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ABSTRACT. Mapping and invertibility properties of some
parametrix-based surface and volume potentials are studied
in Bessel-potential and Besov spaces. These results are then
applied to derive regularity and asymptotics of the solution
to a system of boundary-domain integral equations associated
with a mixed BVP for a variable-coefficient PDE, in a vicinity
of the curve of change of the boundary condition type.

1. Introduction. This paper is the second part of the paper [6],
where we analyzed four versions of Boundary-Domain Integral Equa-
tion Systems (BDIES) to which a mixed (Dirichlet-Neumann) bound-
ary value problem for the heat transfer equation with a variable heat
conductivity coefficient can be reduced, and gave a full description of
existence, uniqueness, and operator invertibility in appropriate Sobolev
spaces.

In the present paper, we first discuss properties of surface and volume
potentials, constituting the BDIES, in the Bessel potential spaces H,
and in the Besov spaces. Then we use these properties to analyze
regularity and asymptotic behavior of the BDIES solutions.

A motivation for analysis of boundary-domain integral equations and
notations used can be found in [6]. To simplify references, we will
precede numbers of sections, equations and statements from [6] by I.
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2. Boundary value problem with variable coefficient and
parametrix-based potentials. Here we recall some necessary ma-
terial from [6]. Let Q" be a bounded open three-dimensional region
of R® and Q~ := R% \ QF. For simplicity, we assume that the bound-
ary S := Q1 = 0Q~ is a simply connected, closed, infinitely smooth
surface. Moreover, S = Sp U Sy, where Sp and Sy are nonempty,
nonintersecting (Sp N Sy = @), simply connected submanifolds of S
with infinitely smooth boundary curve ¢ := 9Sp = 0Sny € C*°.

In this paper we will continue investigation of the Boundary-Domain
Integral Equation Systems (BDIESs) introduced in Part I, which are
equivalent to the following mized boundary value problem:

Find a function u € H}(QT) satisfying the conditions

(21) Lz, 8,) u(x) := Z aii (a(gc) 5;9&4:)) =f inQt,

(2.2) rsput =@g on Sp,
(2.3) rsy TTu =1y on Sy,

1
where 75 denotes the restriction operator on M; ¢o € HF(Sp),
1
Yo € Hy 2(Sn) and f € La(Q21); a € C®°(R?), a(z) > 0 for z € R3;
(-)* denotes the trace, and T (z,n(z), d,) is the conormal derivative
operator correctly defined in the functional sense (see Section I1.2).

To investigate the regularity and asymptotics of the BDIES solutions
we will need the following spaces: the Sobolev-Slobodetski spaces
Wy (), W), (27); the Bessel potential spaces Hyy ("), H3 . (27),
H3(S); and the Besov spaces By ,(Q), By 1, (27), By ,(S), where
r>0,s € Rand 1 < p,qg < oo (see e.g., [13, 20]). We recall that
H; = W3 = B3, forr > 0, H = Bj, for any s € R, W; = B1tw
and H}’; = Wlﬂc for any positive and noninteger ¢, for any nonnegative

integer k£ and for any p > 1.

For S; C S, we will use the subspace I;T;(Sl) ={g : g €
H;(S), suppg C S1} of Hy(S), while Hy(S1) = {rs,g : g € Hy(S)}
denotes the space of restriction on S; of functions from Hj(S), where

rg, denotes the restriction operator on S;. The subspaces Ezsn,q (S1) and
By ,(S1) of By ,(S) are defined similarly.
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In Section [.4.1 we derived the following third Green identity for
arbitrary function u € Hy *(Q; L) := {g € HY(Q) : Lg € Ly(Q)},

(24)  u(y) +Ruly) — VITu(y) + Wu*(y) = PLu(y), yeQF,

where
(2.5)

Vo)== [ Pa)a(@)as., v,
(2.6)

(2.7)

(2.8)
Ry(y) := - R(z,y)g(z)dz, yeQ*
with
(2.9) P(z,y) 1 eR
x, y L )
Yo dmaly) e -y Y

3
Ti — Vi O0a(x) 3
R = E R°.

If Lu = f € Ly(Q"), then (2.4) gives (see Section 1.4)

(2.11)  w(y) +Ru(y) — VT u(y) + Wut(y) = Pf(y), yeQt,

(2.12)
Guly) = L u* (y) + R¥uly) ~ VI uly) + W' (y) = [PI]*(9),
yes,
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(2.13)

Tuly) = 5 T*uly) + T+ Ruly) - WT u(y) + L¥u* (y) = T*PS(y)
yeS.

