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ABSTRACT. A Newton method to reconstruct the shape
of a buried sound soft object through the measured far-field
scattering data is given. The scattered field is represented
as a single-layer potential which leads to an ill-posed integral
equation of the first kind that is solved via Tikhonov regular-
ization. The presented Newton based method combines ideas
of both the iterative and decomposition methods and inherits
the advantages of each of them, such as getting good recon-
structions and not requiring a forward solver at each step.
The numerical results show that the method yields good re-
construction.

1. Introduction. Inverse scattering of waves is a fundamental prin-
ciple of applications such as radar and sonar techniques, nondestructive
evaluation, geophysical exploration and medical imaging. In principle,
in these applications, the effects of scattering objects on the propaga-
tion of the waves are exploited to obtain some information about the
unknown object. As opposed to classical techniques of imaging such
as computerized tomography, which are based on the fact that X rays
travel along straight lines, inverse scattering problems take into account
that the propagation of acoustic, electromagnetic and elastic waves has
to be modeled by a wave equation. This means that inverse scattering
requires a nonlinear model, whereas inverse tomography does linear.

The detection and identification of buried objects using electromag-
netic waves are the areas of current importance for applications in re-
mote sensing. The considered problem has practical applications such
as detection of underground mines, pipes and cables. Most papers con-
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cerning the inverse scattering calculation are in free-space background.
Colton and Monk [1-3] have carried out a series of acoustic wave in-
verse scattering calculations for two- and three-dimensional sound-soft
impenetrable targets of several shapes. Ochs [4] has also discussed the
limited-aperture problem of inverse scattering by applying the same
method. Inverse obstacle reconstruction problem in free space was
treated by Kirsch et al. [5], Jones and Mao [6], and Zinn [7] using differ-
ent inversion techniques. Based on the Newton-Kantorovitch method,
Roger [8], Kristensson and Vogel [9], Murch et al. [10], and Tobocman
[11] have also solved two-dimensional inverse scattering problems of
this type.

Because of the difficulties in obtaining the fundamental solution by
numerical methods, the problem of inverse scattering in a half-space has
rarely been attempted. Hohmann [12] has calculated the fundamental
solution, but his calculations are restricted to the case of media with
high conductivity at low frequency. Moreover, Chammeloux et al.
[13] have applied the technique of computer tomography to process
the images of buried cylindrical inhomogeneities. This method can
avoid the calculation of the Green function, but they only obtained
an approximate image of induced current, instead of the image of
dielectric constant. Chiu and Kiang [14] solved buried inverse obstacle
problem by Newton-Kantorovitch method. However, this method needs
forward solver at each iteration step that needs high computational
time especially for this problem due to the numerical evaluation of the
fundamental solution of layered media. Recently, Kress et al. [15]
reconstructed inhomogeneous surface impedance of a scatterer located
inside a dielectric object by using the fundamental solution of space
containing dielectric object . This problem was solved in free space by
Kress and Akduman [16].

In this study, we are interested in shape reconstruction of a completely
buried sound soft obstacle from measurements of the far field pattern on
upper half space as depicted Fig. 1. Major advantage of the proposed
method is that method does not need forward solver at each iteration
step. Although obstacle is assumed to be C2 smooth, the analysis can
be extended for the domains with corners [17.18], and to cracks [19].
The presented method can also be applied for the reconstruction of both
shape and boundary impedance of the obstacle [20]. The proposed
Newton based method, which is sometimes called as Hybrid method,
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Figure 1. Geometry of the considered problem.

has been applied for shape reconstruction of the sound hard object [21]
and cracks [22] in free space.

Given an open-bounded obstacle D ⊂ R2 with an unbounded and
connected complement and an incident field ui, the direct scattering
problem consists of finding the total field u = ui +us as the sum of the
known incident field ui and the scattered field us such that both the
Helmholtz equation

Δu + k2
1u = 0, x2 ≥ 0(1.1)

Δu + k2
1u = 0, x2 ≤ 0 ∈ R2/D

with positive wave number k1 and k2, total field satisfies Dirichlet
boundary condition as

(1.2) u(x) = 0, x ∈ ∂D

and the scattered wave us fulfills the Sommerfeld radiation condition

(1.3) lim
r→∞

√
r

(
∂us

∂r
− ik1u

s

)
= 0, r = |x|

uniformly with respect to all directions on upper unit semi circle Ω and
the scattered wave has a asymptotic behavior as

(1.4) us(x) =
eik1|x|√|x|

{
u∞(x̂) + O

(
1
|x|

)}
, |x| → ∞, x̂ ∈ Ω
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with x̂ = x
|x| = (cosφ, sin φ), φ ∈ (0, π), uniformly in all directions on

upper semi circle, with the far field pattern u∞ defined on the unit
upper semi circle Ω.

