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ABSTRACT. We prove that the regularizing Levenberg-
Marquardt scheme, introduced for nonlinear ill-posed prob-
lems, achieves order optimal accuracy under standard assump-
tions on the nonlinearity of the underlying operator equation.

1. Introduction. The Levenberg-Marquardt method is a Newton-
type method for nonlinear least-squares problems that is treated in
many numerical optimization textbooks, cf., e.g., Kelley [14]. In each
iteration of the Levenberg-Marquardt method the nonlinear operator is
linearized around the current approximation, and the original problem
is turned into a linear least squares problem with a quadratic inequality
constraint. This constraint is derived on the grounds that one can only
trust in the linearization within a certain neighborhood of the present
approximation (trust region). Eventually, this leads to the same linear
equation to be solved as in Tikhonov regularization, the corresponding
regularization parameter being coupled with the Lagrange parameter
associated with the constrained problem.

The Levenberg-Marquardt method is often used as a black box
method for parameter identification problems, regardless of whether
these are well-posed or not. Its convergence analysis, however, relies
on the assumption that the derivative of the nonlinear operator is con-
tinuously invertible near the exact solution, cf. [14], which irrevoca-
bly fails to hold for ill-posed problems. To adjust the method to ill-
posed problems we therefore proposed a modification of the Levenberg-
Marquardt approach back in 1997 [6], to be called the regularizing
Levenberg-Marquardt scheme below, which uses a different quadratic
constraint that assesses the reliability of the right-hand side of the lin-
earized problem rather than the trust region of the linearization. With
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this approach the associated Tikhonov regularization parameter cor-
responds to the well-known discrepancy principle from the ill-posed
problems literature, cf., e.g., Groetsch [4].

It was shown in [6] that this Levenberg-Marquardt variant is a
regularization method under mild restrictions on the nonlinearity of
the operator equation, but no convergence rates were provided in [6].
Later, Rieder [15, 16] proved convergence rates (for more general
schemes, actually, that include the Levenberg-Marquardt iteration as
one special case) which, however, are suboptimal as compared to other
methods. One of these competing methods, for which order-optimal
convergence rates are known, is the so-called iteratively regularized
GaufB-Newton method by Bakushinskii [1]. We refer to the monograph
by Kaltenbacher, Neubauer and Scherzer [13] for a comprehensive
compilation of its convergence analysis, and to the paper by Jin and
Tautenhahn [12] for a more recent relevant contribution.

When compared with the Levenberg-Marquardt scheme, the it-
eratively regularized GauB-Newton method suffers from the some-
what counterintuitive stipulation that its iterates stay near the initial
guess—in the Levenberg-Marquardt terminology this would correspond
to a trust region centered around the initial guess, rather than the
current approximation. Accordingly, the analysis of the regularizing
Levenberg-Marquardt scheme has received renewed interest recently:
Jin [11] and Hochbruck and Honig [9] reconsidered the method under
additional assumptions that constrain the decay of the regularization
parameters of the Tikhonov steps. Under these circumstances they
could establish order optimal convergence rates, with similar restric-
tions on the nonlinearity of the operator as are omnipresent in [13], for
example. These results, however, do not cover the original algorithm
from [6], as it is not clear whether the corresponding regularization
parameters will actually satisfy these constraints.

It is the purpose of this note to eventually dissolve the uncer-
tainty concerning the order-optimality of the regularizing Levenberg-
Marquardt scheme, and to raise the method on comparable solid the-
oretical grounds as the iteratively regularized Gaufl-Newton method;
the precise statement of our result will be given at the end of the fol-
lowing section, once the setting of the problem has been completely
specified. Our analysis follows to a certain extent the line of argument
given in [9, 11], which in turn goes back to the treatment of the non-
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linear Landweber iteration in [8]. The details of our proof, however,
are different from [9], as we avoid any constraints on the rate of decay
of the regularization parameters.

To present the proof we first recollect some basic inequalities in
Section 3 which are more or less familiar from related works in this
context. Then, in Section 4 we set up the basic recursion of the iteration
error and provide a crucial lemma on the size of the accumulated
perturbations from the individual iterations. The main induction
argument, finally, can be found in Section 5; after that it only remains
to gather the pieces of the puzzle to establish order-optimality. We will
do so in Section 6.

Last but not least, it is our pleasure to use the occasion to point out
that our analysis of the regularizing Levenberg-Marquardt scheme (like
the one in [9, 11]) is built on earlier results by Chuck Groetsch and
this author ([7], see also [5]) on the nonstationary iterated Tikhonov
regularization method for linear ill-posed problems. Once again, this
reflects the substantial influence that Chuck’s work has had on the
present shape of this fascinating field.

