
This paper describes an iterative method, based on Golub-
Kahan bidiagonalization, for solving large-scale Tikhonov
minimization problems with a linear regularization operator
of general form. The regularization parameter is determined
by the discrepancy principle. Computed examples illustrate
the performance of the method.

1. Introduction. We are concerned with the solution of large
minimization problems

(1.1) min ||Az — b, AeCcm beC™,
zeCn
where || - || denotes the Euclidean vector norm and the matrix A is

assumed to have many singular values of different orders of magni-
tude close to the origin. In particular, the ratio between the largest
and smallest singular values is very large and therefore the solution of
(1.1) is very sensitive to perturbations in the vector b. Minimization
problems with matrices of this kind arise, for instance, from the dis-
cretization of ill-posed problems, such as Fredholm integral equations
of the first kind. They are commonly referred to as discrete ill-posed
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problems. For ease of notation, we will assume that m > n; however,
the method described also may be applied, mutatis mutandis, when
m < n.

The vector b in discrete ill-posed problems (1.1) that arise in science
and engineering represents available data and typically is contaminated
by a measurement error e, which we also will refer to as “noise.” Thus,

(1-2) b:/l;—i— e,

where b denotes the unknown error-free vector associated with b. We
will assume that a bound for the norm of the error,

(1.3) llell <6,

is explicitly known and that the linear system of equations associated
with the error free right-hand side,

(1.4) Az =,

is consistent.

We would like to determine an approximation of the solution of min-
imal least-squares norm, Z, of the unavailable linear system of equa-
tions (1.4). This is accomplished by computing a suitable approximate
solution of the available least-squares problem (1.1). Note that the
minimal-norm solution of (1.1) generally is a poor approximation of the

desired vector T due to the error e in b and the severe ill-conditioning
of A.

Tikhonov regularization replaces the minimization problem (1.1) by
the solution of a penalized least-squares problem

(1.5) min {|| Az = bl|* + || L]}

with regularization operator L € CP*™ and regularization parameter
@ > 0. For future reference, we note that the normal equations
associated with (1.5) are given by

(1.6) (A*A+pL*L)z = A",
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where A* and L* denote the adjoints of A and L, respectively. We will
assume that

(1.7) N(A)NN(L) = {0},

where N denotes the null space. Then (1.5) has a unique solution,
W for all 4 > 0. The component of z(*) in N(L) is independent of
. We remark that for many commonly used regularization operators
L, such as approximations of differential operators, the restriction of A
to N(L) is quite well conditioned.

The vectors z(®) for p > 0 are less sensitive to the error e in b than
the solution of (1.1). The sensitivity of z(*) to e and the difference
2(#) —Z depend on both the value of x and the choice of regularization
operator L. We would like z(¥) — Z to be small.

The available bound (1.3) for the error e allows us to determine a
suitable value of y by the discrepancy principle, which prescribes that
p = () be chosen so that

(1.8) 14z *) — b = né,
where n > 1 is a user-specified constant independent of §. Then

lim z#) — 3.
5\0 i

see, e.g., Engl et al. [10] and Groetsch [12] for proofs in Hilbert
space settings. Hence, the numerical solution of (1.5) entails both the
determination of a value of ;1 and the computation of an approximation
xy, of the solution z(®) of (1.5), such that xj, satisfies (1.8).

We remark that the minimization problem (1.5) with the constraint
(1.8) can be formulated as

(1.9) min ||Lz|| such that [|Az —b|| = 7,

which shows that the regularization parameter p determined by (1.8)
is the Lagrange multiplier for (1.9).

When the matrices A and L are of small to moderate size, the
minimization problem (1.5) conveniently can be solved with the aid
of the generalized singular value decomposition (GSVD) of the matrix
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pair {A, L}; see, e.g., [13]. The present paper is concerned with the
situation when A and L are too large to compute their GSVD.

The Tikhonov minimization problem (1.5) is said to be in standard
form when L equals the identity operator I. Substituting y = Lz into
(1.5) yields the standard-form problem

(1.10) min {||ALy — )% + 1 ly/*},
yeCn

with solution y(*), where

(1.11) b=b— Az, T= (A —-L'L))",
and
(1.12) LYy = (I - (A(I - L'L)tA) Lt e R™*P

is the A-weighted generalized inverse of A. Here LT denotes the Moore-
Penrose pseudoinverse of L. The solution of (1.5) is given by

) = LLy(M) + 7

see, e.g., Eldén [9] or Hansen [13, Section 2.3] for details.