The inverse obstacle problem is the determination of boundary ∂D
by means of the given far field pattern u∞(x̂), x̂ ∈ Ω for the given
excitation such as plane wave. The direct scattering problem for any
illumination can be represented by an operator as F : ∂D → u∞ that
maps the boundary ∂D onto the far field pattern u∞. By using this
operator, given a far field pattern u∞, the inverse problem is expressed
as the solution of nonlinear and ill-posed operator equation,

(1.5) F (∂D) = u∞

for the unknown surface ∂D. Because of the fact that direct scattering
problem depends nonlinearly on the boundary, Eq. (1.5) is nonlinear.
Also, it is ill posed since the far field pattern is an analytic function on
the unit semi circle.

2. Regularized Newton Iteration. Field u0 which would be
observed when the scatterer was absent can be expressed straight as
[19],

(2.1) u0(x) =

⎧⎨
⎩

e−ik1(x1 cos φ0+x2 sin φ0)

+Re−ik1(x1 cos φ0−x2 sin φ0), x2 ≥ 0
Te−ik1(x1 cos φ1+x2 sin φ1), x2 < 0

where φ0, incident angle using the continuity of field and its normal
derivative on x2 = 0, φ1, R, T can be obtained straightforwardly as
[23],

φ1 = arccos
(

k1

k2
cos(φ0)

)
(2.2)

R =
k1 sinφ0 − k2 sin φ1

k1 sinφ0 + k2 sin φ1
(2.3)

T =
2k1 sin φ0

k1 sinφ0 + k2 sin φ1
(2.4)

The presented Newton iteration starts with an initial estimate Γ0. The
scattered field in the closed exterior of Γ0 can be expressed by using
single layer potential [24]
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Figure 2. The regularity line CR and cut of the complex v plane.

(2.5) (PΓ0ϕ)(x) =
∫

Γ0

φ(x, y)ϕ(y)ds(y), x ∈ R2/Γ0

with density ϕ ∈ L2(Γ0) in the exterior of the surface Γ0, where

(2.6) φ(x, y) =

{
φt(x, y), x2 > 0, y2 < 0
i
4H

(1)
0 (k2|x − y|) + φr(x, y), x2 < 0, y2 < 0

represents the fundamental solution of Helmoltz equation in layered
medium. Where H

(1)
0 (.) denotes the zero order Hankel function of the

first kind. In (2.6), the terms φt(x, y) and φr(x, y) are smooth part of
fundamental solution and given as [23]

(2.7) φt(x, y) =
1
2π

∫
CR

1
γ2 + γ1

eγ2y2−γ1x2eiv(x1−y1)dv

(2.8) φr(x, y) =
1
2π

∫
CR

1
2γ2

γ2 − γ1

γ2 + γ1
eγ2(x2+y2)eiv(x1−y1)dv

where CR is regularity line as depicted in Fig.2, γ1 and γ2 are the
square root functions

(2.9) γ1(v) =
√

v2 − k2
1 , γ2(v) =

√
v2 − k2

2

which are defined in the complex v plane cut as depicted in Fig. 2 with
the conditions

(2.10) γj(0) = −ikj , j = 1, 2
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The far field pattern of the potential (2.5) for the scattered direction
x̂ = (cosφ, sin φ), φ ∈ (0, π) as shown in Fig.1, denoted by (PΓ0,∞ϕ)(x̂)
can be derived from φt(x, y) given in (2.7) while |x| → ∞ as [23]

(2.11) (PΓ0,∞ϕ)(x̂) =
eiπ/4

√
2πk1

2k1 sin φ

k1 sin φ +
√

k2
2 − k2

1 cos2 φ∫
Γ0

e
−i

{
k1y1 cos φ+y2

√
k2
2−k2

1 cos2 φ
}
ϕ(y)ds(y)

Because of the fact that the scattered field us is uniquely determined
by its far field pattern u∞, the density ϕ can be seen to be the unique
solution of the ill posed integral equation

(2.12) (PΓ0,∞ϕ)(x̂) = u∞(x̂)

Due to its analytic kernel, integral equation in (2.12) is severely ill posed
[20]. However, the operator P∞,Γ0 : L2(Γ0) → L2(Ω) in (2.11) is known
to be injective and has dense range. Therefore, Tikhonov regularization
can be applied for a stable approximate solution of (2.13), that is, the
ill-posed equation (2.12) is replaced by

(2.13) αϕ + P ∗
Γ0,∞PΓ0,∞ϕ = P ∗

Γ0,∞u∞

with some positive regularization parameter α and the adjoint P ∗
Γ0,∞

of PΓ0,∞.

For the further description of the reconstruction scheme we represent
the curve Γ0 by a regular parameterization

(2.14) Γ0 = {z0(t) : t ∈ [0, 2π)}
with a 2π periodic function z0 : R → R2. Searching the location
where the boundary condition (1.2) is satisfied, we approximate the
total field u by the Taylor formula of order one with respect to the
normal direction at Γ0. For this purpose, we try to update in the form

(2.15) Γ1 = {z1(t) = z0(t) + h(t)v0(t) : t ∈ [0, 2π)}
where v0 denotes the outward normal vector to Γ0 and h : IR → IR
is a sufficiently small 2π periodic function. The normal vector can be
expressed through the parameterization (2.14) via

(2.16) v0(t) =
(z

′
0(t))⊥

|z0(t)| , t ∈ [0, 2π)
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where for any vector a = (a1, a2), we set a⊥ = (a2,−a1). Then the
first order Taylor formula requires the update function h to satisfy

