
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 21, Number 3, Fall 2009

RECOMPRESSION TECHNIQUES
FOR ADAPTIVE CROSS APPROXIMATION

M. BEBENDORF AND S. KUNIS

Communicated by Simon Chandler-Wilde, Ivan Graham and J. Trevelyan

JIEA: A special Issue for the UKBIM6 Meeting

ABSTRACT. The adaptive cross approximation method
(ACA) generates low-rank approximations to suitable m × n
sub-blocks of discrete integral formulations of elliptic bound-
ary value problems. A characteristic property is that the ap-
proximation, which requires k(m + n), k ∼ | log ε|∗, units of
storage, is generated in an adaptive and purely algebraic man-
ner using only few of the matrix entries. In this article we
present further recompression techniques which are based on
ACA and bring the required amount of storage down to sub-
linear order kk′, where k′ depends logarithmically on the ac-
curacy of the approximation but is independent of the matrix
size. The additional compression is due to a certain smooth-
ness of the vectors generated by ACA.

1. Introduction. The finite element discretization of integral for-
mulations of elliptic boundary value problems leads to fully populated
matrices K ∈ R

N×N of large dimension N . By the introduction of
the fast multipole method [15], the panel clustering method [21], the
wavelet Galerkin method [1], and hierarchical (H-) matrices [17, 19]
it has become possible to treat such matrices with almost linear com-
plexity. While most of these methods can be used only to store and
to multiply approximations by a vector, H-matrices provide efficient
approximations to the matrix entries. The latter property is useful be-
cause preconditioners can be constructed from the matrix approximant
in a purely algebraic way; see [4].

2000 AMS Mathematics subject classification. Primary 65D05, 65D15, 65F05,
65F30.

Keywords and phrases. adaptive cross approximation, integral equations,
hierarchical matrices.

Received by the editors on December 6 2007.

DOI:10.1216/JIE-2009-21-3-331 Copyright c©2009 Rocky Mountain Mathematics Consortium

331

332 M. BEBENDORF AND S. KUNIS

There are two main techniques for the construction of H-matrices in
the context of integral operators

(Ku)(x) =
∫

Ω

κ(x, y)u(y) dy

with given domain Ω ⊂ R
d and kernel function κ which consists of

the singularity function S and its derivatives. The first technique
constructs the approximants by approximating the kernel function
directly and thus requires the explicit knowledge of κ. The second
is the adaptive cross approximation (ACA) method (see [2]), which
approximates suitable sub-blocks A ∈ R

m×n of the discretized operator
K by

(1.1) AΠ2(Π1AΠ2)−1Π1A ≈ A,

where Π1 ∈ R
k×m consists of the first k � min{m,n} rows of a per-

mutation matrix and Π2 ∈ R
n×k are the first k columns of another

permutation matrix. Hence, instead of computing and storing all en-
tries of A, it is possible to compute their approximation with complexity
O(k2(m+ n)) and store it in O(k(m+ n)) units of memory. The fact
that ACA relies on few of the original matrix entries makes it very
convenient and attractive for practical applications, because existing
“slow” codes can be accelerated with small changes, whereas kernel ap-
proximation methods such as the fast multipole method and methods
based on interpolation require a fundamental recoding. Additionally,
ACA is in general more efficient with respect to both the number of
operations and the quality of the approximant. Kernel approximation
methods are not able to exploit properties of the matrix which are not
present in the kernel function. The reason is that, for instance, the
geometry may also reduce the rank of the approximation. Further-
more, the quality of the kernel approximation depends on the kind of
approximation used. For instance, if algebraic polynomials are used
to approximate κ in the case of the single layer potential operator of
the Laplacian in three dimensions, then the rank k will be of the or-
der | log ε|3, whereas the multipole expansion guarantees k ∼ | log ε|2.
Here, ε denotes the desired accuracy. In fact it can be rigorously proved
(see [6]) that the kind of approximation on which ACA is based pro-
vides a quasi-optimal low-rank approximation for each kernel function
involved. This quasi-optimal approximation is actually found by the

RECOMPRESSION TECHNIQUES 333

ACA algorithm since it is adaptive, i.e., the rank of the approximation
is determined during the approximation, whereas kernel approximation
uses a-priorily chosen values.

Both techniques rely on the smoothness of S. It is known that for
integral formulations of elliptic boundary value problems the singularity
function S is asymptotically smooth, i.e., there are constants
c, γ1, γ2 > 0 such that

(1.2) |∂α
x ∂

β
y S(x, y)| ≤ c |α|! |β|! γ|α|

1 γ
|β|
2 |x−y|−|α|−|β||S(x, y)|, x �= y,

for all α, β ∈ N
d. Using either method, an H-matrix approximation

of K is generated which has storage complexity O(kN logN), where k
depends logarithmically on the approximation accuracy ε.

Although ACA generates approximants of high quality, the amount
of storage required for an approximant can still be reduced. The
reason for this is visible from the special structure of the approximant.
The representation (1.1) uses parts Π1A and AΠ2 of the original
matrix A for its approximation. Since Π1A and AΠ2 have the same
smoothness properties as the entire block A, they can be additionally
approximated using polynomial approximation, for instance. Note
that our construction will not be based on polynomial approximation
of the kernel κ since we can afford more advanced methods due to
the fact that one of the dimensions of Π1A and AΠ2 is k which
can be considered to be small. Our aim is to devise a method
which preserves both the adaptivity and the property that only the
matrix entries are used. The way we will achieve this is based on
projecting Π1A and AΠ2 to explicitly given bases. The reduced
storage requirement compared with ACA has to be paid by the fact
that the new method will use some additional information of the
matrices. For the construction of the bases it is for instance important
to know which kind of discretization is used and whether the normal
vector is involved in the kernel. However, methods based on kernel
approximation require even more information and do not offer the
advantages of ACA. In total, this recompression generates so-called
uniform H-matrices (see [17]) from few of the original matrix entries.
Notice that it is not required to develop arithmetic operations for
uniform H-matrices if approximate preconditioners are to be computed
from the generated approximation. Since the recompression is based on

334 M. BEBENDORF AND S. KUNIS

ACA, one can generate an H-matrix approximation of reduced accuracy
as a byproduct and construct a usual H-matrix preconditioner from it.

