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ABSTRACT. The reconstruction of scattered wave from
its far-field pattern is of great importance in inverse scatter-
ing problems. The classic potential method due to Kirsch and
Kress is a well known scheme by solving an integral equation of
the first kind with respect to a density function, which relates
the scattered wave to its far-field pattern. In recent years,
a filtering scheme known as point source method, is also well
developed, which is based on the point source decomposition
and the reciprocity principle. This paper aims to consider the
quantitative relation between these two regularizing methods.
We prove that these two schemes will generate exactly the
same approximate solution when used with identical geomet-
ric setup and if their own regularizing parameters are taken
as a constant multiple (a golden rule). Our key step is to
employ an adjoint relation between the Herglotz wave opera-
tor and the far-field operator. Further we provide estimates
of the solutions with regularization parameters different from
the golden rule. As illustration and for practical testing of
these results numerical examples are presented to show the
numerical equivalence of these two methods.

1. Introduction. Inverse problems for acoustic and electromag-
netic waves play an important role in many scientific and engineering
applications. One of the important topics in this area is the recon-
struction of scattered wave outside of the scatterer D from its far-field
pattern. The well known Rellich lemma guarantees the unique deter-
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mination of the scattered wave theoretically, while the practical moti-
vation of these kinds of problems come from the following three facts.
Firstly, the far-field pattern u∞(x̂) is relatively easy to measure in the
applied area. The reconstruction scheme enables the determination of
the scattered wave in a unbounded domain Rm \D from the measured
data of u∞(x̂) specified in the unit sphere Sm−1 ∈ Rm. Secondly, when
the zero-curve set method of the scattered wave is used to reconstruct
the obstacle shape based on the optimization and iteration techniques,
compare [4], the scattered wave must be evaluated from its far field
pattern. Finally, for some recently developed obstacle shape recon-
struction schemes such as probe method and singular sources method
from the far-field pattern, see [1, 2, 3, 12, 13], the key to the recon-
struction procedure is the transformation of the far-field data into the
near field.

Therefore, some scattered wave reconstruction methods from its far
field pattern have been developed, among which we would like to
mention potential method, point source method and series method,
see [4, 5, 7].

In our previous paper [8], we establish a relation between the po-
tential method and point source method, which states that the point
source method can be derived from via a classic potential approach.
This generalizes the applicable area of point source method from inci-
dent plane wave to arbitrary incident wave. On the other hand, both
of these methods reconstruct the scattered wave by solving an ill-posed
integral equation of the first kind with respect to a density function.
The comparison of the degree of ill-posedness for these two methods is
quite important for the investigation and development of stable inver-
sion schemes.

This paper aims to compare these two methods from the quantitative
point of view. We prove that these two methods are equivalent or even
identical: if the geometrical setting is chosen identically and if the reg-
ularizing parameter for one scheme is chosen as a constant multiple of
that for the other scheme, then these two schemes will yield the exactly
same solution! We denote this choice of regularization parameters as
golden rule. The specified constant is linked to the fundamental so-
lution to the Helmholtz equation. The key to this essential relation
is the adjoint relation between the Herglotz wave operator H and the
far-field operator F, which can be explained as a duality relation of the
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two schemes. Further, we study the situation where the regularization
parameters are not chosen according to the golden rule and provide
error estimates. Finally, as illustration and confirmation of the results
a numerical comparison of the field reconstructions is presented.

This paper is organized as follows. In Section 2, we give an outline
for both potential method and point source method, which provide the
basis for our comparison. Then we establish the duality and identity
results for the two methods for suitably chosen regularizing parameters
in Section 3. Finally in Section 4 we present some numerical results to
compare the reconstruction performance by these two methods, where
the ”golden rule” for the regularizing parameters of these two schemes
is supported numerically.

2. Potential method and point source method. In this section
we describe the basic ideas of the Kirsch-Kress potential method and
Potthast’s point source method. This provides the framework for our
further duality analysis of the two schemes.

Denote by Φ(x, y) the fundamental solution to the Helmholtz equa-
tion Δu+ κ2u = 0 in Rm with m = 2, 3, that is,

(1) Φ(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

i

4
H

(1)
0 (κ|x− y|), m = 2

eiκ|x−y|

4π|x− y| , m = 3

and introduce

(2) γ2 =
ei π

4√
8πκ

, γ3 =
1
4π

in two or three dimensions, respectively.