2. Setting of the problem. We consider the operator equation
(2.1) F(z) =y,

where F : D(F) ¢ X — Y is a differentiable nonlinear operator
between the Hilbert spaces X and ), and D(F) denotes the domain of
F. Without loss of generality we assume that problem (2.1) has been
scaled such that

(2.2) IF'(z)]| <1

within the relevant subset of D(F'). Moreover, as in [9, 11], we presume
that F satisfies the so-called strong Scherzer condition, namely, that for
any two elements z,Z € D(F) there is a bounded and linear operator
R(z,T) : X — Y such that

(2.3) F'(z) = R(z,7)F'(%),
where

(2.4) |R(z,z) = I|| < Cr |z — Z|
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for some constant Cr > 0. This assumption, which appeared in
[8] for the first time, is now a standard one for proving convergence
rates for nonlinear ill-posed problems. It ensures that all derivative
operators F'(z) : X — ) can be continuously extended to the same
maximal domain Z D X, i.e., have similar smoothing properties, see
Proposition 3.1 below. To be precise, in [8] assumption (2.3) has only
been required for z near T = «f, which was the particular solution of
(2.1) to be approximated, and it is precisely this way that we are going
to utilize this assumption here, too.

When the problem is ill-posed, the solution of (2.1) does not depend
continuously on the given data, generically. Accordingly, if we are given
perturbed data y° instead of y in (2.1) satisfying

(2.5) 1y =yl <6,

then we need to regularize the problem in order to compute approxi-
mate solutions x° that converge to some solution of (2.1) as § — 0. To
this end the regularizing Levenberg-Marquardt scheme of [6] proceeds
iteratively by solving regularized and linearized subproblems to update
a given iterate:

-1
(2.6) @ppy = ap + (F'(20) F'(25) + anl) F'(23)" (y° — F(a7,))-
The recursion starts for n = 0 with some initial guess zj = =0,
independent of §, and is stopped after n(y°) iterations according to
the discrepancy principle, i.e., when the residual drops for the first
time below the noise level, that is,
(2.7) ly° = F(a0))ll <76 < |ly° = Fzp)ll, n<n(y’).
Here, 7 is a fudge parameter that was set to be 7 = 2.5 in numerical
examples presented in [6]; below we require that

(2.8) T > 2.

The only essential difference to the classical Levenberg-Marquardt
method from nonlinear optimization is in the choice of the regulariza-
tion parameters a,, in (2.6). Here they are chosen such that

(2.9) Iy’ — F(zp) — F'(zp) (a5 1 — zp)ll = plly’ — F ()]



THE LEVENBERG-MARQUARDT SCHEME 263

for some preassigned nonnegative value 0 < p < 1, which resembles the
spirit of an inexact Newton scheme, cf. [14].

It is known, see [8], that (2.3), (2.4) imply
(2.10)

|F(z) = F(Z) - F'(@)(z - 7)| < gCRIIw = ||| F'(@)(z — D),
and hence
(2.11) [|F(z) - F(Z) — F'(Z)(z — Z)|| < 2Cgllz — 2| |F(z) — F()],

provided that x and Z are sufficiently close. As the latter is the
assumption on F that has been used for the convergence analysis of
the regularizing Levenberg-Marquardt scheme in [6], we conclude that
if we constrain the two parameters 7 from (2.7) and p from (2.9) by

(2.12) pT > 1

as in [6], and if the initial guess is sufficiently close to a solution of
(2.1) in the interior of D(F), then the method (2.6), (2.9) is well-
defined, the parameters a,, of (2.6) are all strictly positive, and, for
6 > 0, the method terminates after a finite number of steps. Moreover,
the iteration is a regularization method in the sense of Tikhonov, i.e.,
the final iterate xi(yé) corresponding to the data y° of (2.5) converges

to some solution zf of (2.1) as § — 0. Even more, for a fixed value
of § and associated data y° the norm of the error 22 — ' is strictly
decreasing from n = 0 up to n = n(y%).

We note, see [8, Proposition 2.1] or the discussion in [13, page 10],
that (2.11) implies that the set of solutions of (2.1) within a certain
ball around x( is the intersection of this ball with an affine subspace
parallel to the null space N of the derivative at all these solutions.
Moreover, because of our accentuation of the assumptions from [6],
namely that F satisfies (2.3), we observe that the update of zJ in (2.6)
always belongs to R(F'(2z?)*) = R(F'(z")*) = N*, and hence, 2! is
the zo-minimum-norm solution of (2.1), i.e., the solution of (2.1) that
has minimal distance to x. In other words, ||zf — z¢l| is the distance
between zy and the set of solutions of (2.1), the size of which will play
a crucial role in our analysis via the quantity

(2.13) n = Cgrllzo — z'||.
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We will also use repeatedly that (2.13) implies that
Crllz® —zf|| <n forall 0 <n <n(y°)

by virtue of the monotonicity of the iteration error.