For uniform H-matrices it is necessary to store the coefficients of
the projection together with the bases. The amount of storage for the
coefficients is of the order kN (cf. [18]), i.e., compared with H-matrices
the factor logN is saved. However, storing the bases still requires
O(kN logN) units of storage. A continuation of the development of H-
matrices has led to H2-matrices (see [20]) which allow to store the bases
with O(kN) complexity. For H2-matrices the factor k in the asymptotic
complexity can even be removed if variable order approximations (see
[10, 20]) are employed. However, then the approximation accuracy is
not arbitrarily small and will in general not improve with the quality
of the discretization unless operators of order zero are considered.
The reformulation of the standard integral operators from [9] could,
however, be used to apply the techniques for operators of order zero.
The construction of uniform H- and H2-matrices is usually based on
polynomial approximations of the kernel function. We want to remark
that the recompression of ACA generated H-matrices to H2-matrices
can also be done in a black-box fashion; see [8]. However, besides
providing reliable error estimates, our approach does not require to
store the row and column bases, which consume most of the memory.

Since we will use explicitly given row and column bases, only the
coefficients of the projection of the ACA approximant on these bases
are stored. Hence, we will improve the overall asymptotic complexity
to O(kN). However, in this case the bases have to be constructed on
the fly when multiplying the approximant by a vector. It will be seen
that this additional effort does not change the asymptotic complexity
of the matrix-vector multiplication. A slight increase of the actual run-
time can be tolerated since the multiplication is computationally cheap
while it is necessary to further reduce the storage requirements of ACA
approximants.

In this article we will concentrate on a single sub-block A ∈ R
m×n of

a hierarchical matrix of size N ×N . We assume that A has the entries

aij =
∫

Ω

∫
Ω

κ(x, y)ψi(x)ϕj(y)dxdy, i = 1, . . . ,m, j = 1, . . . , n,

with test and trial functions ψi and ϕj having supports in D1 and
D2, respectively. This kind of matrices corresponds to a Galerkin

RECOMPRESSION TECHNIQUES 335

discretization of integral operators. The sub-block A results from a
matrix partitioning which guarantees that the domains

D1 =
d⊗

ν=1

[aν , bν] and D2 =
d⊗

ν=1

[a′ν , b
′
ν]

are in the far-field of each other, i.e.,

(1.3) max{diamD1, diamD2} ≤ η dist(D1D2)

with a given parameter η ∈ R. For properties of the hierarchical
structure (matrix partitioning, complexity estimates) the reader is
referred to the literature on hierarchical matrices; cf. [5, 14].

The structure of the article is as follows. In Sect. 2 we will review the
adaptive cross approximation method. In order to exploit the smooth-
ness of Π1A and AΠ2, we present an alternative formulation of ACA.
In Sect. 3 we will show that the matrices Π1A and AΠ2 can be ap-
proximated using Chebyshev polynomials. This approximation requires
the evaluation of the kernel function at transformed Chebyshev nodes,
which has to be avoided if we want to use the original matrix entries.
One solution to this problem is to find a least squares approximation.
In Sect. 3.4 we show how this can be done in a purely algebraic and
adaptive way. Another possibility is to replace the additional nodes by
original ones which are close to Chebyshev nodes. Error estimates for
this kind of approximation will be presented in Sect. 3.5.2. Finally,
in Sect. 3.5.3 we will investigate an approximation that relies on the
discrete cosine transform (DCT) – at least if the discretization nodes
are close to transformed Chebyshev nodes, numerical evidence is given
that the number of coefficients to store depends logarithmically on the
accuracy but not on the matrix size of A. Numerical results support
the derived estimates.

2. Adaptive Cross Approximation. In contrast to other meth-
ods like fast multipole, panel clustering, etc., the low-rank approximant
resulting from the adaptive cross approximation is not generated by re-
placing the kernel function of the integral operator. The algorithm uses
few of the original matrix entries to compute the low-rank matrix. Note
that this does not require to build the whole matrix beforehand. The
algorithm will specify which entries have to be computed.

336 M. BEBENDORF AND S. KUNIS

The singular value decomposition (SVD) would find the lowest rank
that is required for a given accuracy. However, its computational com-
plexity makes it unattractive for large-scale computations. ACA can
be regarded as an efficient replacement which is tailored to asymptoti-
cally smooth kernels. Note that not the kernel function itself but only
the information that the kernel is in this class of functions is required.
This enables the design of a black-box algorithm for discrete integral
operators with asymptotically smooth kernels.

Assume condition (1.3) holds for A ∈ R
m×n. Then the rows and

columns of the matrix approximant UV T , U ∈ R
m×k and V ∈ R

n×k,
are computed for k = 1, 2, . . . as

ûk := A1:m,jk
−

k−1∑
�=1

u�(v�)jk
,

uk := (ûk)−1
ik
ûk, where ik is found from |(ûk)ik

| = ‖ûk‖∞,

vk := AT
ik,1:n −

k−1∑
�=1

(u�)ik
v�.

The choice of the row index jk is detailed in [6]. The iteration stops if
a prescribed accuracy is reached, which can be checked by inspecting
the norms of the last vectors uk and vk. The exponential convergence
of ACA for the Nyström, the collocation, and the Galerkin method was
proved in [2, 6, 7].

2.1. An alternative formulation of ACA. In [6] we have pointed out
that for the computed approximant it holds that

(2.1) UV T = A1:m,j1:kA
−1
k Ai1:k,1:n,

where Ak := Ai1:k,j1:k . The last expression is known as a pseudo-
skeleton; see [12]. Since the methods of this section will be based on
the pseudo-skeleton representation of the ACA approximant, we should
construct and store A1:m,j1:k , Ai1:k,1:n, and A−1

k instead of UV T . In
order to generate and apply A−1

k in an efficient way, we use the LU
decomposition of Ak.

Assume that pairs (i�, j�), � = 1, . . . , k, have been found and assume
that the normalized LU decomposition of the k× k matrix Ak = LkRk

RECOMPRESSION TECHNIQUES 337

has been computed. We find the new pivotal row ik+1 and column jk+1

as explained above. With the decomposition

Ak+1 =
[
Ak bk
aT

k ck

]
,

where aT
k := Aik+1,j1:k , bk := Ai1:k,jk+1 , and ck := Aik+1,jk+1 , the LU

decomposition of Ak+1 is given by

Ak+1 =
[
Lk 0
xT

k 1

] [
Rk yk

0 αk

]
,

where xk solves RT
k xk = ak, yk solves Lkyk = bk, and αk = ck − xT

k yk.
It is easy to see that

xT
k = Uik+1,1:k, yT

k = Vjk+1,1:k, and αk = (vk+1)jk+1 .

This formulation of ACA has the same complexity O(k2(m+ n)) as
the original formulation. Due to the exponential convergence of ACA,
the number of required steps k will be of the order | log ε|d, where ε > 0
is the prescribed approximation accuracy.