For given incident wave ui(x), it is well known that the scattered
wave us(x) has the following asymptotic behavior

(3) us(x) =
eiκ|x|

|x|m−1
2

(
u∞(x̂) +O

(
1
|x|

))
, |x| → ∞,

which comes from the Green representation formula of the scattered
wave us(x) and the asymptotic of Φ(x, y). One of the research topic in
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inverse scattering problems is the reconstruction of us(x) outside of D
from its far-field pattern u∞(x̂).

Assume that either

(a) D ⊂⊂ G or more general

(b) us can be analytically extended up to Rm \G.

Our goal is to compute the scattered wave in the domain Rm \G from
its far-field pattern. Conditions (a) and (b) guarantee the solvability
of this problem. Further, we assume that the homogeneous interior
Dirichlet problem for the test domain G does have only the trivial
solution. Since we can choose G, this condition does not restrict the
applicabiltiy of the methods.

We firstly state the computational schemes of the point source
method with a derivation according to Liu and Potthast and the poten-
tial method due to Kirsch and Kress as the following two algorithms.
The algorithm for the point source method stated here is based on the
derivation procedure given in [8].

Algorithm 2.1. (Point source method). The point source method
reconstructs the scattered wave us(x) in Rm \ G using the following
steps.

1. Approximate the point source Φ(·, x) for any fixed x ∈ Rm \G by
a superposition of plane waves by approximately solving the equation

(4) Φ(z, x) =
∫

Sm−1
eiκz·dgx(d)ds(d), z ∈ ∂G.

2. Then, the scattered field us(x) can be calculated by evaluating
the integral

(5) us(x) =
1
γm

∫
Sm−1

u∞(−d)gx(d)ds(d), x ∈ R2 \G,

which is a kind of filtered reconstruction with filter function gx.

Remark. We denote the integral in (4) by

(6) H[gx](z) :=
∫

Sm−1
eiκz·dgx(d)ds(d), z ∈ ∂G.
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The operator H is called the Herglotz wave operator. The derivation of
the point source method can be carried out as follows. We express us(x)
outside of G as well as its far-field pattern in terms of a single-layer
approach with density ρ by

(7) us(x) =
∫

∂G

Φ(z, x)ρ(z)ds(z), x ∈ Rm \G,

(8) u∞(x̂) = γm

∫
∂G

e−iκx̂·zρ(z)ds(z), x̂ ∈ Sm−1,

where the constant γm is defined in (2). By inserting (4) into (7) and
exchanging the order of integration, we obtain (5).

The equation (4) for constructing the filter gx may not have an exact
solution. So it must be solved by regularization technique to get an
approximate solution gα

x such that (4) holds approximately. Then us
α(x)

generated from (5) in terms of gα
x gives an approximation to us(x), that

is,

us
α(x)=

1
γm

∫
Sm−1

u∞(−d)[(αI + H∗H)−1H∗Φ(·, x)](d)ds(d),(9)

x ∈ Rm \G,

where α is the regularizing parameter for this ill-posed problem. This
is a concise form for the point source method for reconstructing the
scattered wave from its far field pattern.

Algorithm 2.2. (The potential method). This classic method recon-
structs the scattered wave, which is denoted by a different notation
vs(x) for comparison, from the far-field pattern v∞(x̂) by the follow-
ing steps. As a preparation we note that we can express the scattered
wave vs(x) outside of G as well as its far-field pattern in terms of a
single-layer approach with density ω, i.e.

(10) vs(x) =
∫

∂G

Φ(z, x)ω(z)ds(z), x ∈ Rm \G,
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(11) u∞(x̂) = γm

∫
∂G

e−iκx̂·zω(z)ds(z), x̂ ∈ Sm−1,

where F : L2(∂G) → L2(Sm−1) defined by

(12) F[ω](x̂) := γm

∫
∂G

e−iκx̂·zω(z)ds(z), x̂ ∈ Sm−1,

is called the far-field operator.