As mentioned in the introduction, much less has been known so far
concerning the rate of convergence of z° to = as § — 0. Of course, it
is known that in general the convergence can be arbitrarily slow when
the problem is ill-posed, so that the initial guess is usually constrained
to satisfy a so-called source condition

(2.14) zo — 2! = (F'(2)*F'(z"))"w

for some v > 0 and associated w € X to achieve a given convergence
rate. It is said that a regularization method is of optimal order (for a
given value of v), if (2.14) implies that

(2.15) ||g;fl(y5) — 2t|| < Of|w|| /@D 52/ Crt1)

for some constant C' > 0. If F' were a linear operator then (2.15) is the
best possible general bound if nothing else than (2.14) is known about
zt — =z, cf.,, e.g., [2].

Convergence rates for the regularizing Levenberg-Marquardt scheme
had been established in [15, 16], but with exponents of ¢ that are
worse than the one in (2.15). In [9], on the other hand, the order
optimal bound (2.15) has recently been verified provided that the reg-
ularization parameters «;,, determined via (2.9) do not decay too fast;
unfortunately, it has been left open whether this condition is reason-
able, or even generally true. As we will see below (see Proposition 5.3),
such an assumption is indeed reasonable, but probably not fully cor-
rect. Here we prove the order-optimality of the method without any
additional constraints:

Theorem 2.1. Let F satisfy (2.2) and (2.3), (2.4), and assume
that for a given initial quess xo the xo-minimum-norm solution z' of
F(z) = y satisfies (2.14) for some 0 < v < 1/2. Moreover, let y' fulfill
(2.5), and denote by n(y®) of (2.7) the well-defined stopping index of
the regularizing Levenberg-Marquardt scheme (2.6), (2.9), where 7 > 2
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and 1 > p > 1/7. Then there is a constant C depending only on T,
such that
55y = @l < O]/ G+ 52/ e
n(y — )

provided that ||w|| is sufficiently small.

The following three sections of the paper are devoted to prepare for
a proof of this result, which will be given in Section 6, eventually.

3. Some useful auxiliary results. For our analysis of the
regularizing Levenberg-Marquardt scheme we shall first simplify our
notation by setting

T, =F'(z%), T=F'(z'), and R, = R(z,z").
Also, we denote the error of the iteration by

+

en:xifx.

Next we provide the interpretation of the strong Scherzer condition
(2.3), (2.4), that we have mentioned above.

Proposition 3.1. Assume that (2.3) holds true for some operators
R(z,T) : X — Y that are uniformly bounded by cy, together with their
inverses, for x within a neighborhood B(Z) of some interior point T of
D(F). If e € X satisfies

e= (F'(2)"F' (@) w

for some 0 < v < 1/2 and w € X, then for each x € B(Z) there is a
w, € X, such that

e= (F'(z)"F'(z)) wy, with ||wy|| < c3¥||w.

Proof. By virtue of (2.3) and the given assumptions, the operators
F’(z) all have the same null space A as long as = belongs to the given
neighborhood B(Z), and this is also the null space of (F’(:c)*F'(a:))V
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for every v > 0. This implies that e belongs to N'*, and it suffices
to prove the result for w € N'* only. In other words, we can assume
without loss of generality that A" = {0} is trivial.

Then, consider any z € D((F'(Z)*F'(Z))~Y/?) ¢ X. From (2.3) it
follows that
I(E" ()" F' ()22 = ||F" () 2|
= ||R(x,7) " F'(z) "2
collF' (@)~

coll(F' (@) F' (@) 7221

IN

Using the Heinz inequality (cf., e.g., [2, Proposition 8.21]) it follows
that
D((F'(z)"F'(z))”") c D((F'(z)"F'(x))™")
for all 0 < v < 1/2, and that
[(F" () F'(z)) V2|l < GV |(F'(@)* F' (7)) "=||
for all z € D((F'(z)*F'(Z))™").

By assumption, we can set z = e and have thus shown that e belongs
to D((F'(x)*F'(z))""), and that w, = (F'(z)*F'(z)) Ve satisfies
lwell < cgllwll. o

For ill-posed problems the inverse (or the Moore-Penrose generalized
inverse) of F'(z)*F'(x) will typically be an unbounded, densely defined
operator on X, cf., e.g., Groetsch [3]. Accordingly, a source condition
of type (2.14) is a restrictive condition (the more, the larger is v), which
can often be interpreted as an a priori smoothness assumption, cf. [2]
for examples. As shown in Proposition 3.1, the assumption (2.3) on F
ensures that the smoothing effect of (F'(x)*F'(z))” is independent of
the particular element z € X.

Later on, in Proposition 5.3, we will utilize this result to derive a
reasonably sharp lower bound for the regularization parameters a,, of
(2.6), (2.9). For the proof of Theorem 2.1, however, it suffices to recall
a useful and well-known upper bound for «,,.