2.2. Recompression using the QR factorization. Since the columns
of the matrices U and V generated by ACA are usually not orthogonal,
they may contain redundancies, which can be removed by the following
algebraic recompression technique; see [3]. This method may be
regarded as the singular value decomposition optimized for rank-k
matrices.

Assume we have computed the QR decompositions

U = QURU and V = QVRV

of U ∈ R
m×k and V ∈ R

n×k, respectively. Note that this can be done
with O(k2(m+ n)) operations. The outer-product of the two k × k
upper triangular matrices RU and RV is then decomposed using the
SVD of RUR

T
V :

RUR
T
V = Û Σ̂V̂ T .

338 M. BEBENDORF AND S. KUNIS

Computing RUR
T
V and its SVD needs O(k3) operations. Since QU Û

and QV V̂ both are unitary,

A = UV T = QU ÛΣ̂(QV V̂)T

is an SVD of A. Together with the products QU Û and QV V̂ , which
require O(k2(m+ n)) operations, the number of arithmetic operations
of the SVD of a rank-k matrix sums up to O(k2(m+ n+ k)) opera-
tions. In addition to improving the blockwise approximation, one may
also try to improve the block structure of the hierarchical matrix by ag-
glomerating blocks; see [13] for a coarsening procedure. Although these
techniques may reduce the required amount of storage, the asymptotic
complexity of the approximation remains the same.

3. Approximation using Chebyshev polynomials. The matri-
ces A1:m,j1:k and Ai1:k,1:n are submatrices of the original matrix block
A. Hence, their matrix entries have the same smoothness properties as
the original matrix A. The smoothness of the latter matrix was used
by ACA. However, the smoothness of the former matrices has not been
exploited so far. Our aim in this section is to approximate them us-
ing Chebyshev polynomials, i.e., we will construct coefficient matrices
X1, X2 ∈ R

k′×k, k′ ≈ k, such that for a given ε > 0

‖A1:m,j1:k −B1X1‖F ≤ ε‖A1:m,j1:k‖F and
‖AT

i1:k,1:n −B2X2‖F ≤ ε‖Ai1:k,1:n‖F ,

where B1 ∈ R
m×k′

and B2 ∈ R
n×k′

are explicitly given matrices which
are generated from evaluating Chebyshev polynomials and which do not
depend on the matrix entries of A. Combining the two approximations
leads to

(3.1) A ≈ A1:m,j1:kA
−1
i1:k,j1:k

Ai1:k,1:n ≈ B1CB
T
2 ,

where C = X1A
−1
k XT

2 . If k′ ≤ 2k, then one should store the entries of
C ∈ R

k′×k′
. Otherwise, it is more efficient to store C in outer product

form
C = (X1R

−1
k)(X2L

−T
k)T ,

where Lk and Rk are the triangular matrices from Sect. 2.1.

RECOMPRESSION TECHNIQUES 339

The approximations B1X1 and B2X2 have the special property that
the matrices B1 and B2 do not have to be stored. Only X1 ∈ R

k′×k and
X2 ∈ R

k′×k will be stored and the matrices B1 and B2 will be recom-
puted every time they are used. Although for the “basis matrices” B1

and B2 any suitable matrices could be used, we favor matrices which
correspond to Chebyshev polynomials due to their attractive numerical
properties. Later it will be seen that the construction of B1 and B2 can
be done with mk′ and nk′ operations, respectively. The matrix-vector
multiplication with B1X1 takes O(k′(m+ k)) floating point operations.

Our aim in this section is to approximate the matrix A1:m,j1:k . The
matrix Ai1:k,1:n has a similar structure and its approximation can be
done analogously. For notational convenience, we denote the restricted
matrix A1:m,j1:k ∈ R

m×k, m
 k, again by the symbol A.

3.1. Chebyshev approximation. We first consider one-dimensional
interpolation in Chebyshev nodes

tj :=
a+ b

2
+
b− a

2
· cos

2j + 1
2p

π, j = 0, . . . , p− 1.

For [a, b] = [−1, 1], the polynomial with the zeros tj , j = 0, . . . , p−1, is
the Chebyshev polynomial Tp(t) := cos(p arccos(t)) which satisfies the
three term recurrence relation

T0(x) = 1, T1(t) = t, and(3.2)
Tp+1(t) = 2tTp(t) − Tp−1(t), p = 1, 2,

Lemma 3.1. Let f ∈ Cp[a, b]. The polynomial interpolation
Ip : C[a, b] → Πp−1, f �→ q such that q(tj) = f(tj), j = 0, . . . , p− 1, is
uniquely solvable and Ipf obeys

‖f − Ipf‖C[a,b] ≤ 2(b− a)p

4p p!
‖f (p)‖C[a,b].

The operator norm ‖Ip‖ := max{‖Ipf‖C[a,b] : f ∈ C[a, b] satisfying
‖f‖C[a,b] = 1} is the Lebesgue constant which depends only logarithmi-
cally on p, i.e.,

(3.3) ‖Ip‖ ≤ 1 +
2
π

log p.

340 M. BEBENDORF AND S. KUNIS

Moreover, the interpolation can be rewritten in the form Ipf(t) =∑p−1
i=0 ciTi

(
2 t−a

b−a − 1
)
, where

c0 :=
1
p

p−1∑
j=0

f(tj) and ci :=
2
p

p−1∑
j=0

f(tj) cos i
2j+1
2p

π, i = 1, . . . , p−1.

Proof. For [a, b] = [−1, 1] see e.g. [22].

The previous properties of univariate interpolation at Chebyshev
nodes can be exploited for interpolating multivariate functions f : D →
R given on a domain D :=

⊗d
ν=1[aν , bν].

Corollary 3.2. Let the tensor product Chebyshev nodes (addressed
by a multi-index) be given by

tj :=
d⊗

ν=1

tjν , j = (j1, . . . , jd) ∈ N
d
0, 0 ≤ jν < p.

We define the interpolation operator Ip : C(D) → Πd
p−1, Ipf :=

I
(1)
p · · · I(d)

p f where I
(i)
p f denotes the univariate interpolation operator

applied to the i-th argument of f .

The interpolation error is bounded by

(3.5) ‖f − Ipf‖C(D) ≤
(

1 +
2
π

log p
)d−1 d∑

ν=1

‖f − I(ν)
p f‖C(D).

Proof. By the triangle inequality and due to (3.3), we obtain

‖f − Ipf‖C(D) ≤ ‖f − I(1)
p f‖C(D) + ‖I(1)

p (f − I(2)
p · · ·I(d)

p)f‖C(D)

≤ ‖f − I(1)
p f‖C(D) + ‖I(1)

p (f − I(2)
p f)‖C(D) + · · ·

+ ‖I(1)
p · · ·I(d−1)

p (f − I(d)
p f)‖C(D)

≤
d∑

ν=1

‖f − I(ν)
p f‖C(D)

ν−1∏
j=1

‖I(j)
p ‖

≤
(

1 +
2
π

log p
)d−1 d∑

ν=1

‖f − I(ν)
p f‖C(D).