1. Solve the density function ω(z) from (11) by regularizing scheme

(13) ωβ(z) = [(βI + F∗F)−1F∗u∞](z)

with a specified regularizing parameter β > 0.

2. Insert the density function into (10) to generate

(14) vs
β(x) =

∫
∂G

Φ(z, x)[(βI + F∗F)−1F∗u∞](z)ds(z), x ∈ Rm \G

as an approximation to the scattered wave.

Denote by {ϕj , ψj , μj}j∈N the singular system of compact operator
H from the Hilbert space L2(Sm−1) to L2(∂G), that is,

(15) Hϕj = μjψj , H∗ψj = μjϕj , j = 1, 2, · · ·

It is easy to verify that

(16) F∗ = γmH, F = γmH∗

in the dual system (L2(Sm−1), L2(∂G)) with the complex inner product
in L2(Sm−1) and L2(∂G) respectively, that is,

〈γmHϕ, ψ〉L2(∂G) = 〈ϕ,Fψ〉L2(Sm−1),(17)
〈ϕ, γmH∗ψ〉L2(Sm−1) = 〈F∗ϕ, ψ〉L2(∂G),

where

〈ϕ̃, ϕ〉L2(Sm−1) : =
∫

Sm−1
ϕ̃(d)ϕ(d)ds(d),

〈ψ̃, ψ〉L2(∂G) : =
∫

∂G

ψ̃(z)ψ(z)ds(z)
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for all complex value functions ϕ̃, ϕ ∈ L2(Sm−1) and ψ̃, ψ ∈ L2(∂G),
where w represents the complex conjugate of w.

Under the above analysis, it can been seen from (9, 14 and 16) that
the point source method and potential method are dual to each other
with respect to the dual system 〈L2(Sm−1), L2(∂G)〉. Here, we work out
a precise form of this duality and show quantitative relations between
these two schemes.

3. Quantitative relation between two schemes . The central
result of this section shows identity of the field reconstructions of the
Kirsch-Kress potential method and Potthast’s point source method.
We firstly give a lemma proving properties of the singular system of
H, which is our basis for establishing the duality and revealing the
quantitative relation of these two reconstruction schemes.

Lemma 3.1. For any l, j ∈ N, the singular system of H has the
following property.

1. If μl = μj, then

(18) 〈ϕl(−·), ϕj(·)〉L2(Sm−1) = 〈ψl, ψj〉L2(∂G).

2. If μl 	= μj, then

(19) 〈ϕl(−·), ϕj(·)〉L2(Sm−1) = 〈ψl, ψj〉L2(∂G) = 0.

Proof. Using the definitions of inner product and singular system,
it follows by exchanging the order of integration in Sm−1 and ∂G that

(20) 〈ϕl(−·), ϕj(·)〉L2(Sm−1) =
1
μj

∫
Sm−1

ϕl(−d)(H∗ψj)(d)ds(d)

=
1
μj

∫
∂G

ψj(z)
∫

Sm−1
e−iκd·zϕl(−d)ds(d)ds(z)

=
1
μj

∫
∂G

ψj(z)(Hϕl)(z)ds(z)

=
μl

μj
〈ψl, ψj〉L2(∂G).
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Therefore we have proven (18). On the other hand, we have that

〈ϕl(−·), ϕj(·)〉L2(Sm−1) =
∫

Sm−1
ϕl(−d)ϕj(d)ds(d)(21)

=
∫

Sm−1
ϕl(d)ϕj(−d)ds(d)

= 〈ϕj(−·), ϕl(·)〉L2(Sm−1),

which generates by using (20) again that

〈ϕl(−·), ϕj(·)〉L2(Sm−1) = 〈ϕj(−·), ϕl(·)〉L2(Sm−1)(22)

=
μj

μl
〈ψj , ψl〉L2(∂G)

=
μj

μl
〈ψl, ψj〉L2(∂G).

Inserting this relation into (20) says

μ2
l − μ2

j

μlμj
〈ψl, ψj〉L2(∂G) = 0.

So we get for μl 	= μj that 〈ψl, ψj〉L2(∂G) = 0 and therefore
〈ϕl(−·), ϕj(·)〉L2(Sm−1) = 0 from (22). The proof is complete.