We recall that RTu(y) := [Ru| " (y),

(214)  Vgly) = - /S P(,y) g(z) dS..

(2.15)

Wolw) 1= - [ [T(@n(a),00)) Pla,y)] o(o) dS-,
(2.16)

Walo) = - [ [10n(0).0,)) Pla)] a(o) dS-,
(2.17)

LEg(y) = [T(y,n(y), 0,)) Wg(y)*,
where y € S.

As in Part I, from definitions (2.5)—(2.10) and (2.14)—(2.17), one
can obtain representations of the parametrix-based surface potential

boundary operators in terms of their counterparts for a = 1, ie.,
associated with the Laplace operator A,
1 1
(2.18) Vg=-Vag, Wg = EWA(GQ),
1 1
(2.19) Vg=-Vag,  Wg=-Walag),
(2.20) Wg=W, +ai ! %
. 9= Ag 677, a AY,
(2.21) g = Lalag) + |- ()| Wi (a)
' on\a A
1
(2.22) Pg= . Pa g,
13
(2.23) Rg=—=>0 [PA (gaja)},
j=1

where the subscript A (the Laplace operator) means that the corre-
sponding surface potentials are constructed by means of the harmonic
fundamental solution Pa = —(47 |z — y|) 7%
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3. Properties of the potentials in Bessel-potential and Besov
spaces.

3.1. Mapping properties of surface potentials. The map-
ping and jump properties of potentials of the type (2.5)—(2.8) and
the corresponding boundary integral and pseudo-differential operators
(3.3)-(3.7) in the Bessel potential (H,) and Besov (B, ,) spaces are
well studied nowadays (for details see, e.g., [7, 8, 16, 17]; see also [14,
15], where the coerciveness properties of the boundary operators and
also the case of Lipschitz domains are considered).

Theorems 3.1-3.2 below generalize their counterparts formulated in
Part I for Sobolev spaces. They are well known, see e.g., the above
references, for the case a = const. Using (2.18)—(2.21), one can
easily prove they hold true also for the variable positive coefficient
a € C™(R3).

Theorem 3.1. Let s € R, 1 <p < 4oo and 1l < q < +oo. The
following operators are continuous

s s+1+1 s s+1+L ——
V : BPJ’(S) — Hp (Q+) [Bp,p(s) — ‘Hp,loc ( )i|7
s s+1+1 s s+1+l —
LBy (S) — Bpy P(Q) B ,(5) — B i P(@);

S S+% S
Wi B;,(S) — Hy P(F) B, (8) — Hyh (),
)

s sty s S+_
By y(8) = Bpg () [B}o(S) — By h. (@

|

Theorem 3.2. Lets € R, 1 <p < +4ooandl < qg < +oo. The
following pseudo-differential operators are continuous

V:B; (S) — BsEH(S);
W,W': B; (S) — By1'(S);
£*: B}, (S) — B 1(S).
Theorem 3.3. Let s € R, 1 <p < +oo and 1 < g < +o00. Let

S1 and Sy with 0S1,085 € C* be nonempty open sub-manifolds of S.
The operators

(3.1) rs, VB (S1) — B3 ,(S2),
(32) TS, 2% :B;yq(Sl) — B;q(Sg),
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(3.3) rs,; W' : By ((S1) — B ,(S2)

are compact.

Proof. Theorem 3.2 implies that the operators V, W and W' have
the following mapping properties

rs, V :B5 ,(S1) — Bit(Sa),

rs, W :Bs (S1) — Bit!(Ss),

)

(

q

TS, w’ :E;,q(Sl — BS+1(52)-
)

p,q

Since the embedding Bjt!(S:
follows. O

C B, ,(S2) is compact, the proof

3.2. Fredholm properties and invertibility of some surface
potentials. In our analysis we essentially apply the following assertion
about elliptic pseudo-differential operators on manifolds with boundary
(for general theory, see e.g., [1, 3, 10, 12, 18]).