An attraction of Tikhonov regularization problems in standard form
is that the computations required for determining a suitable value of
the regularization parameter, say, by the discrepancy principle or the
L-curve, are fairly simple; see [5, 6] for illustrations. However, iter-
ative methods applied to the solution of the standard form problem
(1.10) require matrix-vector product evaluations with the matrices LL,
ALL, and possibly also with (LL)* and (ALL)*. Only regularization
operators L with particularly simple structure allow for the efficient
evaluation of these matrix-vector products. This includes regulariza-
tion operators with a small bandwidth, circulant matrices, orthogonal
projections and sparse nonsingular matrices that permit fast LU fac-
torization as well as fast forward and back substitution; see [7, 9,
13, 18, 21, 22] for some examples. Moreover, efficient evaluation of
(A(I = LTL))" in (1.11) and (1.12) requires that N (L) be explicitly
known and of low dimension.

The method for the solution of (1.5) proposed in Section 2 of this
paper can be applied when matrix-vector products with LL and ALL
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cannot be evaluated efficiently, and when A/ (L) is not explicitly known.
The method is based on partial Golub-Kahan bidiagonalization of A
and requires only matrix-vector product evaluations with the matrices
A, A* and L. This makes the method suitable for the solution of large-
scale Tikhonov minimization problems (1.5) with fairly general linear
regularization operators L. Section 3 discusses zero-finders for the
determination of a value of the regularization parameter, so that (1.8)
is approximately satisfied. A few computed examples are presented in
Section 4, and concluding remarks can be found in Section 5.

There are not many efficient methods available for the solution of
large-scale Tikhonov minimization problems (1.5) with a general linear
regularization operator. One of the most interesting of such methods
is the inner-outer iterative scheme recently proposed by Kilmer et al.
[16]. This scheme is inspired by an iterative method due to Zha [23]
for computing a partial GSVD of the matrix pair {4, L}. The scheme
[16] can be expensive for problems that require a large number of
inner iterations. Therefore we believe it to be worthwhile to explore
alternative approaches. We remark that the “obvious” solution method
is to apply the conjugate gradient or preconditioned conjugate gradient
method to the normal equations (1.6). However, this approach often is
computationally expensive when a suitable value of the regularization
parameter p is not known a priori, because in this situation several
systems (1.6) with different values of p have to be solved. The inner-
outer method proposed by Jacobsen et al. [15] requires L*L to be
nonsingular. Many regularization operators of interest do not satisfy
this requirement. The recently proposed scheme in [20] can be applied
when both A and L are square matrices.

We conclude this section by noting that when the matrix A stems
from the discretization of a compact integral operator, discretiza-
tion implies regularization. When the integral operator is discretized
coarsely enough, i.e., when m and n are small, the ratio between the
largest and smallest singular values of A may not be very large and we
can solve the minimization problem (1.1) in a straightforward manner
without Tikhonov regularization. Regularization by discretization is
investigated, e.g., by Natterer [19]. The difficulty with this approach
is that the appropriate discretization, i.e., a suitable choice of m and
n, depends on the error e in b and generally is not known a priori.
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Tikhonov regularization makes it possible to decouple the discretization
from the error in the data b and therefore often is simpler to use.

2. An iterative method. We evaluate an approximate solution of
the Tikhonov minimization problem (1.5) by first computing a partial
Golub-Kahan bidiagonalization of the matrix A. This yields a Krylov
subspace in which the approximate solution is sought. Typically this
Krylov subspace contains a fairly accurate approximation of z. The
regularization operator L is projected into this Krylov subspace. The
purpose of the regularization operator L is to steer the method towards
a suitable approximate solution in the Krylov subspace.

Throughout this paper e; denotes the jth axis vector of appropriate
dimension. Application of k steps of Golub-Kahan bidiagonalization to
the matrix A with initial vector b yields the matrices Uy 1 € Cmx(k+1)
and Vj € C™*k with orthonormal columns, and the bidiagonal matrix
Cr € C++tUXE such that

(2.1) AVk = Uk+16k, A*Uk = Vka, Uk+161 - b/HbH,

where U, € C™** is made up of the k first columns of Uy 41, Cj, € CF*F
consists of the first k rows of Cf, and the columns of V}, span the Krylov
subspace

(2.2)  Ki(A*A, A*b) = span {A*b, (A" A)A%D, ... , (A*A)*~1A%b};

see, e.g., Bjorck [3] for details.
We will use the QR factorization

(2.3) LVi, = Qi R,

where @, € CP*F has orthonormal columns and R;, € C*** is upper
triangular. In applications of interest k& < p.