Remark 3.2. From the standard result for the singular system of
compact operator, it follows the orthogonal relation that

〈ψl, ψj〉L2(∂G) = δl,j , l, j ∈ N.

Generally we do not have 〈ψl, ψj〉L2(∂G) = δl,j . Our result 〈ψl, ψj〉L2(∂G) =
0 for μl 	= μj comes from the relation (22), which is due to the special
structure of operator H.

Now let us establish the identity of reconstructions for the two
schemes of reconstructing the scattered wave, namely, point source
method and potential method. We will show that us

α(x) and vs
β(x)

are exactly the same in the case of identical geometrical setup and
regularizing parameters α, β chosen in a suitable multiple relation.
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Theorem 3.3. Assume that us
α(x) and vs

β(x) are constructed by the
above two regularizing schemes from the same far-field pattern u∞(x̂),
respectively. If we take β = γmγmα, then it follows for all x ∈ Rm \G
that

(23) us
α(x) = vs

β(x).

Proof. As a preparation we remark that under the assumptions on G
stated above both H and H∗ are injective, compare [11]. The theorem
is equivalent to proving that

(24)
∫

Sm−1
u∞(−d)[(αI + H∗H)−1H∗Φ(·, x)](d)ds(d)

= γm

∫
∂G

Φ(z, x)[(βI + F∗F)−1F∗u∞](z)ds(z)

for β = γmγmα with the expressions taken from the reconstruction
procedures of these two schemes.

Define ϕ(d) := u∞(d) ∈ L2(Sm−1) and ψ(z) := Φ(z, x) ∈ L2(∂G) for
the simplicity of notations. Then the left-hand side L of (24) can be
written as

(25) L =
∫

Sm−1
ϕ(−d)[(αI + H∗H)−1H∗ψ](d)ds(d),

while the right-hand side R of (24) for β = γmγmα is

R = γm

∫
∂G

ψ(z)[(βI + F∗F)−1F∗ϕ](z)ds(z)(26)

= γmγm

∫
∂G

ψ(z)[(βI + γmγmHH∗)−1Hϕ](z)ds(z)

=
∫

∂G

ψ(z)[(αI + HH∗)−1Hϕ](z)ds(z)

in terms of (16). The standard expansion theorem for the regularizing
equation yields for all α > 0 that

(27)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
(αI + H∗H)−1H∗ψ

]
(d) =

∑
j∈N

μj

α+ μ2
j

〈ψ, ψj〉L2(∂G)ϕj(d),

[
(αI + HH∗)−1Hϕ

]
(z) =

∑
l∈N

μl

α+ μ2
l

〈ϕ,ϕl〉L2(Sm−1)ψl(z).
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On the other hand, since both H and H∗ are injective, we can expand
ϕ, ψ in terms of ϕl, ψl as

ϕ(−d) =
∑
l∈N

〈ϕ,ϕl〉L2(Sm−1)ϕl(−d),(28)

ψ(z) =
∑
j∈N

〈ψ, ψj〉L2(∂G)ψj(z).

Now we insert (28) and (27) into (25) and (26), respectively, to get

L =
∑
j∈N

μj

α+ μ2
j

〈ψ, ψj〉L2(∂G)

∑
l∈N

〈ϕ,ϕl〉L2(Sm−1)〈ϕl(−·), ϕj(·)〉L2(Sm−1)

(29) =
∑
j,l∈N

μl

α+ μ2
j

〈ψ, ψj〉L2(∂G)〈ϕ,ϕl〉L2(Sm−1)〈ψl, ψj〉L2(∂G)

from Lemma 3.1 and

(30) R =
∑
j,l∈N

μl

α+ μ2
l

〈ψ, ψj〉L2(∂G)〈ϕ,ϕl〉L2(Sm−1)〈ψl, ψj〉L2(∂G).

In the case where μl = μj by trivial equality and in the case where
μl 	= μj by Lemma 3.1 we obtain

μl

α+ μ2
j

〈ψ, ψj〉〈ϕ,ϕl〉〈ψl, ψj〉 =
μl

α+ μ2
l

〈ψ, ψj〉〈ϕ,ϕl〉〈ψl, ψj〉 = 0.