Proposition 3.2. Let F satisfy (2.2). Then o, < p/(1 — p) holds
for everyn =0,1,... ,n(y’) — 1.
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Proof. For the (comparatively simple) argument we refer to [6,
page 81]. O

We also need a relation between the nonlinear residual y° — F(z?)
and its linearized counterpart T'e,. Results of this type can be found
in various works on iterative methods for nonlinear ill-posed problems,
differing in the particular schemes that are used, and in the respective
assumptions on F'.

Proposition 3.3. If n of (2.13) satisfies n < 1/2, then
3.1 I\ Tenll < Iy = F(ad)|| < e||T s
(3.1) g 1Tenll < lly (@)l < erllTenll, n<n(y®),

where

)

°) can be

Proof TFor n < n(y’) the nonlinear residual y°® — F(z
estimated by means of (2.5) and (2.7) as follows:

1P~ F@) > Iy ~ F)] -
> |y’ ~ F(@)] - Iy’ ~ ()]

T—1
ly° — F ().

n

Similarly, one obtains

T

T+1

IF(eh) — F@b)| > 2 |Fat) — Fb)]

n

Iy’ — F(zp)ll =
by virtue of (2.8). On the other hand we have from (2.10) that
1 3 ; 5 3
7 Tenll < (1= gn|liTenll < |F(z") — Fzp)ll < {1+ 57 | [ Tenl,

and hence, (3.1) follows. O
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Another result relates subsequent linearized residuals.

Lemma 3.4. Assume that n of (2.13) satisfiesn < 1/(4+87). Then
the following holds

|Ten 1] < 427 |Ten|l, 0<mn <n(y’).

Proof. Because of (2.12) and our assumptions the following holds

p
4p+8

(3.2) n < < g.

Also, (2.9), together with (2.11), yield

plly’ = Flan_y)

<y’ — Fap)ll + 1F () — F(an_y) — Taoi(zh —z5_y)l|
< ly® = F(ap)ll + 20k e — a0y | [ F(27) = F(x;,_y)ll
< lly* = F(ap)ll + 40 [|F(z5) — F(zp_y)]

< |ly’ = F(ap) | +4nlly’ = Fo)ll +4nlly® — F(zp 1),

and hence, as p — 4n > 0 by virtue of (3.2),

1+4n
) ]
. - F <

n

2
Iy = Fzp)l < p lly° = F ()l

The result now follows immediately from (2.12) and Proposition 3.3.
Note that (3.3) and its derivation remain true even for n = n(y°). ©

4. Analysis of the regularizing Levenberg-Marquardt scheme.
Before we proceed we introduce the spectral filter functions

a; 1
)\—f-aj an g']( ) )\—f-aj

(4.1) ri(A)
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associated with Tikhonov regularization, cf. [2, Chapter 5] or [4]. Then
we obtain from (2.6) that the error e, satisfies the recursion
ent1 = en + (T°T + a, 1) 7' T* (y — F(z3))
+(T*T + an D) ' T*(y° — y)
+ (T3 T + @) — (T*T + 1) 1T) (y° — F(22))
=r,(T*T)e, — g (T*T)T™* (F(mi) — F(21) — Tey,)
+9n(T*T)T* (4" — y)
+ (T3 Ty + an ) 7T — (T*T + 0, 1) 7T (y° — F(20)).

By means of (2.3) we can rewrite
(T:T, + o, )™ — (T°T + o, 1)~
= gn(T"T)T*(R,, — D)rn(T0T},)
+ 9. (T*T)T*(R,,* — DT, T 9, (T T,

provided that n of (2.13) is less than one, in which case R, is invertible
by virtue of (2.4). Inserting this into the recursion we therefore obtain

(4.2) ent1=1o(T"T)en + g, (T"T)T* (yé —y) + gu(T"T)T" 2y,
with
Zn = (R’:L - I)rn(TnTrj)(yé - F(xfz))

(4.3) + (R, = DT 9n(TaTy) (v° — F(2))
— (F(:vi) — F(:ET) — Ten).

Lemma 4.1. Let n of (2.13) satisfy n < 1/2. Then

(4.4) lznll < 12Ck [lenllTenll, 0 <n <n(y’).