Lemma 3.4. Let S; € C® be a compact, two-dimensional, non
selfintersecting, two-sided surface with boundary 85, € C*, and s € R,
1<p<oo,1<q< oco. Further, let A be a strongly elliptic pseudo-
differential operator of order a € R on Sy having a uniformly positive
principal homogeneous symbol, i.e., o(A;y,&) > co > 0 fory € Sy,
€ € R? with |£| = 1, where ¢y is a constant.

Then the operators

(3.4) A:H3(S)) — HS*(S1)
(35) : B;q(s’l) — B;;IQ(Sl)
are Fredholm operators of index zero if

1 1
3.6 - —1<s—a/2<-.
(3.6) » / ’

and (3.5) are the same
provided p and s satisfy

Moreover, the null-spaces of operators (3.4
(for all values of the parameter g € [1,+o]
inequality (3.6).

~ ~—
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This assertion is a particular case of a more general Theorem 2.19 in
[18].

Now we can prove

Theorem 3.5. Let Sy be a nonempty, simply connected submanifold
of S with infinitely smooth boundary curve, s € R, 1 < p < +00,

1< g <400 and
1 1< <1+1
—— <8< —+ -
p 2 p 2

Then the pseudo-differential operators

(3.7) rs, V: Hi7H(S1) — H3(S1)
(3.8) : By H(S1) — B; (1)

have order —1 and are invertible, while the pseudo-differential operators

(3.9) rs, L Hy(S1) — Hy '(Sh)
(3.10) : B ,(S1) — Bs M (S1)

have order +1 and are Fredholm operators of index zero.
Proof. 1t is easy to show that

o(V;y,8) == [a(y) €] ", y €S, €= (6,&) € R,

N | =

is the principal homogeneous symbol of the operator V, while the
function

o538 = 5el) €l v e S, £ = (61.6) R,

is the principal homogeneous symbol of the operator —£*.

Therefore, rg, V and rg, L* are strongly elliptic pseudo-differential
operators on the submanifold S; with positive homogeneous principal
symbols of order —1 and +1, respectively. Due to Lemma 3.4 we
conclude that the operators (3.7)—(3.10) are Fredholm operators of
index zero.
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Further, let us note that (a(y) rs, Vg, 9)s, > 0 for arbitrary nonzero
g € H%(S;). Therefore, the operator (3.7) is invertible for s = i
p = 2. In turn this implies that the operator (3.7) is invertible for all
sE%—%,%+%duetoLemma3.4. u]

Theorem 3.6. Let S; and S\S1 be nonempty, open simply connected
submanifolds of S with an infinitely smooth boundary curve, 1 < p <
400, 1 < g < 400 and %—% <s< %+ % Then the pseudo-differential
operators

(3.11) rs, L H3(S1) — Hy '(S1)

(3.12) : By 4(S1) — By (S1)

where

(3.13) L= [Ei—i—@(:FlI—i-W)] on S,
on 2

are invertible, while the operators

rs,(LE — L) : H3(S1) — H3(S)

(3.14) ! ’
: BP#I(SI) — BP#I(SI)

are bounded and the operators

(3.15) rs,(LE — L) : H3(S1) — H37Y(S))
: By (S1) — By L'(Sh)

are compact.

Proof. By Theorem 1.3.6,

~ Oa 1 Oa (1
1 = +—| —=I+ =L g+—|=IT+
(3.16) Lg=LTg < 2 W)g L™g <2 W> g,

and the operator rs, £ : Hz(S;) — H 2(S)) is invertible. Then
Lemma 3.5 and (3.16) implies the invertibility of the operators (3.11)
and (3.12).
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Since

on 2

the operators (3.14) are bounded due to Theorem 3.3. To prove the
compactness of £L* — £, we remark that the imbeddings Hy(S:) C
Hg_;(Sl) and Bj (S1) C Bs,'(S1) are compact, which completes the
proof. o

,ci—E_@<i11+W>,

Remark 3.7. By the same arguments as in the proof of Theorem 3.5,
one can show that the operators

V:H;7Y(S) — H3(S) [Bi.'(S) — B; (9]

are invertible for all s € R, 1 < p < 00, and 1 < g < o0, cf. [16].
3. Mapping properties of volume potentials.