That is, for any fixed pairs (l, j), the corresponding terms in the
summation of left-hand side and right-hand side are the same. So
both sides has the same series expression

L = R =
∑

(j,l)∈N2
⋂

{(j,l):μl=μn}

μl

α+ μ2
l

〈ψ, ψj〉〈ϕ,ϕl〉〈ψl, ψj〉,

noticing that 〈ψl, ψj〉L2(∂G) = 0 for μl 	= μj . This series is obviously
convergent, since both sides of (24) are convergent as integrals for
continuous integrands. The proof is complete.

Remark 3.4. We call the relation β = γmγmα the golden rule for
matching the potential method and point-source method, since the
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two different schemes generate exactly the same reconstruction result
for their regularizing parameters coupled in this exact relation. Such
a golden rule is the quantitative representation of duality relation
between point source method and potential method.

Next we want to consider the difference between us
α(x)−vs

β(x), if the
regularizing parameters of these two schemes do not match this golden
rule. This can be built on the continuity of the regularization schemes
with respect to the regularization parameter α or β, respectively. We
will use two arbitrary regularization parameters α, β and also consider
the special case where

(31) β = Kβ̃, β̃ := γmγmα

with the ratio number K > 0.

Theorem 3.5. For arbitrary regularizing parameters α, β > 0 and
β̃ := γmγmα we have

(32) ||us
α(x) − vs

β(x)|| ≤ C
|β − β̃|
β̃

with some constant C = C(x). If β = Kγmγmα with some constant
0 < K 	= 1, it holds that

(33) ||us
α(x) − vs

β(x)|| ≤ |K − 1|
K

ω(K,α), x ∈ Rm \G,

with some function ω(K,α) which satisfies ω(K,α) → 0 as α → 0 for
any fixed number K > 0.

Proof. For the first part we estimate

|us
α(x) − vs

β(x)| ≤ |us
α(x) − vs

β̃
(x)| + |vs

β̃
(x) − vs

β(x)|(34)

= |vs
β̃
(x) − vs

β(x)|.

We use the representation (10) via a single-layer potential with density
ωβ to estimate

(35) |vs
β̃
(x) − vs

β(x)| ≤ C‖ωβ̃(x) − ωβ(x)‖
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with some constant C depending on G and x. For the estimate of the
right-hand side we employ the arguments of (ii), Theorem 2.16, page
49 of [6] to get

(36) ‖ωβ̃(x) − ωβ(x)‖ ≤ |β − β̃|
|β̃| ‖ωβ‖

with the true solution ω of Fω = u∞. Since ωβ → ω for β → 0 we
obtain (32).

We now consider the case where β = Kγmγmα. Using the same
computation procedure as given in the proof of Theorem 3.3, we get
that

(37) γm(us
α(x) − vs

β(x))

=
∑
j,l∈N

μl

α+ μ2
j

〈ψ, ψj〉L2(∂G)〈ϕ,ϕl〉L2(Sm−1)〈ψl, ψj〉L2(∂G)

−
∑
j,l∈N

μl

Kα+ μ2
l

〈ψ, ψj〉L2(∂G)〈ϕ,ϕl〉L2(Sm−1)〈ψl, ψj〉L2(∂G).

It follows from Lemma 3.1 that 〈ψl, ψj〉L2(∂G) = 0 for μl 	= μj .
Therefore (37) becomes

(38) us
α(x) − vs

β(x)

=(K−1) γ−1
m

∑
j,l∈N,μl=μj

αμj

(α+μ2
j)(Kα+μ2

j)
〈u∞, ϕl〉〈Φ(·, x), ψj〉〈ψl, ψj〉

=
(K−1)
K

γ−1
m

∑
j,l∈N,μl=μj

μj

(α+μ2
j)

Kα

(Kα+μ2
j)
〈u∞, ϕl〉〈ψl, ψj〉〈Φ(·, x), ψj〉

=:
(K − 1)
K

ω(K,α),

where ω(K,α) is given by the series in (38). It is readily seen to be
well-defined and convergent by comparison with (29), from which it
differs by the bounded factor

(39) r(α, μ) :=
Kα

(Kα+ μ2)
, |r(α, μ)| < 1, |r(α, μ)| → 0, α→ 0
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for fixed μ > 0. Following standard arguments for the convergence of
the Tikhonov regularization it is seen that ω(K,α) → 0, α → 0 for
any fixed K, which is in fact uniform for K ≥ K0 for any K0 > 0.
Alternatively, we can argue

(40)
|K − 1|
K

|ω(K,α)| ≤ |us
α(x) − u(x)| + |vs

β(x) − u(x)|.