Proof. By virtue of (4.1), both operators r,, (T, T;*) and T,, 7. g (T, T0¥)
are bounded by one. Moreover, since n < 1/2 it follows from (2.4) that

Crllenll

R I < &l
I < T Calenl

< 2CRllenl]|-
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Inserting these estimates and (2.10) into (4.3) we conclude that
3
lznll < 3Ck llenllly” = F(ap)ll + 5 CrllenllllTen]

and the assertion now follows from Proposition 3.3. O

Resolving the recursion (4.2) and inserting (2.14), we obtain the
expression

n—1
e = H ri(T*T)(T*T) w + ¢, (T*T)T*(y° — y)
j=0

(45) n—1 n—1
+ > T (1) [ re(TT)z
=0 k=j+1
forn=1,...,n(y%), where
n—1 n—1 1 n—1
@0 e =0 [T nm=5(1 ITnw).
j=0 k=j+1 j=0

We mention that the first two terms of the right-hand side of (4.5)
correspond to the error of nonstationary Tikhonov regularization for
the linear problem Tz = y + v with appropriate « € ) and given data
y® + u, and with initial guess z, satisfying (2.14). In [7] this linear
method has been analyzed in detail, and it has been shown that the
maxima of the corresponding spectral filter functions depend on the
size of
n—1

(4.7) =Y

=0
More precisely, we have the following bounds.
Lemma 4.2. Assume that o; > 0 for j = 0,...,n — 1 and some
n € N, and define s = Z;:S 1/aj for k =1,...,n, cf. (47), and
so=0. For0<pu<1,-1/2<wv <1/2, and X\ > 0 there holds:

n—1
(4.8) 0< X [ i) < s,
j=0
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(4.9) 0 < A2 Vg, (\) < suti/2)
n—1 1
(4.10)  0<Xg(A) [ o) < —(sa—s5)", 0<j<n-—L

o
k=j+1 J

Proof. Estimate (4.8) is taken from [11, Lemma 2], see also [7] or
[5, Lemma 4.13]; a slightly stronger bound is given in [9, Lemma 2].
Estimate (4.9) with v = 1/2 corresponds to display (15) in [7]; the
general case then follows by interpolation: Since 0 < 7;(A) < 1 and
0 < Agn(A) <1, we have

Al/quqn()\) — (Aqn()\))l/2fuqn(k)y+1/2 S qn(A)V+1/2 S Sz+1/2‘

Finally, the third estimate, (4.10), follows from the first one after
rewriting g;(A) = r;(A\)/a;. O

The convergence analysis of the regularizing Levenberg-Marquardt
scheme in [9] stipulates a restriction on the decay of the regularization
parameters, namely, that

(411) (679 Z i, n= 07" . 7n(y6) - 17

Sn

for some constant ¢ > 0. From this it readily follows that s,4; <
(1 4+ 1/c)sy, i-e., an at most geometric growth rate of the sequence
{sn}. Although it is very likely that this assumption holds true for
the regularizing Levenberg-Marquardt scheme we have not been able
to verify an inequality like (4.11). We can, however, circumvent this
assumption in our setting. To this end we require the following lemma,
which is the appropriate modification of the corresponding estimate by
Hochbruck, Honig and Ostermann, given in [10, Lemma 4.11].

Lemma 4.3. Letv > 0 and 0 < p < 1, and define s as in
Lemma 4.2. Furthermore, let o; < p/(1 — p) for j = 0,...,n — L.
Then there exists a constant Cs > 0, depending only on p, p and v,



272 MARTIN HANKE

such that for all n € N,

|
—

n

(4.12) sL/2n- v<1/4,
<Csq sptlog(l+s,) v=1/4,
sy v>1/4.

In particular, when = 1/2 — v and p is fized, then the expression in
(4.12) is bounded for every 0 < v <1/2.

For p =1 and v > 0 we have instead

|
—

n

=0 a%(sn - sj)_lsjifflm
(4.13) o /2T log(1+s,) v<1/4,
< Cs 4 s, log(l + s,) v=1/4,
st v>1/4,

and for 0 < v < 1/2 this is always bounded by C’gs;'/flﬂ for some
Cl > 0 depending only on p and v.

Proof. When n = 1, the left-hand sides of (4.12), (4.13) equal

I ovp-1/2  1/2-p—20

a0 51 =31 )

which is always smaller than the corresponding right-hand side for an
appropriate constant Cs, since s1 = 1/ag > (1 — p)/p.

For n > 2 we rewrite

|
—

n

L

o \—p—2v-1/2
aj(sn s;) Hs

j+1

n—1 —u —2v—1/2
— gl/2-n-2w Z 1 1 S5 Sj+1
" Qjsn Sn Sn ’

=0

~.
Il
o
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and observe that 0 < s;/s, < sjy1/sp < lfor 0 < j < n— L
Accordingly, we can estimate

— —2vr—1/2
AN T
Sn Sn
§ {2“(%)2"1/2 0<s;/sn <1/2,

2WHL2(1 - 2y=r 1/2 < s/s, <1,
and hence, with 8 = max{y,2v + 1/2},

n—1 1
—n —2v—1/2
_j(sn_sj) Fsit1 /
=0
nolo o —20-1/2
< 268711/2_M_2V<Z ( ]+1>
=5 @isn \ Sn
(4.14)
n—1 _
1 S ”
1— J
Tanl-))

One can interpret the first sum in (4.14) excluding its first term (j = 0)
as a rectangular quadrature rule for the integral