The computational effort to determine the decompositions (2.1) when
m and n are large is dominated by the k matrix-vector product
evaluations required with each one of the matrices A and A*. The
matrix L generally is very sparse. Therefore, the computational effort
needed to evaluate LV typically is much smaller than the effort
required for the evaluation of £ matrix-vector products with A.
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We require the computed kth approximation, zj, of the solution
of (1.5) to live in the Krylov subspace (2.2). It can be expressed as
rr, = Viyr for some vector y, € C*. Substituting z = V,y into (1.5)
and using the properties (2.1) and (2.3) yields the reduced minimization

problem
L= 5]

Since the subspace dimension k typically is quite small, this least-
squares problem can be solved efficiently by a direct method. For
instance, we may first transform the matrix in (2.4) into upper tri-
angular form by application of a judiciously chosen sequence of Givens

24 i
24 8

rotations. Due to the assumption (1.7), the solution y,(c“) of (2.4) is
unique for all p > 0.

We determine p by requiring that y, = y,(f‘ ) satisfies

(2.5) ICrys — exBll]| = nd.

Let pj denote the solution u of (2.5). The computation of pj requires
that a sequence of least-squares problems (2.4) with different p-values
be solved. More details on the computation of py and y; are provided
in Section 3.

Proposition 2.1. Let up solve (2.5), denote by yr = y,(c“’“) the
associated solution of (2.4), and let x, = Viyr be the corresponding
approzimate solution of (1.5). Then

||Azy — b]| = nd.

Proof. We have
|42y, — bl| = | AVigr — bl = [|Cran. — ex ||l

The proposition now follows from (2.5). O

When increasing the number of bidiagonalization steps k, the QR
factorization of LV, see (2.3), has to be updated. Formulas for
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updating a QR factorization are described by Daniel et al. [8]; see
also [11, Section 12.5]. Note that only the upper triangular matrices
Ry, k=1,2,..., are required, but not the associated matrices Qj with
orthonormal columns.

This paper focuses on the determination of a suitable regularization
parameter y for Tikhonov regularization. However, the number of bidi-
agonalization steps, k, also may be regarded a regularization parameter.
It restricts the (sub)space in which the computed approximation of Z
is sought to k dimensions. We comment on the choice of k further in
Sections 3 and 4.

The null space N (L) can be important for achieving an accurate
approximation z(*) of Z by Tikhonov regularization (1.5). Since the
component of z(*) in N(L) is independent of u > 0, we may choose
L so that N(L) represents important known features of the desired
solution Z. However, the reduced regularization operator Ry, in (2.4)
typically is nonsingular also when L has a nontrivial null space. We
now describe a splitting of the minimization problem (1.1), such that
Tikhonov regularization is not applied to the solution component in
R(W), where W € C™*¢ is a user-supplied matrix and R(W) denotes
its range. This splitting has previously been applied in iterative and
direct methods for ill-posed problems in [2, 4, 17].

Let the matrix W € C™*¢ have orthonormal columns and introduce
the QR factorization AW = QR, where Q € C™*¢ has orthonormal
columns and R € C**¢ is upper triangular. We may assume that W is
chosen so that R is nonsingular. Define the orthogonal projectors

v

Py =WW*, Py=I-WW*, Py=0Q", Pg=1I-QQ"
Then (1.1) can be written as

i _ |2 = min {||PsAz — Pxb|? + | P+ Az — PLb|?
min [[Az — bl|* = min {||PyAz — Pyb||” + | Py Az — Pzb["}

— i . _(P.bh_ P.APL 2
—zrgénn{HPQAPWx (Pyb — PyAPyz)||

+IP§ APz — P3BIE),
where we have used that I = Py + PVJ(, and PgAPW = 0. Let
y = W*x. Then

(2.6) [|[PyAPwa — (Pyb— Py APga)| = |[Ry — (Q*b — Q* APga)]|.
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Since R is nonsingular, we may for any PVJ{,x choose y so that the
expression in the right-hand side of (2.6) vanishes. This choice of y
shows that

: o Lapl . _ pl
(2.7) min |Az — b|| = min ||PQ APjyx — Py b|.