Since us
α(x), vs

β(x) are the Tikhonov regularizing solution to u(x) given
by Algorithm 2.1 and Algorithm 2.2 respectively, then we get

|us
α(x) − u(x)|, |vs

β(x) − u(x)| → 0 as α→ 0,

noticing β = Kγmγmα→ 0. That is, ω(K,α) → 0 as α→ 0 from (40).
The proof is complete.

This theorem reveals the quantitative relation of two reconstruction
algorithms, namely, it gives the difference of the error for these two
regularizing schemes. The factorK−1 indicates the coupling relation of
these two schemes in terms of the constant K, while ω(K,α) represents
the regularizing property of these two schemes. More precisely, we
conclude for β = Kγmγmα that |us

α(x)− u(x)| → |vs
β(x)− u(x)| either

as K → 1 for any fixed α > 0 or as α→ 0 for any fixed K > 0.

4. Numerical tests. In this final section we study numerical
implementations of computing the scattered wave from its far-field
pattern, using point source method and potential method respectively.
Notice, the golden rule for the regularizing parameters of these two
schemes is independent of the boundary type of the obstacle and true
for 2-dimensional and 3-dimensional obstacles.

Example 1. Consider the following 2-dimensional problem. For a
given obstacle D ⊂ R2 and given incident wave ui(x), the scattered
wave us(x) outside of D is governed by

(41)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δus + κ2us = 0, x ∈ R2 \D
Bus = −Bui, x ∈ ∂D

∂us

∂r
(x) − ikus(x) = o

(
1√
r

)
, r = |x| → ∞
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where B is the boundary operator which represents the acoustic prop-
erty of the obstacle such as sound-soft, sound-hard or impedance
boundary condition.

Firstly, we take point incident wave ui(x) = H
(1)
0 (κ|x − x0|) with

x0 ∈ D ⊂ R2. Then it is easy to see that the scattered wave us(x) as
well as its far-field pattern has the exact expression

(42) us(x) = −H(1)
0 (κ|x− x0|), x ∈ R2 \D

and

(43) u∞(x̂) = γ24ie−iκx̂·x0 , x̂ ∈ S1.

Notice, these two expressions are independent of ∂D and the boundary
operator B for this special incident wave with x0 ∈ D. That is, we do
not need to specify ∂D as well as B and simulate the far-field pattern
by solving the direct problem in this special case.

We take κ = 1.2, x0 = (−0.4, 0.2) and the domain G with the
boundary

∂G = {x(t) = (cos t+ 0.65 cos2t− 0.65, 1.5 sin t), t ∈ [0, 2π]}

where we introduce the density functions for two reconstruction schemes,
respectively. Then we can compute the scattered wave outside of G.
In our numerics, we approximate us(x) on

∂Gs := {x(t) := (3 cos t, 4.5 sin t), t ∈ [0, 2π]}

by two schemes from the far-field data given by (43). In the compu-
tation, we divide the interval [0, 2π] into 2n subintervals with grids
tj = π

nj : j = 0, 1, · · · , 2n − 1. The numerical comparison of
us

α(x), vs
β(x) for β, α satisfying the golden rule β = γ2γ2α are listed

in the following table for different n at points t = π/2, π, 3π/2, where
we take α = 0.0002, while us(x) represents the exact scattered wave
given by (42). It can be seen from this table that, for large n the two
regularizing schemes with their regularizing parameters meeting the
golden rule generate the same scattered wave up the accuracy of 10−7,
which supports our theoretical analysis.
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n t = π
2

t = π t = 3
2
π

us (0.1163657,0.3297931) (0.3006898,-0.3327909) (-4.6991613E-02,0.3314249)

8 us
α (0.1163359,0.3298757) (0.3007150,-0.3340268) (-4.7064792E-02,0.3315395)

8 vs
β (0.1163362,0.3298748) (0.3007154,-0.3340252) (-4.7064558E-02,0.3315395)