1
/ o 2124y,
S1/8n

whereas its first term can be considered a mid-point quadrature ap-
proximation for the integral

51/5n+h 1
/ =2 12dr with h=

1/8n—h 200 Sn,

The integrand being decreasing and convex, these integrals are actually
upper bounds of the respective terms of the sum, and hence,

n—1 1 —2v—1/2 1
Z (sj+1> < / 2=2=1/24z
QjSn Sn s

j=0 1/$n

s1/sn+h
+/ 2-2v-1/24,
s1/sn—h

2
< 2/ 22124y
s1/sn—h
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where we have used that h < 1. Concerning the left endpoint of the
last interval of integration we have

$1 b 1 1 1

Sn QoSp B 2000 Sn, - 2008y,
and hence, we finally arrive at
O(1) v <1/4,

nol oy s —2v-1/2

(4.15) > <J—“> ={ O(log(1+s,)) v=1/4,
=0 QjSp Sn 2v—1/2
J O(sn ) v>1/4.

Since ap < p/(1— p) by assumption, the constant in the O( - ) notation
only depends on p and v,

Now we turn to the second sum in (4.14). Excluding its last term
where j = n—1 this sum can be interpreted as a rectangular quadrature

rule for the integral
Sn—1/8n
/ (1—2) Hde,
0

whereas its last term is the mid-point quadrature rule for the integral

Sn—1/Sn+h 1
/ (1-2z)™#dzx with h=—" <1
Spn_1/8n—h 2an718n

Again, the two integrals yield an upper bound for the sum, i.e.,

n—1 5.\ M Sn—1/5n
E <l - —J> < / (1—z) *dx
7=0 on 0

Sn—1/Sn+h
+ / (1—2z) Hda
Sn—1/Sn—h

Spn_1/8n+h
< 2/ (1—2) *de.

-1

1
QjSp

For 0 < p < 1 this integral is bounded by some constant depending
only on u. For p =1, on the other hand, we can use that

_ 1 1
+h="nt —1

- 77
Sn Sn 200,_18n 20, _15n
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and that a;,_; is bounded by p/(1 — p), to obtain

n—1 —1
1 .
Z <1 — S—J> < 2log2+ 2log(2ay,—15n) = O(log(l + sn)),
;s s

j=0 jion n

the corresponding constant depending only on p.

Combining this with (4.15), and inserting both into (4.14), we finally
arrive at our claim (4.12), respectively (4.13). O

We note that Proposition 3.2 guarantees that the required bound
in Lemma 4.3 for the regularization parameters is always fulfilled
for the regularizing Levenberg-Marquardt scheme, provided that the
normalization (2.2) holds true.

5. The induction argument. The equation (4.5) for the error
e, differs from the error of nonstationary Tikhonov regularization
for linear problems by the accumulated error component due to the
perturbation terms z; that enter in each step of the iteration. In
[9, 11], similar to the approach in [8] for the nonlinear Landweber
iteration, a major effort of the analysis was to show that the influence
of these perturbations is largely negligible, and this required a non-
trivial induction argument.

In the sequel we proceed in much the same way; to avoid the
constraints on the regularization parameters that have been used in
[9, 10], cf. (4.11), we will utilize Lemma 3.4 appropriately.

Lemma 5.1. Let F' satisfy (2.2) and (2.3), (2.4), and let 7 > 2 and
0 < p < 1 be chosen subject to the constraint pr > 1. Furthermore
assume that o — x' satisfies the source condition (2.14) for some
0 <v <1/2 and w € X with ||w]| = w being sufficiently small.
Then there is a constant C, such that for every j = 1,... ,n(y‘s) -1,
the iteration error e; of the regularizing Levenberg-Marquardt scheme
satisfies

(5.1) ej = (T"T)"w; for some w; € X with |w,|| < Ciw.

Moreover, the following holds
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(5.2) lejll < Cuws;” and ||Tej]| < Cuws; "™ 1/2
for every j =1,2,... ,n(y?) — 1.

Proof. 1t is easy to see that the three terms on the right-hand side
of (4.5) belong to R((T*T)") and R(T*) = R((T*T)'/?), respectively,
the latter being in turn a subspace of R((T*T)"). Accordingly, the
iteration error can be written in the form (5.1) for some w; € X'. More
precisely, cf., e.g., [2, Proposition 2.18], we have

T*(y° —y) = (T*T)"/*d,

(5.3) . s
withd e X, ||d]| <y’ —vyl,

and

(5.4) Tz = (T*T)"/?%;,

with Z; € X, [|Z5]] < ||z,

and we can thus choose w,, 1 < n < n(y°), according to (4.5) to be

n—1
wy = [[ ri(T*T)w + ¢ (T*T)(T*T)"/*7¥d
j=0
(55) n—1 n—1
+ Y (T )2 g(T°T) [] me(T7T)7
j=0 k=j+1