(2.17) u +
∂u

∂v0
h = 0

Once the single layer density ϕ is known from (2.13), the values u
and normal derivative ∂u/∂v0 of the total field on Γ0 can be obtained
through the jump relations for the single-layer potential [24], that is,
by

(2.18) u(x) = u0(x) +
∫

Γ0

φ(x, y)ϕ(y)ds(y), x ∈ Γ0

(2.19)
∂u

∂v0
(x) =

∂u0

∂v0
(x) +

∫
Γ0

∂φ(x, y)
∂v0(x)

ϕ(y)ds(y) − 1
2
ϕ(x), x ∈ Γ0

The integrals in (2.18) and (2.19) can be accurately evaluated by the
quadrature rules as described in [24].

Since the solution of (2.17) is sensitive to errors in the normal
derivative of u in the vicinity of zeros, Eq. (2.17) is solved in a stable
way by the least squares method. For this purpose, we express h0 in
terms of the basis functions ω1, ω2, . . . , ωj by

(2.20) h(t) =
J∑

j=1

ajωj(t), t ∈ [0, 2π)

with possible choices of the basis functions given by splines or trigono-
metric polynomials. Then, we satisfy (2.17) in a penalized least squares
sense, that is, the coefficients a1, a2, . . . , aj in (2.20) are chosen such
that for a set of collocation points t1, t2, . . . , tN in [0, 2π) the penalized
least squares sum

(2.21)
N∑

n=1

∣∣∣∣∣∣u(z0(tn)) +
∂u

∂v0
(z0(tn))

J∑
j=1

ajωj(tn)

∣∣∣∣∣∣
2

+ β

J∑
j=1

a2
j

with some regularization parameter β > 0 is minimized. After the
solution of (2.21), updated boundary Γ1 is obtained by means of (2.15)
and the same procedure applied for Γ1.
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3. Numerical Examples. In the following examples, the degree
of the trigonometric polynomial used for the approximation of the
boundary is denoted by J . The Tikhonov regularization parameters
for (2.13) is denoted by α , the number of Newton steps is denoted
by T , the penalty factor in (2.21) by β, and the incidence angle by
φ0. In all examples, we used N = 50 collocation points. In order to
avoid an inverse crime, the synthetic data were obtained by solving
the combined single- and double-layer boundary integral equation for
the direct scattering problem by the Nyström method as described in
[24] with 100 quadrature points. The wave number of upper medium
is chosen as k1 = 1, and the iterations were started with circle of
radius 1 m buried same distance as object. The parameterizations of
boundaries are given with respect to 0x1x2 coordinate system.

In the first example, we consider the identification of a peanut-shaped
boundary object 2 m buried in the medium whose wave number is
k2 = 1.5 + 0.01i. The parameterization of the boundary given as
(3.1)

∂D =
{(√

cos2 t + 0.25 sin2 t
)

(cos t, sin t − 2), t ∈ [0, 2π)
}

[m]

As parameters, we choose α = 10−7 and α = 10−4 for exact and noisy
data respectively, β = 0.001, J = 6, and T = 7.

Figure 3. The reconstruction of the peanut for φ0 = π/2 without noise (left) and
with %2 noise (right).

In the second example, the reconstruction of a kite-shaped boundary
object 3 m buried in the medium is considered. The wave number of the
medium where the object is buried is k2 = 2 . The parameterization of
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Figure 4. The reconstruction of the peanut for φ0 = π/4 without noise (left) and
with %2 noise (right).

kite-shaped boundary is given by

∂D = {(cos t + 0.65 cos 2t − 0.65, 1.5 sin t − 3), t ∈ [0, 2π)}[m]

Figure 5. The reconstruction of the kite for φ0 = π/2 without noise (left) and with
%2 noise (right).

Figure 6. The reconstruction of the kite for φ0 = π/4 without noise (left) and with
%2 noise (right).
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4. Conclusions. In this study, the shape reconstruction of a
completely buried sound soft object through the measured far-field
scattering data is given. The scattered field is represented as a single-
layer potential which leads to an ill-posed integral equation of the
first kind that is solved via Tikhonov regularization. The field and
its normal derivative are obtained by the single layer potential for an
initial estimate. By applying the Newton method, a new estimate of
boundary is obtained in the sense of least square. The main advantage
of the proposed iterative method is that this method does not need
forward solver for each iteration step that needs high computational
time especially in the evaluation of the fundamental solution of a
layered medium. As seen from the figures obtained, the presented
method gives good reconstruction and stability against noisy data.
We observed that if noise level exceeds %3, reconstructions start to
deteriorate. It is also observed that we have a better reconstruction in
the illuminated region than in shadow region as expected. Because of
the nature of the considered problem, one can obtain scattered data
only semi upper unit circle contrary to the same problem considered
in free space. In addition, in principle, there is a straight forward
extension to the case of limited angle data by modifying the far field
equation (2.11) appropriately, of course, at the cost of increasing the
degree of ill-posedness. Furthermore, also the case of near field data can
be accommodated through again modifying the data equation (2.11)
accordingly.
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