16 us
α (0.1163383,0.3298783) (0.3007144,-0.3339863) (-4.7057118E-02,0.3315282)

16 vs
β (0.1163391,0.3298775) (0.3007144,-0.3339843) (-4.7057025E-02,0.3315281)

32 us
α (0.1163383,0.3298784) (0.3007144,-0.3339867) (-4.7057308E-02,0.3315285)

32 vs
β (0.1163390,0.3298775) (0.3007144,-0.3339846) (-4.7057088E-02,0.3315282)

64 us
α (0.1163383,0.3298783) (0.3007145,-0.3339868) (-4.7057085E-02,0.3315282)

64 vs
β (0.1163386,0.3298782) (0.3007145,-0.3339871) (-4.7057357E-02,0.3315287)

Table 1: A comparison of us
α, vs

β
and exact us at different points.

Now let us check these two reconstruction for regularizing parameters
not satisfying the ”golden rule”. If we take β = Kγmγmα with different
K, compare the reconstruction of these two schemes. In this test,
we fix n = 32 and compute the scattered waves by the two schemes
for this scattering model with exact us(x) expression. The errors of
log |(vs

β −us
α)(x(t))| and log |(vs

β −us)(x(t))| in t ∈ [0, 2π] for fixed small
α = 10−3 and different K = 2, 1.2, 1.0, 0.5, 0.1 are shown in Figure 1.
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Figure 1: Comparison of vs
β
− us

α and vs
β
− us for different K.

It can be seen from this figure that, the error |(vs
β−us)(x(t))| becomes

small as K decreases (right figure), which means vs
β(x) → us(x) as

β → 0, noticing that we take β = Kγ2γ2α for fixed α. However,



312 J. LIU AND R. POTTHAST

−3 −2 −1 0 1 2 3

−5

−4

−3

−2

−1

0

1

2

3

4

5

A 

B 

C 

O 

∂ D
D

 

∂ D
D

 

∂ D
I
 

∂ G
s
 

∂ G 
x

1
 

Figure 2: Configuration of the non-convex obstacle with mixed boundary condition.

the minimum value (vs
β − us

α)(x(t)), which represents the error of two
regularizing schemes, always appears for K = 1 (left figure), which
supports our theoretical analysis given by Theorem 3.5.

Example 2. Next, consider the reconstruction of scattered wave for
an incident plane wave. We need to simulate the far-field pattern by
solving direct problem, since no exact solution is available in this case.
So we specify the obstacle D with the boundary

∂D = {x(t) = (cos t+ 0.65 cos2t− 0.65, 1.5 sin t), t ∈ [0, 2π]}

on which the mixed boundary condition is assumed by defining

B :=

⎧⎪⎨
⎪⎩

I, x(t) ∈ ÂBC ⊂ ∂D with t ∈ [0, 1.42π]

∂

∂ν
+ 3iκ, x(t) ∈ ĈA ⊂ ∂D with t ∈ (1.42π, 2π].

In the computation, we introduce the density functions in

∂G := {x(t) = (2 cos t, 3.5 sin t), t ∈ [0, 2π]}

and compute the scattered wave on

∂Gs := {x(t) = (3 cos t, 4.5 sin t), t ∈ [0, 2π]} ,

see Figure 2 for the configuration.
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n t = π
2

t = π t = 3
2
π

8 us
α (4.7237091E-02,0.6326757) (-0.4285755,-0.4107293) (7.5148039E-02,-0.2332105)

8 vs
β (4.7241095E-02,0.6326982) (-0.4285603,-0.4107074) (7.5148977E-02,-0.2332066)

16 us
α (4.9253341E-02,0.6331174) (-0.4171216,-0.4172901) (8.1694886E-02,-0.2209388)

16 vs
β (4.9250260E-02,0.6331332) (-0.4171319,-0.4172804) (8.1686519E-02,-0.2209338)

32 us
α (4.9657788E-02,0.6336886) (-0.4252205,-0.4166148) (8.3241701E-02,-0.2297525)

32 vs
β (4.9668275E-02,0.6336918) (-0.4252321,-0.4166267) (8.3240218E-02,-0.2297502)

64 us
α (5.0019212E-02,0.6338249) (-0.4233266,-0.4170950) (8.4115691E-02,-0.2269450)

64 vs
β (5.0033569E-02,0.6338263) (-0.4233316,-0.4171042) (8.4116094E-02,-0.2269421)

Table 2: A comparison of us
α, vs

β for plane wave with incident direction d = (0.6, 0.8).