Similarly, we can rewrite Teg = (T'T*)""'/?@ for some @ € Y with
@[] < [lw]| = w, such that

Te, = H ri(TT*)(TT* )" Y2% + g (TT*)TT* (v — y)

7=0
(56) n—1 n—1
ITg;(TT*) ] re(TT*)z;
j:O k=j+1
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As mentioned before we will prove the lemma by induction, and
we start with the inductive step, i.e., we assume that for some 1 <
n < n(y%) all inequalities in (5.1) and (5.2) hold true for all indices
1 < j < n, and we are going to establish now these inequalities for
j = n. For this we assume that w is so small that n of (2.13) satisfies

< < 1/2.
77_4-{-87' /

Using (5.1), respectively (2.14), setting wyo = w, and the interpolation
inequality, cf., e.g., [2, (2.49)], we obtain for 0 < j < n — 2 that

lej < flawg |/ 4D T >/ D
< (C*(U)l/(2u+1)||T€j||2u/(2y+1),

and hence, using Lemma 4.1 and Lemma 3.4,

21| < 12CR(Cuw)/ BV | Tey |42/ v
< 12(42T)ZCR(C*LU)1/(2V+1)||T6j+1||1+2u/(2y+1).

Inserting the induction hypothesis (5.2) we thus arrive at

(5.7) 2]l < 10225572, 0<j<n—2

where C; > 0 only depends on 7 and Cg. z,-1, on the other hand, can
be estimated by means of Lemma 4.1 and Lemma 3.4 as

(5.8) 2n-1]] < 12Ck |leo|l[|T€rn—1]] < e[| Ten||
with
T—2
5.9 =
( ) ¢ 2T

by choosing w, and thus 7, sufficiently small. Note that ¢ defined by
(5.9) is positive; it is here, where the assumption (2.8) is crucial.

Now consider the sum in the second row of (5.6). Applying
Lemma 4.2, and using the bounds (5.7), respectively (5.8), for | z;||,
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we obtain

n—1 n—1

S TT g (TT*) [ re(TT")z

j=0 k=j+1

S|NTT* g1 (TT7) 21 ||

n—2 n—1
S\ rTrg; () T re(@T)2
=0 k=j+1

n—2 1
Slzn-all + 3 —(sn = 55) Izl
j=0

n—2

1 —ou—
2, 2 1 _—2v-1/2
<e||Ten| + C1Cw .Za—j(snfsj) 8i41 ,
7=0
and hence, by virtue of Lemma 4.3,
n—1 n—1
(5.10) || Y TT*g;(TT*) T me(TT™)2;
Jj=0 k=j+1

< g||Ten|| + CoC2uw?s, v 1/2

for some constant Cy depending only on p, 7, v, and Cg. Inserting this
into (5.6), and making another use of Lemma 4.2, we arrive at

(1= o)l Tenll < wsy® 12 + 5 4+ CoC2ulsyr—1/2

5.11
(510 < (14 CoC2w)wsv~H2 46,

Next we estimate J: Because of (2.7) and Proposition 3.3 we can
arrange that

1+¢
T—1

1 3 1
(5:12) §< 1y - Fad)l < (14 30) 1 el <

. ITea

by forcing 7 to be sufficiently small. Inserting this and (5.9) into (5.11),
we obtain

T—2 1+e¢ ) 1/o
———|Tenll = (1 = = —— )||Ten|| < (1 + CC v-1/2,
2(r — 1) [Tenll < € T 1)” en|| < (14 CoCw)ws,,
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and the required estimate (5.2) for ||Te,|| now follows for any C, >
2(t — 1)/(7 — 2) by choosing w sufficiently small.

Having established (5.2) for ||Te,|| we can now extend the validity of
the estimate (5.7) to j = n— 1, and obtain, by using Lemma 4.2, (5.4),
and Lemma 4.3 that

n—1 n—1
S (@) 2rg () T re(TT)E
i=0 k=j+1

1 —
<2 o o= s) Pl
— Y
j=0
n—1 1
< C10%w? — (5 — Sj)y_1/28;f571/2
j=0 7
< CC%02,

where Cy can be tuned to be the same as above. Inserting this and
(5.3) into (5.5), and using Lemma 4.2 again, we conclude that

|wn|| < w + 5225 + CLC20W2.

Estimating 0 by (5.12) as before, and subsequently ||T’e,|| by (5.2), we
obtain

1
lwn] <w + Li C.w + CyC202,
—

and, again, the right-hand side is going to be less than C,w for any
Ci > 2(7 — 1)/(7 — 2) because of (5.9), provided that w is sufficiently
small. This proves (5.1), and the estimate (5.2) for e,, now follows from
the interpolation inequality.