RECOMPRESSION TECHNIQUES 341

3.2. Construction of Approximations. The discretization method
by which the sub-block A was obtained from the integral operator K
is either the Nyström, the collocation, or the Galerkin method. We
consider integral operators K of the form

(Ku)(x) =
∫

Ω

S(x, y)u(y) dy,

where S is a positive singularity function. Hence, each block A of the
stiffness matrix takes the form

aij =
∫

Ω

∫
Ω

S(x, y)ψi(x)ϕj(y) dxdy,(3.6)

i = 1, . . . ,m, j = 1, . . . , k,

where ψi and ϕj are non-negative finite element test and trial functions
satisfying suppψi ⊂ D1 and suppϕj ⊂ D2. Note that Galerkin
matrices formally include collocation and Nystöm matrices if one sets
ψi = δ(· − x̃i) and ϕj = δ(· − ỹj) with Dirac’s δ for some points x̃i and
ỹj .

Using the results stated in the previous section, for each y ∈ Ω we
can define an approximating polynomial

Ix,pS(x, y) ≈ S(x, y)

and a matrix ÃCH ∈ R
m×k having the entries

ãCH
ij :=

∫
Ω

∫
Ω

Ix,pS(x, y)ψi(x)ϕj(y) dxdy,(3.7)

i = 1, . . . ,m, j = 1, . . . , k.

Theorem 3.3. Let D1 be convex. If c γ1η < 1 (cf. (1.2, 1.3)), then
the following error estimate is fulfilled

‖A− ÃCH‖F ≤ c̄

(
1 +

2
π

log p
)d−1 (γ1η

4

)p

‖A‖F .

342 M. BEBENDORF AND S. KUNIS

Proof. Due to Lemma 3.1 together with the asymptotic smoothness
(1.2) of S we have

‖S(·, y) − I(ν)
x,pS(·, y)‖C(D1) ≤

2(bν − aν)p

4p p!
‖∂p

xν
S(·, y)‖C(D1)

≤ 2c
(γ1

4

)p
(

diamD1

dist(D1D2)

)p

‖S(·, y)‖C(D1)

Let x∗ ∈ D1 be chosen such that |S(x∗, y)| = ‖S(·, y)‖C(D1). Then for
some x̃ ∈ D1 we have

|S(x, y) − S(x∗, y)| = |(x− x∗)∇S(x̃, y)|
≤ c γ1

diamD1

dist(D1D2)
‖S(·, y)‖C(D1)

≤ c γ1η‖S(·, y)‖C(D1)

and thus ‖S(·, y)‖C(D1) ≤ (1 − c γ1η)−1|S(x, y)|. From (3.5) and the
far-field condition (1.3) it follows that

|S(x, y)−Ix,pS(x, y)|≤
(

1+
2
π

log p
)d−1 d∑

ν=1

‖S(·, y)−I(ν)
p,xS(·, y)‖C(D1)

≤ c̄

(
1 +

2
π

log p
)d−1 (γ1η

4

)p

|S(x, y)|

= c̄

(
1 +

2
π

log p
)d−1 (γ1η

4

)p

S(x, y).

The last equality follows from the positivity of S. From

‖A− ÃCH‖2
F =

m∑
i=1

k∑
j=1

|aij − ãCH
ij |2

=
m∑

i=1

k∑
j=1

(∫
Rd

∫
Rd

|S(x, y)−Ix,pS(x, y)|ψi(x)ϕj(y) dxdy
)2

≤ c̄2
(

1 +
2
π

log p
)2(d−1) (γ1η

4

)2p m∑
i=1

k∑
j=1

|aij |2

RECOMPRESSION TECHNIQUES 343

one obtains the assertion. The Nyström case and the collocation case
follow from the same arguments.

The previous theorem shows the exponential convergence of ÃCH

provided γ1η < 4. Instead of the singularity function S the kernel
function of K may also contain normal derivatives of S. An example
is the double-layer potential operator arising in boundary element
methods

(Ku)(x) =
∫

Γ

(x − y, ny)
|x− y|3 u(y) dsy,

where ny is the normal vector in y ∈ Γ. Since |x−y|−3 is asymptotically
smooth (with respect to both variables), we set

ãCH
ij :=

∫
Γ

∫
Γ

(x− y, ny)Ix,p|x− y|−3ψi(x)ϕj(y) dsx dsy,(3.8)

i = 1, . . . ,m, j = 1, . . . , k.

It is obvious that a similar error estimate as presented in Theorem 3.3
can be obtained also for this kind of operators.

3.3. Evaluation of the approximation. The polynomial approxima-
tion (3.7) of the matrix entries (3.6) takes the form

ãCH
ij =

∑
α∈N

d
0

αν<p

∫
Rd

d∏
ν=1

Tαν (ξ(ν))ψi(x) dx

︸ ︷︷ ︸
=:biα

·
∫

Rd

cα(y)ϕj(y) dy︸ ︷︷ ︸
=:Xαj

,

ξ(ν) = 2
x(ν) − aν

bν − aν
− 1

with coefficient functions cα. Hence, the matrix ÃCH has the factoriza-
tion ÃCH = BXCH, where XCH ∈ R

k′×k, k′ := pd, and B ∈ R
m×k′

has
the entries

(3.9) biα =
∫

Rd

d∏
ν=1

Tαν (ξ(ν))ψi(x) dx.

From this construction it is obvious that B1 in (3.1) depends only
on the row indices i, whereas B2 depends only on the column indices

344 M. BEBENDORF AND S. KUNIS

j. The approximation we generate is a so-called uniform H-matrix;
see [17]. The special structure of this kind of hierarchical matrix can
be exploited also when computing the matrix-vector product; see for
instance [18].

Let us consider the collocation and the Nyström case, i.e., we first
assume that ψi = δ(· − xi). Then B has the entries

(3.10) biα =
d∏

ν=1

Tαν (ξ(ν)
i).

These matrix entries can be computed efficiently using the recurrence
relation (3.2) to evaluate the individual factors Tαν (ξ(ν)

i) for 0 ≤ αν <
p, ν = 1, . . . , d. Thus, the matrix B can be set up explicitly with
O(mk′) arithmetic operations. A matrix vector product w := Bv
takes the same number of arithmetic operations without setting up the
matrix explicitly. For most applications, it is reasonable to evaluate
the factors Tαν (ξ(ν)

i) using O(mdp) arithmetic operations and memory
on the fly and compute the matrix vector product out of these values.
Two alternatives are given by: 1) storing the O(mdp) factors as a
compressed version of B to speed up the matrix vector product or
2) using a Clenshaw-like algorithm to reduce the intermediate used
memory from O(mdp) to only O(d) or O(md) for a data parallel version.