Theorem 3.8. Let Q1 be a bounded open three-dimensional region
of R® with a simply connected, closed, infinitely smooth boundary
S =007 and 1 < p,q < co. The following operators are continuous

(3.17)
P HHQY) — HP(QY) [E;vq(m) s B;y(m)],

s eR,
(3.18)
FHH(QY) — H'2 (@) B, (@) — Bai2(eh)],
1
5> =1+ —;
p
(3.19)

R:Hy(@Y) — HP (@Y [By,(00) — Biil@Y)],
s € R,
(3.20)
L H3 Q) — HEPL(QY) [B;(I(Q*) N B;j(m)]

1
s> =14 —;
p



28

(3.21)

(3.22)

(3.23)

R+

(3.24)

(3.25)

TP

(3.26)

(3.27)

TR :
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@) — B S) (B — B
CH3 (@) — Byt H(S) [Bp () — By
@Y — B TS) [ Bra@h) — B
H@) By TH(S) (B ()~ BT

B0 — By 7(5) By, — B
LHHQ) — By (S) [B;.,@") — B

(5)]:
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(3.28)
CHI(QY) — By (8)[B3 (@) — Bya”(S)],

s> —.

Proof. Similar to Theorem 1.3.8, continuity of the operators (3.17),
(3.19), (3.21), (3.23), (3.25) and (3.27) follows from (2.22), (2.23) and
the corresponding properties of the operator Pa due to the mapping
properties of pseudodifferential operators on R, see e.g., [10, 18], and
the trace theorems, see e.g., [20]. Recall that if u € Hj(Q") then

a1
[u]t € Bpp”(S) for 1 < p < oo and s > %.

To prove the remaining items of the theorem we consider in detail
operator (3.18) on the scale of Bessel potential spaces (all arguments
on the scale of Besov spaces are word for word). First let us assume that

-1+ % <s< %. In this case Hy(Q1) = fI;(Q*), and the continuity
of operator (3.18) is evident due to the above arguments.
Now let % <s< l—i—%. For g € H3(Q"), clearly, ;9 € H3 '(Q7) and

_1
gt € By,” (), due to the continuity of the operator ; : Hy () —
H: '(QF) and the trace theorem, see e.g., [11]. For the Newton
potential of the Laplace operator we have the following representation

(329)  9;Pag(y) =Pa (0j9) (¥) + Va (njg") (y) foryeQr,

where nj, j = 1,2,3, are the components of the outward unit normal
vector to S. Due to (3.29) and the mapping properties of the single
layer potential, cf., Theorem 3.1, we conclude that 9; Pa : H, Q) —
H3 Q) is continuous for j = 1, 2,3, which, along with formula (2.22)
implies the continuity of operator (3.18) for zln <s<1l+ %.

Further, with the help of these results and the representation (3.29),
we can easily verify by induction that the operator (3.18) is continuous
for k—1+ % <s<k+ %, where k is an arbitrary nonnegative integer.
For the values s = k—}—% (with £ =0,1,2,...) the continuity of operator
(3.18) then follows due to the complex interpolation property of Bessel
potential and Besov function spaces, see e.g., [20, Chapter 4].
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It is evident that (3.22) and (3.26) are then the direct consequences
of the trace theorem.

The word for word arguments show that the claims of the theorem
concerning the operator R hold as well, which completes the proof. O

4. Regularity and asymptotic properties of solutions. In
subsection 4.1 we will establish some regularity results for solutions of
the mixed BVP and the BDIEs considered in Part I. In subsection 4.2
we will apply these results (in particular, inclusions (4.14)) in the study
of asymptotic behavior of solutions near curve ¢. Note that solution
asymptotics for the boundary integral equations associated with the
mixed BVP for constant-coefficient PDEs were considered in [19].

We will deal with the BDIES (GT) introduced in Section 1.5.1 for the
unknowns (u, ¥, ) € HY(Q1) x H=2(Sp) x Hz (Sy):

(4.1) ut+Ru—Vy+We=FT inQf,
(4.2) rsp RYu —rs Vi +rs, Weo = F$7  on Sp,
(4.3) rsy TTRu — 15 W' + 15y LYo =F§T  on Sy.

Throughout this section we assume that the righthand side of BDIES
(4.1)—(4.3) is more smooth than in Part I, namely,

FIT = (FOT, 797, 79T)T € H3 () x H? (Sp) x H?(Sy).