We solve the projected problem in the right-hand side of (2.7) by the
method of the present paper and then determine y so that the right-
hand side of (2.6) vanishes. Since PgAPVJ{, = Pé-A, we may omit the
projector Pj; in the projected problem. This splitting is applied in
Examples 4.2 and 4.3 below. Generally, the number of columns, ¢, of
the matrix W is quite small, say, ¢ < 3.

3. Determining the regularization parameter. This section

discusses the computation of y = py so that y, = y,(e‘““) satisfies (2.5).
Introduce the function

(3.1) ¢(v) = |ICry — e8Il I, p=1/v, 0 <v < oo,

where y, = y,g“) is the solution of (2.4). Then equation (2.5) can be
expressed as

(3.2) ¢(v) = n*6”.

We first describe an approach that can be applied when the matrix
Ry, in (2.3) is not ill-conditioned and Cje; # 0. These conditions
typically are satisfied. For instance, the latter condition holds when
A*b # 0. The following proposition is formulated in terms of the QR
factorization B o

Cr = Qi Rk,
where @k € C*+Dxk hag orthonormal columns and R, € CF** is
upper triangular.

Proposition 3.1. Assume that the matriz Ry, in (2.3) is nonsingular
and that Cje; # 0. Let R = RyR;.*. Then the function (3.1) can be
expressed as

(3:3)  ¢(v) = [bl*e;Qu(vRR" + I)"*Qjer + [[bl|*e} (I — QrQi)es-
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Consequently, ¢(v) is strictly decreasing and convez, and equation (3.2)
has a unique solution 0 < v, < 0o, provided that

(3-4) exfl[|bl] < nd < [[bll,

1Pr;)

where P

~_. denotes the orthogonal projector onto N(é,:)
N(C3)

Proof. The representation (3.3) follows from
I—R(R*R+v~'I)"'R* = WRR* + 1)}

and shows that ¢ is decreasing and convex. Moreover, we obtain from
(3.3) that

lim 6(v) = B[

Since the function ¢ is decreasing, the upper bound of (3.4) has to be
satisfied in order for equation (3.2) to have a positive solution. The
lower bound of (3.4) corresponds to p = 0 in (2.4). Therefore,

1Py erlP ol

li = min ||Cry — e||b]|||? =
Jim ¢(v) ylgg\l wy — ex|b]]]]

Since ¢ is decreasing, the lower bound of (3.4) has to be satisfied in
order for equation (3.2) to have a bounded solution. Therefore, when
the bounds (3.4) hold, equation (3.2) has a unique bounded solution. O

We remark that HPN(E;“*)GIH is decreasing when k is increasing. This

follows from the observations that I = PN(5;) + PR((,N‘k)’ PN(5,’;) and
PR(@) are orthogonal, and ||P,R(5k)el || is increasing with k. Therefore,

to satisfy the left-hand side inequality in (3.4), k has to be sufficiently
large. In actual computations, it generally suffices to choose k fairly
small. This is illustrated in Section 4.

Using (3.3), the function ¢(v) can be evaluated by solving a least-
squares problem related to (2.4). The derivative ¢’(v) can be computed
by solving another least-squares problem with the same matrix. This
allows for efficient implementation of Newton’s method for the solution
of (3.2); see, e.g., [6].
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(a) (b)
FIGURE 4.1. Example 4.1: (a) Computed approximate solution with tridiagonal
regularization operator (4.2) (continuous graph) and solution & of the error-free
problem (1.4) (dashed graph), (b) computed approximate solution with regulariza-
tion operator L = I (continuous graph) and solution # of the error-free problem
(1.4) (dashed graph).

When the matrix Ry is ill-conditioned, the GSVD of the matrix pair
{Ck,Ri} can be used. Substituting the GSVD into (2.4) and (3.1)
gives a simple expression for the evaluation of ¢(v). However, each
increase of k requires the computation of the GSVD of a new matrix
pair {Ck, Rr}. Thus, typically GSVDs of several matrix pairs have to
be computed and the computational effort is larger than if the approach
of Proposition 3.1 is used.

4. Numerical examples. The right-hand sides in the examples
below are contaminated by an error e with normally distributed entries
with zero mean. The entries are scaled to correspond to a specified
relative error,

(4.1) e = |lell/|[bll-

The constant 7 in the discrepancy principle (1.8) is set to 1.1 in all
examples, and we let § = £[b]| in (1.8).