Now consider Galerkin matrices, i.e., ψi is a piecewise polynomial
function on each of the M polyhedrons defining the computational
domain. We assume that the support of each function ψi, i = 1, . . . ,m,
is the union of at most μ elements τj , j ∈ Ii, with |Ii| ≤ μ, i.e.,
suppψi =

⋃
j∈Ii

τj . Each element τj is the image of the reference
element τ under a mapping Fj . The restriction of ψi to each polyhedron
τj is a polynomial of degree q, and we apply a cubature formula

∫
τ

f(x) dx ≈
P∑

�=1

w�f(x�)

with weights w� and points x�, � = 1, . . . , P , on the reference element
τ as suggested in [16], i.e.,

RECOMPRESSION TECHNIQUES 345

biα =
∑
j∈Ii

∫
τj

d∏
ν=1

Tαν (ξ(ν))ψi(x) dx

=
∑
j∈Ii

P∑
�=1

w�ψi(Fτj (x�))
d∏

ν=1

Tαν (Fτj (ξ
(ν)
�)).

Let I :=
⋃m

i=1 Ii. The computation of the matrix B can therefore be
done by first computing the matrix

b′(j,�),α :=
d∏

ν=1

Tαν (Fτj (ξ
(ν)
�)), α ∈ N

d, αν < p, j ∈ I, � = 1, . . . , P,

having at most μmP rows. The matrix B′ has the same structure as B
in (3.9) and the number of cubature nodes is bounded by P = O(k′).
In a second step one computes the matrix

ci,(j,�) := w�ψi(Fτj (x�))

prior to computing the product

biα =
∑
j∈Ii

P∑
�=1

ci,(j,�)b
′
(j,�),α.

Note that the previous construction can also be applied to matrices
(3.8).

As readily seen from (3.4), the computation of the coefficients XCH

requires additional evaluations of κ at the tensor Chebyshev nodes tj.
Since our aim is a method that is based on the matrix entries and does
not require the kernel function, in the following we investigate a least
squares approximation.

3.4. Least Squares Approximation. Let B ∈ R
m×k′

be the matrix
defined in (3.9). According to Theorem 3.3 there is XCH ∈ R

k′×k such
that

‖A−BXCH‖F ≤ c̄

(
1 +

2
π

log p
)d−1 (γ1η

4

)p

‖A‖F .

346 M. BEBENDORF AND S. KUNIS

We have pointed out that the computation of XCH is not desirable.
Additionally, there may be a matrix XLS ∈ R

k′×k which provides a
better approximation than XCH. Hence, we aim at solving the least
squares problem

find X ∈ R
k′×k such that ‖A−BX‖F is minimized.

Let B = UBΣV T
B , Σ ∈ R

k′×k′
, be a singular value decomposition

of B, which can be computed with complexity O((k′)2m). Then
XLS := VBΣ+UT

BA, where

(
Σ+

)
ij

=
{
σ−1

i , i = j and σi �= 0,
0, else,

is a best approximation with respect to the Frobenius norm. The
following error estimate for ÃLS := BXLS is an obvious yet important
consequence.

Lemma 3.4. For the approximation ÃLS we obtain

‖A− ÃLS‖F ≤ c̄

(
1 +

2
π

log p
)d−1 (γ1η

4

)p

‖A‖F .

Proof. Since XLS minimizes ‖A−BX‖F , we compare with the
solution ÃCH = BXCH obtained by interpolation at the Chebyshev
nodes.

In what follows we will devise an efficient adaptive strategy for the
solution of the least squares problem. According to the previous lemma,
we may assume that

‖A−BXLS‖F ≤ ε‖A‖F

with arbitrary ε > 0. Depending on, for instance, the geometry, the
columns of B can be close to linearly dependent. Hence, the number
of required columns of B may be significantly smaller than k′. Using
the singular value decomposition of B, it is possible to construct a

RECOMPRESSION TECHNIQUES 347

minimum orthonormal basis U ∈ R
m×k′′

and coefficients C ∈ R
k′′×k′

such that

(3.11) ‖B − UC‖F ≤ ε‖B‖F .

In this case we would have to store the matrix U for later computations.
Since our aim is to generate the basis of approximation on the fly
every time it appears in the computations, we have to find appropriate
columns of B which are sufficient to represent the remaining columns.
To this end, we construct a rank-revealing QR decomposition of B

BΠ = QR = Q

[
R11 R12

0 R22

]
,

where Q ∈ R
m×m is unitary, Π ∈ R

k′×k′
is a permutation matrix, and

R ∈ R
m×k′

is upper triangular. We determine 0 ≤ rB ≤ k′ such that
R11 ∈ R

rB×rB is non-singular and

‖ [0 R22]XLS‖F ≤ ε‖A‖F .

Denote by ΠrB the first rB columns of Π. Hence, setting X1 :=
[I, R−1

11 R12]Π−1XLS, we have

‖A−BΠrBX1‖F

≤ ‖A−BXLS‖F + ‖BXLS −BΠrBX1‖F

≤ ε‖A‖F + ‖BΠΠ−1XLS −BΠrBX1‖F

= ε‖A‖F + ‖
([

R11 R12

0 R22

]
−

[
R11

0

]
[I R−1

11 R12]
)

Π−1XLS‖F

= ε‖A‖F + ‖ [0 R22] Π−1XLS‖F

≤ 2ε‖A‖F .

Although we have reduced the basis B to BΠrB , it still holds that

min
X∈RrB×k

‖A−BΠrBX‖F ≤ 2ε‖A‖F .

In addition to redundancies in the basis vectors B, the columns of A
may be close to linearly dependent. An extreme case is A = 0. Then

348 M. BEBENDORF AND S. KUNIS

there is no need to store a coefficient matrix X of size rB×k. Therefore,
our aim is to find X ∈ R

r×k with minimum 0 ≤ r ≤ rB such that

‖A−BΠrX‖F = min
Y ∈Rr×k

‖A−BΠrY ‖F ≤ 2ε‖A‖F .