By Theorems 3.1 and 3.8 it will be particularly the case if F97 is
generated by the righthand sides of BVP (2.1)-(2.3) as

.
(4.4) FIT = [Fo, v, FiF — o, sy TTFy — o]
cf. (I.5.5), where

(45) F() = Pf + V\I’o - W‘I’O in Q+,

dy is a fixed extension of ¢ from submanifold Sp to the whole of S,
U, is a fixed extension of ¥y from submanifold Sy to the whole of S,
and the following enhanced smoothness conditions are satisfied

f e Hy(Qh), vo € Hy (Sp), Yo € Hy (Sn),

(4.6) : 5
®) € H;(S), U, € HQE(S)
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4.1. Some auxiliary smoothness results. By Corollary 1.5.4, the
system of BDIEs (4.1)—(4.3) with righthand side given by (4.6) has a
unique solution

1 ~
2

(47) (u, ¥, p) € HY(QT) x Hy ?(Sp) x HE (Sw).

From equation (4.2) it follows that
rspV(¥) =¥ on Sp,

4.8 3
( ) V.= *fng-f-’r‘sD <R+U+th> € Hy (SD)

due to Theorem 3.2 and mapping property (3.24).

Quite similarly, from equation (4.3) we get

’I"SNE(p = ® on Sy,

4.9 ~ 1
9 5 FIT 4 rg,, {—T+Ru F(L- LM+ W'¢} € H} (Sy),

where the operator Z is defined by (3.13).
Recall that, see [20, Theorem 4.6.2],

3 1
H3(Sp) C By ,(Sp),  H3(Sn) C By, (Sn)
(31 2
fors<minq -, -+ -7, 1<p<-+oo.
2°2 p

Applying Theorem 3.5 and Corollary 3.6 for

c(l 111
sef(r_ 1.1
p 2'p 2

and then extending the result for smaller s due to the embedding

~_1 ~ 1
theorem, we derive that if (¢,p) € H, 2(Sp) x Hi(Sy) satisfies
equations (4.8) and (4.9), then

Y€ B33 (Sp), ¢ € B (Sn)

for any p and s such that

1 1
(4.10) 1 <p< +oo, s<5+§.
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By Theorem 3.1 we see that

s+1 s+1
(4.11) Vi e Hy F(QF),  WeeH, *(QF

with s and p as in (4.10).

Since Ru € HZ(Q) for u € H3(QT), then from equation (4.1) and in-
clusions (4.11) along with the embedding theorems for the Besov space,
see [20, subsection 4.6], we obtain the following Hélder continuity of
the solution to the mixed BVP,

(412)  u=FIT —Ru+Vy—Wye H, *(QF) c C*~3(QF),

where s and p satisfy conditions (4.10) and s — % > 0. If we take here

p sufficiently large and s close to % such that the above restrictions

on parameters p and s are satisfied, then we see that the inclusion
P

u € C279(QF) holds with arbitrarily small § > 0.

Further, from (4.12) due to (3.20) and the trace theorem, it also
follows that

erlJrl s s
Rue H, *(Q%), rs,RTue B (Sp), rs,TTRu € B ,(Sn),
where s and p satisfy conditions (4.10). Then, from formulas (4.8) and
(4.9) for ¥ and @, we get the following inclusions

(4.13) ¥ e B3t (Sh), ® e Bj (Sn),

with s and p as in (4.10).

For any o < %, one can find s satisfying (4.10) and € > 0 such that

s = % + o +e. Bearing in mind that Bj'7(Sp) C Hj(Sp) for all
t € (—oo,+), p € (1,+00) and ¢ > 0, we arrive from (4.13) at the
relation

1+i40 iio
(4.14) UeH, "(Sp), ®ecH!(Sy),

where o < %

4.2. Asymptotics of solution. In what follows we derive asymp-
totic expansion formulas in local coordinates for the components of the
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solution vector (u,, ). To this end, in the normal plane II,/ to the
curve ¢ := 0Sp = 0SSy, we consider a local polar coordinate system
(r,9) such that y = (y',r,9), r > 0, 9 € [0,7]. The pole of the local
coordinate system, 7 = 0, belongs to the curve ¢; ¥ = 7 corresponds
to the Dirichlet part of the boundary, while ¥ = 0 corresponds to the
Neumann part of the boundary. Moreover, the interior domain corre-
sponds locally to the interval 0 < ¢ < 7. Actually, ¥’ defines some
parameterization of the curve /.

Further, we apply the theory of asymptotic expansions of solutions
to elliptic pseudodifferential equations on manifolds with boundary,
developed in [10], see also [2, 5, 9].