Example 4.1. We discretize the integral equation

™ . h
/ exp(s cos(t))z(t) dt = 2 S2B) g < < g
0 S
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discussed by Baart [1] by a Galerkin method with piecewise constant
test and trial functions using the MATLAB code baart from [14].
This yields the nonsymmetric matrix A € R1000x1000  The code
also furnishes the “exact” solution Z, which represents a scaled sine
function. We determine the error free right-hand side of (1.4) as b = AZ.
The associated contaminated vector b in (1.1) is obtained by adding
0.1% normally distributed zero mean “noise” e to b; cf. (1.2). Thus,
e=1-10"3in (4.1).

We compare approximations of Z determined with the tridiagonal
regularization operator

-1 2 -1

-1 2 -1
(42) L= 0T | emrmann,

-1 2 -1
which is a scaled approximation of a second derivative operator, with
approximations obtained with L = I. The number of bidiagonalization
steps k in (2.1) has to be large enough so that (2.5) can be satisfied.
In the present example, we let & = 5. The computed approximate
solution x5 has relative error ||z5 — Z||/||Z]| = 1.6 - 107! when L = I,
and relative error ||z5 — Z||/||Z]| = 1.0 - 10! when L is given by (4.2).
Thus, the former choice yields an increase of 60% of the error in the

computed approximate solution. The computed approximate solutions
are displayed in Figure 4.1.

We remark that the Krylov subspace K5(A*A, A*b) contains a fairly
accurate approximation V3VZ*Z of . We have ||z — V5V /||Z]| =
5.3 - 1072. The purpose of the regularization operator L is to help
determine an accurate approximation of VsVZ*Z. The present example
shows the regularization operator (4.2) to yield a better approximation
of z than L = 1.

We note that the particular operator (4.2) allows the application of
the A-weighted generalized inverse LL of L; cf. (1.12). The purpose
of this example is to show that an improvement of the quality of the
computed approximate solution also can be achieved without applying
L.

The small dimension k& = 5 of the solution would appear to contribute
significantly to the regularization of the present problem. However, k =
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(a) (b)
FIGURE 4.2. Example 4.2: (a) Computed approximate solution with tridiagonal
regularization operator (4.2) and splitting of the problem based on R(W) with W

given by (4.3) (continuous graph) and solution z of the error-free problem (1.4)
(dashed graph), (b) computed approximate solution with regularization operator

L = I without splitting (continuous graph) and solution 7 of the error-free problem
(1.4) (dashed graph).

10 bidiagonalization steps yield the computed approximate solutions
Z10 with ||.’1310 - 5?“/”5?“ =1.6- 1071 for L = I and Z10 with ||LE10 -
z||/||Z]| = 1.0- 107! for L defined by (4.2). Thus, the difference in the
quality of the computed approximate solutions for £k = 5 and k = 10 is
negligible. We conclude that the subspace dimension, when larger than
or equal to 5, only has a minor influence on the computed solutions in
this example. ]

Example 4.2. Consider the Fredholm integral equation of the first
kind

where

K(o,1) = {s(tl) s <t

t(s—1) s>t

We discretize the integral equation by a Galerkin method with or-
thonormal box functions as test and trial functions using the MATLAB
program deriv2 from Regularization Tools [14] and obtain the symmet-
ric indefinite matrix A € R1000%1000 314 the solution Z of the error-free
linear system (1.4). The vector Z is a scaled discrete approximation of
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the exponential function. The error-free right-hand side b of (1.4) and
the associated noise-contaminated vector b are determined similarly as
in Example 4.1. In particular, e = 1- 1073 in (4.1).

We first compute an approximate solution x1o with L = I and 10
bidiagonalization steps. Figure 4.2 (b) displays z19. The relative
error ||z1p — Z||/||Z]] = 1.7 - 107! is fairly large. Our first attempt
to reduce this error by instead using the regularization operator (4.2)
was not successful; we obtained, again with 10 bidiagonalization steps,
an approximate solution with the larger relative error 1.8 - 107!,

A more accurate approximation of T can be computed by splitting
the problem as described at the end of Section 2. Let the columns of
W € R™*3 form an orthonormal basis for the subspace

1 1 1

1 2 22
(4.3) W = span A

1 n n?