Let Q = [Q1, Q2] be partitioned, where Q1 ∈ R
m×r. Since

‖A−BΠrX‖F = ‖QTA−QTBΠrX‖F

= ‖QTA− R̂
0 X‖F = ‖

[
QT

1 A− R̂X
QT

2 A

]
‖F ,

where R̂ ∈ R
r×r is the leading r × r submatrix in R11, it follows that

‖A−BΠrX‖F = ‖QT
2A‖F

if X solves R̂X = QT
1 A. This X ∈ R

r×k satisfies ‖A−BΠrX‖F =
minY ∈Rr×k ‖A−BΠrY ‖F . The smallest r can thus be found from the
condition

‖QT
2A‖F ≤ 2ε‖A‖F .

The computation of QTA ∈ R
m×k can be done with O(kk′m) opera-

tions provided Q is represented by a product of k′ Householder trans-
forms.

In total, we have the following algorithm which requires O((k′)2m)
flops.

Finally, in Tab. 3.4 we compare the asymptotic complexities of ACA,
the recompression technique from this section (labeled “RACA”), and
the standard method without any approximation.

memory usage matrix-vector multiplication setup time

standard mn mn mn

ACA k(m + n) k(m + n) k2(m + n)

RACA kk′ k′(m + n + k) (k2 + (k′)2)(m + n)

Table 1: Asymptotic complexities.

3.5. Further topics. Subsequently, we discuss a further reduction in
memory usage when the kernel is translation invariant, an interpolation

RECOMPRESSION TECHNIQUES 349

Input: Matrix A ∈ R
m×k, approximation accuracy ε > 0,

and k′ ∈ N.

1: Set up the matrix B ∈ R
m×k′

.

2: Compute an SVD B = UBΣV T
B and the least

squares coefficients XLS = VBΣ+UT
BA ∈ R

k′×k.

3: Compute a rank-revealing QR decomposition BΠ = QR.

4: Determine 0 ≤ rB ≤ k′ and partition

R =

[
R11 R12

0 R22

]

such that ‖
[
0 R22

]
XLS‖F ≤ ε‖A‖F .

5: Compute QT A ∈ R
m×k by k′ Householder transforms.

6: Find 0 ≤ r ≤ rB such that ‖QT
2 A‖F ≤ 2ε‖A‖F .

7: Solve R̂X = QT
1 A for X ∈ R

r×k.

Output: Reduced rank r, permutation Πr, and

coefficient matrix X ∈ R
r×k.

Algorithm 1: Reduction of B and least squares solver.

approach which uses a subset of the original nodes, and a heuristic
technique based on the discrete cosine transform. For simplicity, we
only consider the Nyström case, i.e., our matrix block A ∈ R

m×k is
given by

aij = κ(xi, yj), i = 1, . . . ,m, j = 1, . . . , k.

3.5.1. Translation invariant kernels. In case the matrix entries obey

aij = κ(xi − yj), i = 1, . . . ,m, j = 1, . . . , k,

we simultaneously approximate all columns of A. The interpolation at
tensor product Chebyshev nodes is given by

āij = (Ipκ) (xi − yj),

350 M. BEBENDORF AND S. KUNIS

and allows for the error estimate in Theorem 3.3. Analogously, error
estimates for the least squares approximation and for the interpolation
at perturbed Chebyshev nodes follow. The crucial point is the further
reduction in storage, since we need only one vector of coefficients
X̄CH ∈ R

k′
, k′ = pd. In total, the matrix block A ∈ R

m×k is
compressed to k′ coefficients – compared to kk′ coefficients when no
translation invariance is exploited.

3.5.2. Interpolation at perturbed Chebyshev nodes. Up to now,
we have defined an interpolation operator Ip which is based on the
Chebyshev nodes. The computation of the coefficients XCH requires
the evaluation of the kernel function at additional nodes and hence, we
have proposed a method which is based on a least squares problem.

In this section we will investigate the error if the interpolation is
based on some of the original nodes xi, i = 0, . . . , p − 1, instead of
the Chebyshev nodes. For simplicity we consider this problem in one
spatial dimension, i.e., we consider the interpolation problem

p−1∑
j=0

cIPj Tj(xi) = f(xi), i = 0, . . . , p− 1.

The following result states that a similar result as in Lemma 3.1 and
Theorem 3.3 can be achieved if points are chosen that are close to the
Chebyshev nodes. The matrix ÃIP denotes the approximant resulting
from this kind of interpolation. The generalization to dimensions
d > 1 using (3.5) is straightforward for sampling points which lie
on a perturbed tensor product grid (tj ± δj , t� ± δj,�, . . .)T ∈ R

d,
j, � = 0, . . . , p− 1 with perturbations |δj |, |δj,�| ≤ δ.

Lemma 3.5. Let p ∈ N, δ ≤ min{ b−a
4 , b−a

2 (p − 1)−2} and p
perturbed Chebyshev nodes xi ∈ [a, b] with |xi−ti| ≤ δ for i = 0, . . . , p−1
be given. Then, the polynomial interpolation at these nodes xi ∈ [a, b]
obeys

‖A− ÃIP‖F ≤ c̄(p+ 1)
(γ1η

4

)p

‖A‖F .

Moreover, if |x� − xi| ≥ ζ|t� − ti| for all �, i = 0, . . . , p − 1 and some
ζ ≥ p1/(1−p), then the Lebesgue constant for these nodes, denoted by

RECOMPRESSION TECHNIQUES 351

‖Ĩp‖, can be bounded by

‖Ĩp‖ ≤ p2(1 +
2
π

log p).

Proof. For simplicity assume [a, b] = [−1, 1] and hence, δ ≤
min{ 1

2 , (p − 1)−2}. The standard error estimate for polynomial in-
terpolation, i.e. q(xi) = f(xi), i = 0, . . . , p− 1, q ∈ Πp−1, reads

‖f − q‖C[−1,1] ≤
‖ω‖C[−1,1]

p!
‖f (p)‖C[−1,1]

with ω(x) :=
∏p−1

i=0 (x− xi). First, note that

ω′(x) =
p−1∑
�=0

p−1∏
i=0
i�=�

(x − xi),

ω(2)(x) =
p−1∑
k=0

p−1∑
�=0
� �=k

p−1∏
i=0

i�=�,k

(x − xi), . . . , ω(p)(x) = p!.