Note that the principal homogeneous symbols

o(Viy,€) = 3 lal) el and o(—L75y/,6) = 3a(y)) e,

corresponding to operators V and —L1, are positive and even functions
in £ for |§| = 1. Therefore, from (4.8) and (4.9) along with the
embedding (4.14) we obtain, similar to [9, Theorems 4.1 and 4.2],

(4.15) Dy 1) = coly) X(r) r™F + v (y,7),
(4.16) p(y',r) = bo(y) X(r) 12 + o1 (4, 7),

where X € C3°(Rt) is a cut-off function with compact support and
X(r) =1 for 0 < r < e with a suitable £ > 0, while

o+3 rotg
co € H,"2(¢), ¢ € Hy, "(Sp),
o+ 2 ~o+1+1
bo€ Hy " 2(0), 1€ H, ¥(Sn)

for any 2 < p < +00, 0 < % More detailed analysis, based on the
factorization technique, shows that, cf., [19, Theorem 4.9],

(@.17 ) = "Ly

Now the asymptotic behavior of u in a spatial vicinity of [ can be
found from (4.12) with the help of formulae (4.15) and (4.16). In fact,

we have

(4.18) u=Vy—-We+G inQF,
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where 1 and ¢ have the structure given by (4.15) and (4.16), and

— FST o+ o+ l4o-1, 5T
(4.19) G:=F/ —RuecH, Qcc » (QF)
With2<p<+ooand%—1<U<(1/2).

Note that, for ¢ € R and 2 < p < +00, we have the embedding (see
[20, Theorem 4.6.1 (b)]) H:(S1) € HE(S) C B ,(S) for any subsurface
Sy of S. Therefore by Theorem 3.1,

o 2 o 2
Vi e Hy @b, W e Hy TR (@)

for 2 < p < +o00 and o < 1/2. Consequently,
(4.20) Vi € CUHOTE(QT), Wy € CTOTE(Q).

foranyp,asuchthat2<p<+ooand%—l<a<%.

Applying the results obtained by Chkadua and Duduchava (see [4,
Theorem 2.2 and Remark 2.11]) for potential type functions (4.18) with
densities (4.15) and (4.16) whose asymptotic expansions are known, we

arrive at the following representation near the curve ! due to (4.19) and
(4.20)

(4.21) u(y',r,9) = do(y',9) X(r) 7 +ur(y', 7, 9),

where
!/ / 19 !/ . 19
do(y',9) = d1(y') cos B + da(y') sin 2

(4.22) 1
dy,dy € HPE—HT(E), Uy € C%+07%(Q_+)

for any p, o such that 2 < p < +00 and l—%<0< %,and d; and dy

P
are real.

Membership (4.22) implies u; € C*~%(Q7) for arbitrarily small § > 0,
and we get from (4.21) the best regularity result for the solution of the
mixed BVP, u € C'% (QF).

Subtracting (4.2) from the trace of (4.1) on Sp, we obtain,

(4.23) rsput =re (FITYt — F§T € H3(Sp) on Sp.
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Taking into account that ¢ = 7 on Sp near [, inclusion (4.23) implies
d2(y') = 0 in (4.22). Moreover, if the BDIES’ righthand side F97 is
generated by the BVP righthand side according to (4.4)—(4.6), then by
Theorem 1.5.2,

(4.24) Y =TT u— Yy, p=u"—® ons.
Substituting in (4.24) asymptotics (4.15)—(4.17) and (4.21)—(4.22) with

d2 = 0, and comparing participating terms and their smoothness, we
arrive at the following asymptotics of the BDIE solution,

53

(425)  u(y,r,9) = bo(y) cos 5 X(r) ¥ +ua(y/,,9),
@) v =2 ) X)),
(4.27) P(y',r) = by X(r) 2+ pa(y/,7),

where

boe HOVE(0), e CEHYOH(QT),
(Sn)-

The smoothness and asymptotic results obtained above for BDIEs
(4.1)—(4.3) with the righthand side associated with the BVP righthand
sides as in (4.4)—(4.5), will hold true also for the other three BDIE
systems considered in Part I (with their righthand sides associated with
the same BVP), due to their equivalence to the BVP and thus to each
other.

~ +l ~ +1+l
Y1 €H, "(Sp), ¢i€H, "
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