The columns of W can represent quadratic growth of the solution.
The component of the computed solution in R(W) is not affected by
regularization. We solve the minimization problem
: 1 1

min ||P@ Az — Py bl
by Tikhonov regularization. The regularization operator (4.2) and 5
bidiagonalization steps yield the approximate solution zs shown in
Figure 4.2 (a) with relative error ||z5—2]|/||Z|| = 2.4-1073. If we instead
use the regularization operator L = I, then we obtain an approximate
solution with relative error 3.7-10~3. Thus, splitting the problem based
on the matrix (4.3) and using the regularization operator (4.2) yields
the most accurate approximation of Z. o

Example 4.3. We consider a 91 x 91-pixel test image, which shows
the superposition of a Gaussian and a linear function. The available
image is contaminated by blur and 0.5% noise. The pixel values for
this image, ordered column wise, determines the vector b € R¥?8!. The
blurring operator is represented by the symmetric block Toeplitz matrix
with Toeplitz blocks,

(4.4) A= (2r0) ' TRT,
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(a) (b)
FIGURE 4.3. Example 4.3: (a) Restoration obtained with L defined by (4.5),
(b) restoration obtained with L defined by (4.5) and splitting determined by (4.3).

where 7" is a 91 x 91 symmetric banded Toeplitz matrix, whose first
row is given by [exp(-((0:band-1)."2)/(2*sigma2)); zeros(l,n-
band)]. The parameter band is the half-bandwidth of the matrix 7.
The parameter o controls the effective width of the underlying Gaussian
point spread function

1 IEZ + y2
h(ﬂ), y) = 271'0'2 exp ( - 20_2 ’

which models blurring. We let band = 16 and ¢ = 1.5. The matrix A
so obtained is numerically singular.

Following Kilmer et al. [16], we use the regularization operator
(4.5)
1 -1
T ® I _ 1 -1 90%91
L_|:L1 ® I:|7 Ll— ER Y
1 -1

where L is a discrete approximation of the first derivative operator on
a regular grid. The A-weighted generalized inverse of L, which is of
size 16380 x 8281, is unwieldy to use in an iterative method. However,
the method of the present paper is quite easy to apply when L is of the
form (4.5).
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(a) (b)
FIGURE 4.4. Example 4.4: (a) Blur- and noise-contaminated image, (b) restored
image.

Figure 4.3 (a) shows the restoration xo¢ obtained with k = 20 bidi-
agonalization steps and the regularization operator (4.5). It has rel-
ative error ||zog — Z||/||Z|| = 2.36 - 1072, The best approximation of
T in Kg9(A*A, A*b) has relative error 2.28 - 10~2. Thus, the approx-
imation xsg of 7 is close to the best possible in the Krylov subspace.
Nevertheless, the background “ringing” is not pleasing. We first seek
to determine a more accurate restoration by increasing the dimension
of the Krylov subspace. Increasing the number of bidiagonalization
steps to 30 and 40, indeed, yields more accurate restorations; we have
|30 —Z]|/||Z|| = 2.31-1072 and ||z40 — Z||/||Z]| = 2.30-10~2. However,
the restorations w3y and z4g are visually indistinguishable from z4.

A better approach to obtain a more accurate restoration is to split
the problem using the matrix (4.3), similarly as in Example 4.2. This
splitting, the regularization operator (4.5), and 20 bidiagonalization
steps, give the restoration zsy with relative error ||zo9 — Z||/||Z|| =
1.26 - 1072, The restoration is depicted in Figure 4.3 (b). It displays
much less “ringing” than the restoration of Figure 4.3 (a). We remark
that the approximation of T obtained with the splitting determined by
(4.3), 20 bidiagonalization steps, and L = I is less accurate than the
one shown in Figure 4.3 (b). u]

Example 4.3 illustrates that the splitting described in Section 2 can be
beneficial for image restoration. However, the success of the particular
splitting used in the above example depends on the image. For instance,
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this splitting does not improve the restoration of the image of the
following example.

Example 4.4. We apply the regularization operator (4.5) to restore
the 91 x 91-pixel image groetsch, which has been contaminated by
blur defined by (4.4) and by 0.1% noise. The contaminated image
is shown in Figure 4.4 (a). The restored image, x50, determined
with 50 bidiagonalization steps and the regularization operator (4.5)
is displayed in Figure 4.4 (b). It has relative error ||z50 — Z||/||Z]| =
6.91-1072. O

5. Conclusion. We have presented a new iterative method for the
solution of Tikhonov regularized large-scale discrete ill-posed problems,
which allows the linear regularization operator L to be of general
form; neither the GSVD of the matrix pair {A, L} nor the A-weighted
generalized inverse of L are required. Only the evaluation of matrix-
vector products with the matrices A, A*, and L is demanded. The
regularization parameter is determined during the iterations.
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