Moreover, Markov’s inequality, see e.g. [11, p. 97], yields

‖ω′‖C[−1,1] ≤ (p− 1)2‖ω‖C[−1,1],

‖ω(2)‖C[−1,1] ≤ (p− 2)2(p− 1)2‖ω‖C[−1,1],

For notational convenience let ω̄(x) =
∏p−1

i=0 (x− ti) = Tp(x)/2p−1. We
estimate |ω(x)| by

|ω(x)| = |(x− t0 + t0 − x0) · · · · · (x− tp−1 + tp−1 − xp−1)|

≤
p−1∏
i=0

|x− ti| +
p−1∑
�=0

δ

p−1∏
i=0
i�=�

|x− ti|

+
p−1∑
k=0

p−1∑
�=k+1

δ2
p−1∏
i=0

i�=�,k

|x− ti| + · · ·

≤ |ω̄(x)| + δ |ω̄′(x)| + δ2
∣∣∣ω̄(2)(x)

∣∣∣ + · · ·

+ δp−1
∣∣∣ω̄(p−1)(x)

∣∣∣ + δp|ω̄(p)(x)|

≤ (p+ 1)‖ω̄‖C[−1,1] ≤ p+ 1
2p−1

,

352 M. BEBENDORF AND S. KUNIS

which proves

‖f − q‖C[−1,1] ≤ 2
(p+ 1)(b− a)p

4p p!
‖f (p)‖C[−1,1].

Hence, compared with Lemma 3.1, which is the basis for Theorem 3.3,
we obtain an additional factor p + 1. The assertion follows from the
same arguments as in the proof of Theorem 3.3.

In what follows, the Lebesgue is bounded by using the same technique
for the numerator and the assumption |x� − xi| ≥ ζ|t� − ti| for the
denominator:

‖Ĩp‖ = max
x∈[−1,1]

p−1∑
�=0

p−1∏
i=0
i�=�

|x− xi|
|x� − xi|

≤ max
x∈[−1,1]

p−1∑
�=0

p−1∏
i=0
i�=�

p

ζp−1

|x− ti|
|t� − ti| ≤ p2‖Ip‖.

3.5.3. Cosine transforms. Discrete Fourier transforms (DFTs) and
similar methods are used in signal and image processing, especially
for data compression, because under certain assumptions most of the
signal information tends to be concentrated in a few low-frequency
components. Our aim is to approximate the matrix A ∈ R

m×k by
removing small high-frequency components.

The (univariate) discrete cosine transform of type two (DCT-II) of a
vector a ∈ R

m is defined as

ck =
m−1∑
i=0

ai cos k
2i+ 1
2m

π, k = 0, . . . ,m− 1.

We note that the computation of the Chebyshev coefficients in (3.4)
is (up to normalization) a DCT of length p. Now lets assume for the
moment, that the nodes xi, i = 1, . . . ,m, are the m = m̄d Chebyshev
nodes. Then a (multivariate) DCT applied to the j-th column of the
matrix A ∈ R

m×k computes exactly the coefficients of the interpolating
polynomial Im̄κ(·, yj). Due to the fact that the columns of A are

RECOMPRESSION TECHNIQUES 353

samples of a smooth function, we have exponentially fast decay in the
DCT-coefficients. Hence, we suggest to keep only the “lowest” k′ = pd

coefficients which again results in a storage reduction from O(km) to
O(kk′). The DCT-II and its inverse, which is (up to normalization)
given by the so called DCT-III are equivalent to symmetric real valued
DFTs of length 4m and can be computed with O(m logm) arithmetic
operations. This allows for a fast matrix-vector multiplication (of order
O(kk′ +m logm)) with the approximated matrix.

However note, that this technique completely neglects the given
nodes and indeed fails for less regular nodes as shown in the following
numerical results.

4. Numerical results. We start by a very simple example illus-
trating the exponential convergence of the proposed schemes. Consider
the matrix block A ∈ R

m×k, m = 1000, k = 20,

aij =
1

xi − yj
, i = 1, . . . ,m, j = 1, . . . , k,

with randomly chosen nodes yj ∈ [0, 2] and (a) perturbed Chebyshev
nodes xi = 5 + 2.5 cos 2i−1

2m π + δi, |δi| ≤ 10−6 and (b) randomly
chosen nodes xi ∈ [2.5, 7.5]. For each row of A, the approximations
are obtained by

1. a truncated DCT (solid); see Sect. 3.5.3,

2. interpolation at p Chebyshev nodes, using additional evaluations
(dotted); see Sect. 3.2,

3. the least squares procedure (dash-dot); see Sect. 3.4, and

4. the interpolation at p chosen original nodes (dashed); see
Sect.3.5.2.

Fig. 1 shows that methods 2–4 lead to exponential convergence
for both perturbed Chebyshev nodes and randomly chosen nodes.
Method 1, however, converges exponentially only up to the size of the
perturbation δ in (a). For randomly chosen nodes method 1 did not
converge at all.

We proceed with a more realistic example. The single-layer potential

354 M. BEBENDORF AND S. KUNIS

10 20 30 40 50

10
−15

10
−10

10
−5

10
0

10 20 30 40 50

10
−15

10
−10

10
−5

10
0

(a) Perturbed Chebyshev nodes. (b) Randomly chosen nodes.

Figure 1: Error of the matrix approximations in the Frobenius norm with respect
to the polynomial degree p = 1, ...,50.

operator

V : H−1/2(Γ) → H1/2(Γ), (Vu)(x) =
1
4π

∫
Γ

u(y)
|x− y| dsy,

is used to test the proposed algorithm which is based on the least
squares solution. In the following experiments Γ is the surface from
Fig. 2.

Figure 2: The computational surface.

A Galerkin discretization with piecewise constants ϕi = ψi, i =
1, . . . , N , leads to the matrix V ∈ R

N×N with entries

vij = (Vϕi, ϕj)L2(Γ), i, j = 1, . . . , N,

RECOMPRESSION TECHNIQUES 355

which is symmetric since V is self-adjoint with respect to (·, ·)L2(Γ).
Therefore, it is sufficient to approximate the upper triangular part of
V by an hierarchical matrix.

Tables 2–4 compare the hierarchical matrix approximation generated
by ACA with and without coarsening (see Sect. 2.2) and by the
(least squares based) method from this article, which is abbreviated
with “RACA”. We test these methods on three discretizations of
the surface from Fig. 2. Columns two, five and eight show the
memory consumption in MByte, columns three, six and nine contain
the memory consumption per degree of freedom in KByte. The cpu-
time required for the construction of the respective approximation can
be found in the remaining columns four, seven and ten. The relative
accuracy of the approximation in Frobenius norm is ε. All tests were
done on a shared memory system with two Intel Xeon 5160 processors
(dual core, 3 GHz), where all four cores were used. Notice that a
RACA approximation of a block was stored only if it improves the
memory consumption of ACA. Otherwise the ACA approximation is
used.

ACA coarsened ACA RACA

N MB KB/N time [s] MB KB/N time [s] MB KB/N time [s]

28 968 115.7 4.1 42.5 93.0 3.3 46.2 51.6 1.9 46.5

120 932 607.6 5.1 228.5 489.9 4.1 240.9 232.6 1.9 251.6

494 616 2836.6 5.9 1113.9 2342.3 4.8 1175.0 967.1 2.0 1250.9

Table 2: Approximation results for ε = 1e − 3.