To complete the proof it remains to establish the base case, i.e.,
inequalities (5.1) and (5.2) for j = 1, given that 1 < n(y°). We start
with the estimate of T'e;. According to (5.6) we have

Tey = ro(TT*)(TT*)" 2% + q(TT)TT*(y° — y + 20),
as ¢q; and go coincide. It thus follows from Lemma 4.2 that

|Ter|| < wsy” ™" 46+ ||z0]-
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We can estimate ¢ as in (5.12), and zg as in (5.8) with ¢ of (5.9). This

then yields
-

—2
2(r-1)

which verifies the second claim in (5.2) for j = 1.

ITex || < wsy” ™2,

Next we turn to (5.1). According to (5.5) w; is given by
wy = ro(T*T)w + qu (T*T)(T*T)Y*>77(d + %),
and Lemma 4.2 therefore yields the upper bound

Jwn ]l < w5772 + 0l
Having already verified the inequality (5.2) for T'e;, we can now argue
as in (5.7) to estimate zg, and to obtain

flwi]] <w + sl1'+1/25 + CoC2%w?.

The desired inequality (5.1) now follows with the same argument as
in the inductive step, and likewise we obtain the remaining inequality
(5.2) for e;. u]

Remark 5.2. It can be seen from the proof that the formulation of
Lemma 5.1 can be made more precise in the following way: For any
Cy > 2(t —1)/(r — 2) there exists an wy > 0, depending on C, 7, p, v
and Cg, such that (5.1) and (5.2) hold true whenever w < wy.

As promised in Section 2, we also provide a lower bound for the
regularization parameter o, determined via (2.9) for the sake of com-
pleteness.

Proposition 5.3. Under the assumptions of Lemma 5.1 the reg-
ularization parameters a,, n = 0,...,n(y’) — 1, of the regularizing
Levenberg-Marquardt scheme (2.6), (2.9) satisfy

an > ¢ (|[Teq| /w)? 2+

for some constant c, > 0, depending only on p, T, and v.
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Proof. According to [6] the error e, satisfies the linear operator
equation

(5.13) The=F(ab) —y°

up to an error

I,

where v > 1 is some fixed number, depending only on p7. Moreover,
by virtue of (5.1) and Proposition 3.1, e, satisfies the associated source
condition

(5.15) en = (T T,) W, with ||@,] < c2||lw,| < & Chw,

where ¢g < 1/(1 — 1) < 2 provided that w is sufficiently small. The
parameter o, can now be interpreted as the particular regularization
parameter for problem (5.13) which corresponds to the discrepancy
principle with error bound (5.14) and fudge factor +y, compare (2.9). It
thus follows from display (4.71) in [2] that

n

(5.14) IF(22) -y — Ten|| < § ly® — F(a3)

b s s 2/(2v+1)
n > c(; Iy — F(xn>||/||an|)

for some constant ¢ depending only on v and on v. Inserting (5.15)
and applying Proposition 3.3, the assertion now follows readily. ]

Note that this result, when combined with estimate (5.2) suggests
that
a, > st

~ “n

provided that (5.2) is sharp, and this would then correspond to the
assumption (4.11) that has been used in [9]. As said before, however,
we have not been able to establish such a bound rigorously.

6. Proof of Theorem 2.1. Let us assume first that n(y®) = 0.
Then we conclude from (2.11) and (2.7) that
I Teoll < [|F(z0) = F(x") = Teoll + | F(zo) — F(a")]
< (20 + 1| F (o) — F(z)]|
< 20+ 1)(I1F(zo) — ¥l + lly* —ll)
<(2n+1)(r+1)6.
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The interpolation inequality and (2.14) then provide the desired in-
equality for e, s) = zo — zt.

In the case when n = n(y°) > 0 we assume that w is small enough so
that we can proceed as in the proof of Lemma 3.4, cf. (3.3), to deduce
that

n

2
Iy’ = F(a, 1)l < p ly° = F(a)ll,

and hence,

2
ly® = F(a7y)| < ,To< 2773

by virtue of (2.12) and the definition (2.7) of the stopping index
n = n(y®). It thus follows from Proposition 3.3 that

I Ten—1| < 12725,
and therefore the interpolation inequality and (5.1) yield

Hen—IH < ||wn_1||1/(2u+1)||T€n_1||2u/(2u+1) < C«wl/(2u+1)52u/(2u+1)

for some constant C' > 0 depending only on 7, provided that w has
been chosen sufficiently small, compare Remark 5.2. The assertion of
Theorem 2.1 thus follows from the monotonicity of the iteration error
up to the stopping index, cf. display (2.9) in [6]. mi

ENDNOTES

1. The constants in (2.10), (2.11) are somewhat larger than the
optimal ones because we have confined ourselves to use (2.4) only for
one particular element 7 = z' € X. However, if (2.4) only holds for
that particular element, then z and Z in (2.10), (2.11), both have to be
close to zf.
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