For K = 1, α = 0.0002, the reconstruction results by these two
schemes evaluated for three different points are listed in the table, while
the error distribution of

|Re(us
α − vs

β)(x(t))|
and

|Im(us
α − vs

β)(x(t))|
on ∂Gs are shown in Figure 3 by a polar coordinate system. We can also
see that in this non-convex obstacle case, the two schemes generate the
same results for their regularizing parameters satisfying the golden rule.
Here, the accuracy is less than in Example 1 due to the more complex
field for the scattering process of an obstacle with mixed boundary
condition.

Conclusion. In this paper, we compare two well known regularizing
schemes of reconstructing the scattered wave from its far field pattern
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Figure 3: Error distribution of |�(vs
β
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α)(x(t))| and |�(vs
β
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α)(x(t))|.
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from a quantitative point of view. The main step in these two inversion
schemes is to solve an integral equation of the first kind with respect
to the density function from which the scattered wave is approximated.
We establish a golden rule for the regularizing parameters of these two
schemes. This new quantitative relation between these two schemes,
together with the derivation procedure introduced in the previous paper
[8], reveals the fundamental relation of these two schemes. Roughly
speaking, these two schemes are equivalent in the sense of their dual
relation and their quantitative uniformness for regularizing parameters
satisfying the golden rule, providing identical reconstructions when the
geometrical setting is chosen adequately.

Acknowledgement. This work is supported by NSFC (No.10371018).
The first author thanks the hospitality of Institute of Numerical and
Applied Mathematics at University of Göttingen during his visit in the
winter of 2006.

REFERENCES

1. J. Cheng, J. J. Liu and G. Nakamura, Recovery of boundaries and types for
multiple obstacles from the far-field pattern, to appear in Quart. Applied Maths.

2. , The numerical realization of the probe method for the inverse
scattering problems from the near field data, Inverse Problems, Vol. 21, No.3, (2005),
839–855.

3. D. L. Colton and A. Kirsch, A simple method for solving inverse scattering
problems in the resonance region, Inverse Problems, Vol. 12, (1996), 383–393.

4. D. L. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering
Theory, 2nd edition, Springer-Verlag, Berlin, (1998).

5. K. Erhard, Point Source Approximation Methods in Inverse Obstacle Recon-
struction Problems, Dissertation Thesis, Göttingen (2005).

6. A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems,
Springer Verlag (1996).

7. R. Kress, Linear Integral Equations, Springer Verlag, (1989).

8. J. J. Liu, G. Nakamura and R. Potthast, A new approach and improved
error analysis for reconstructing the scattered wave by the point source method,
J. Comput. Maths, Vol. 25, No.2, (2007), 113–130.

9. R. Potthast, Point sources and multipoles in inverse scattering theory, Chap-
man & Hall/CRC Research Notes in Mathematics, Chapman & Hall/CRC, Boca
Raton, FL, Vol. 427, (2001).



DUALITY FOR THE POTENTIAL AND POINT SOURCE METHOD 315

10. , Stability estimates and reconstructions in inverse acoustic scattering
using point sources, J. Appl. Comput. Maths, Vol. 114, No.2, (2000), 247–274.

11. , Topical Review: A survey on sampling and probe methods for inverse
problems, Inverse Problems, Vol. 22, R1-R47, (2006).

12. , A point-source method for inverse acoustic and electromagnetic
obstacle scattering problems, IMA J. Appl. Maths., Vol. 61, (1998), 119-140.

13. , Sampling and Probe Methods - An Algorithmical View, Computing,
Vol. 75, (2005), 215-236.

Department of Mathematics, Southeast University, Nanjing, 210096,
P.R.China.
Email address: jjliu@seu.edu.cn

University of Reading, Department of Mathematics, Whiteknights, PO
Box 220, Berkshire, RG6 6AX, UK.
Email address: r.w.e.potthast@reading.ac.uk