ACA coarsened ACA RACA

N MB KB/N time [s] MB KB/N time [s] MB KB/N time [s]

28 968 266.2 9.4 88.4 222.6 7.9 100.8 222.5 7.9 108.6

120 932 1433.4 12.1 481.2 1208.5 10.2 532.3 1042.7 8.8 624.7

494 616 6927.9 14.3 2375.9 5921.3 12.3 2608.2 4838.4 10.0 3374.7

Table 3: Approximation results for ε = 1e − 5.

ACA coarsened ACA RACA

N MB KB/N time [s] MB KB/N time [s] MB KB/N time [s]

28 968 465.3 16.4 153.5 402.3 14.2 178.3 447.6 15.8 215.8

120 932 2572.1 21.8 847.3 2225.5 18.8 962.1 2242.3 19.0 1528.7

494 616 12721.9 26.3 4248.7 11160.2 23.1 4894.6 10162.6 21.0 9802.1

Table 4: Approximation results for ε = 1e − 7.

356 M. BEBENDORF AND S. KUNIS

Table 5 shows the time in seconds required for multiplying the
generated approximations by a vector. Note that this operation uses
only one of the four processors.

ACA coarsened ACA RACA

N 1e − 3 1e − 5 1e − 7 1e − 3 1e − 5 1e − 7 1e − 3 1e − 5 1e − 7

28 968 0.08 0.17 0.30 0.06 0.14 0.25 0.64 1.37 1.91

120 932 0.41 0.91 1.63 0.23 0.74 1.39 3.48 7.84 12.68

494 616 1.91 4.38 8.03 1.46 3.64 6.72 21.62 47.95 93.69

Table 5: Multiplication time in seconds using one processor.

Apparently, RACA produces approximations with much lower mem-
ory consumption than obtained by ACA even after coarsening provided
that the approximation is reasonably coarse (ε = 1e−3). The numbers
in the column “KB/N” of Table 2 support our complexity estimates:
The asymptotic complexity of the storage behaves linearly if the ap-
proximation accuracy is kept constant. For higher precisions this be-
havior can be observed only for problems that are large enough: while
RACA requires more memory than coarsened ACA for the two small-
est problems in the case ε = 1e − 7, it is able to reduce the memory
consumption for the largest problem. As we expected, multiplying a
RACA approximation is more expensive than multiplying an ACA or
a coarsened ACA approximation by a vector. However, the absolute
time required for this operation is dominated by the construction of
the approximation.

REFERENCES

1. B. K. Alpert, G. Beylkin, R. Coifman, and V. Rokhlin, Wavelet-like bases
for the fast solution of second-kind, integral equations, SIAM J. Sci. Comput., 14,
(1993), 159-184.

2. M. Bebendorf, Approximation of boundary element matrices, Numer. Math.,
86, (2000), 565-589.

3. , Effiziente numerische Lösung von Randintegralgleichungen unter Ver-
wendung von Niedrigrang-Matrizen PhD thesis, Universität Saarbrücken, (2000).
dissertation.de, Verlag im Internet, (2001). ISBN 3-89825-183-7.

4. , Hierarchical LU decomposition based preconditioners for BEM. Com-
puting, 74, (2005), 225–247.

5. , Hierarchical matrices: a means to efficiently solve elliptic boundary
value problems, volume 63 of Lecture Notes in Computational Science and Engi-
neering. Springer, (2008).

RECOMPRESSION TECHNIQUES 357

6. M. Bebendorf and R. Grzhibovskis, Accelerating Galerkin BEM for Linear
Elasticity using Adaptive Cross Approximation, Mathematical Methods in the
Applied Sciences, 29, (2006), 1721-1747.

7. M. Bebendorf and S. Rjasanow, Adaptive low-rank approximation of colloca-
tion matrices, Computing, 70, (2003), 1-24.

8. S. Börm, Construction of data-sparse H2-matrices by hierarchical compres-
sion, Technical Report 92, Max-Planck-Institute MiS, Leipzig, (2007), SISC 31
(2009, 1820–1839.

9. S. Börm, N. Krzebek, and S. A. Sauter, May the singular integrals in BEM be
replaced by zero?, Computer Methods in Applied Mechanics and Engineering, 194,
(2005), 383-393.

10. S. Börm, M. Löhndorf, and J. M. Melenk, Approximation of integral operators
by variable-order interpolation, Numer. Math., 99, (2005), 605-643.

11. R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-
Verlag, Berlin, (1993).

12. S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, A theory of
pseudoskeleton approximations, Linear Algebra Appl., 261, (1997), 1-21.

13. L. Grasedyck, Adaptive recompression of H-matrices for BEM, Computing,
74 (2005), 205-223.

14. L. Grasedyck and W. Hackbusch, Construction and arithmetics of H-
matrices, Computing, 70, (2003), 295-334.

15. L. F. Greengard and V. Rokhlin, A new version of the fast multipole method
for the Laplace equation in three dimensions, In Acta numerica, Cambridge Univ.
Press, volume 6, (1997), 229-269.

16. A. Grundmann and H. M. Möller, Invariant integration formulas for the
n-simplex by combinatorial methods, SIAM J. Numer. Anal., 15 ,(1978), 282-290.

17. W. Hackbusch, A sparse matrix arithmetic based on H-matrices, Part I:
Introduction to H-matrices. Computing, 62, (1999), 89108.

18. W. Hackbusch and S. Börm, Data-sparse approximation by adaptive H2-
matrices, Computing, 69, (2002), 1-35.

19. W. Hackbusch and B. N. Khoromskij, A sparse H-matrix arithmetic, Part
II: Application to multi-dimensional problems. Computing, 64, (2000), 21-47.

20. W. Hackbusch, B. N. Khoromskij, and S. A. Sauter, On H2-matrices, In
H.-J. Bungartz, R. H. W. Hoppe, and Ch. Zenger, editors, Lectures on Applied
Mathematics, pages 9-29. Springer-Verlag, Berlin, (2000).

21. W. Hackbusch and Z. P. Nowak, On the fast matrix multiplication in the
boundary element method by panel clustering, Numer. Math., 54, (1989), 463-491.

22. A. Schönhage, Approximationstheorie, de Gruyter, Berlin, (1971).

Institut für Numerische Simulation, Universität Bonn, D-53115 Bonn
Email address: bebendorf@ins.uni-bonn.de

Fakultät für Mathematik, Technische Universität Chemnitz, D-09107
Chemnitz
Email address: kunis@mathematik.tu-chemnitz.de

