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ABSTRACT. In this paper we investigate instantaneous
frequency as it applies to the Hardy spaces on the disc
(Hp(D)), and on the upper half-plane (Hp(C+)). The re-
sults obtained can then be applied to any sufficiently smooth
analytic signal, as the boundary functions of elements of a
Hardy space correspond naturally to analytic signals.

Using only basic results from complex analysis, a more thor-
ough understanding of instantaneous frequency is obtained.
This allows the construction of analytic signals with non-
negative instantaneous frequency (ASNIFs) that have a pre-
scribed amplitude. Resulting parallels are then drawn be-
tween the concepts of instantaneous frequency and Fourier
frequency.

1. Introduction. Instantaneous frequency has been used in
many different contexts, especially in signal processing. It is commonly
defined as the time-derivative of the phase of a complex valued signal
(usually an analytic signal). In most applications, one does not have
complex valued data. The imaginary part is usually obtained via the
Hilbert transform, producing an analytic signal.

Instantaneous frequency makes available some interesting forms of
analysis to time-frequency problems which do not yield readily to
Fourier or wavelet methods. One recently developed method is the
empirical mode decomposition (EMD), developed by Huang et al. [5].
This method aims to decompose signals into monocomponent func-
tions whose analytic signals have nonnegative instantaneous frequency.
(These component functions are called intrinsic mode functions, or
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IMFs.) Unfortunately, there have been H∞(D) functions identified
which satisfy the definition of an IMF, but which have negative instan-
taneous frequency [7]. In order to better understand EMD, there have
been alternative decomposition algorithms proposed, see [1], which may
help investigate the causes of these “pathological” IMFs.

Clearly, it is of interest to EMD research to better understand those
analytic signals that have nonnegative instantaneous frequency. Some
important steps in this direction have been taken by [6]. In this
paper we consider analytic signals as being boundary value functions of
elements of a Hardy space. (They may also be defined for more general
settings, i.e., in the sense of distribution.) Periodic analytic signals can
be mapped to the unit circle and extended to elements of a Hardy space
for the disc. Nonperiodic analytic signals can be extended to elements
of a Hardy space for the upper half-plane. In this paper we investigate
the instantaneous frequency of smooth analytic signals using tools from
Hardy spaces. These spaces are a natural setting in which to consider
analytic signals. They are one of the most general settings in which
one might encounter analytic signals, and the body of theory available
contains powerful tools.

Section 2 lays out some definitions and preliminaries. Section 3
explores the consequences of Hardy spaces on the disc for instantaneous
frequency. A characterization of instantaneous frequency is found for
sufficiently smooth elements of Hp(D). Parallel results of this analysis
are then stated for the Hardy spaces on the upper half plane. Finally,
these results are used to construct analytic signals with nonnegative
instantaneous frequency (ASNIFs) in Section 4. The insights gained
are used to compare and contrast instantaneous frequency with the
classical (Fourier based) understanding of frequency.

2. Preliminaries, definitions and notation. In this section
we introduce the notation used and state classical results which are
needed to develop our results. Let z denote a complex number, whose
real and imaginary parts are given by x and y, respectively, i.e.,
z = x+iy. Whenever polar notation is used, the complex variable z will
be expressed as either z = reiθ or as z = ρeiφ to indicate the argument
and output value of a function, respectively, i.e., ρeiφ = f(reiθ).

D denotes the unit disc D = {z : |z| < 1}.
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C+ denotes the upper half of the complex plane: C+ = {z = x+ iy ∈
C : y > 0}.

Hp(D) denotes the Hardy space of functions f , which are holomorphic
on D and for which the following holds.

sup
1>r>0

1
2π

∫
|f(reiθ)|pdθ = ‖f‖p

Hp < ∞.

Hp(C+), 0 < p < ∞, denotes the Hardy space of functions f , which
are holomorphic on C+ and for which the following holds.

(1) sup
y>0

∫ +∞

−∞
|f(x + iy)|p dx = ‖f‖p

Hp < ∞.

H∞(C+) denotes the Hardy space of functions f , which are holomor-
phic and uniformly bounded on C+. The norm is given by

(2) ‖f‖H∞
= sup

z∈C+

|f(z)| < ∞.

The results in this paper apply to functions in Hp(C+), 0 < p ≤ ∞.

One well-known result from Hardy spaces will be used. For the spaces
Hp(D), we have:

Theorem 1. If f ∈ Hp(D), p > 0, and f is not identically 0, then
f(z) has a unique decomposition

f(z) = B(z)S(z)G(z),

where B(z) is a Blaschke product in Hp(D), and S(z) is a singular
inner function in Hp(D), and G(z) is an outer function in Hp(D).

On the half plane, an analogous result holds:

Theorem 2. If f(z) ∈ Hp(C+), p > 0, then f(z) has a unique
decomposition

(3) f(z) = eiαzB(z)S(z)G(z),
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where α ≥ 0, B(z) is a Blaschke product, S(z) is a singular function,
and G(z) is an outer function in Hp(C+).

For definitions of Blaschke products, singular inner functions and
outer functions for the classes Hp(D) and Hp(C+), and for further
details about the canonical factorization theorem the reader is referred
to [5, 6]. In this paper we use the notation from [3] for the zeros of
Blaschke products, the singular measure of singular inner functions,
etc.

3. Instantaneous frequency of analytic signals.

Definition 1. Time will denote the arc-length parameterization of
the boundary of the Hardy domain in question, i.e., for f ∈ Hp(C+)
time denotes the real valued coordinate x = �(z); for f ∈ Hp(D),
time is given by the angle θ = Arg (z) (ignoring for now the optional
multiples of 2π).

Definition 2. The instantaneous frequency of a complex valued
function f is defined to be the time-derivative of its phase, whenever it
exists. It is referred to here as ωf (∗), or as ω[f ](∗). This may also be
written in terms of the complex logarithm:

ωf(z) =
d

dt
Im (Log (f)) .

For Hp(D) time is parameterized by t = θ; for Hp(C+), time is
parameterized by the real axis t = x.

The following result applies to instantaneous frequency of a complex
valued function f independent of what space f is in.

Theorem 3. If f is analytic on an open set O ⊂ C and has
a representation f =

∏
n gn(z) on O with convergence in the sense

of uniform convergence on compacta of the partial products, then the
series representation

ωf (z) =
∑

n

ωgn(z)



SIGNALS WITH NONNEGATIVE INSTANTANEOUS FREQUENCY 99

converges pointwise on O, and uniformly on compacta in O\{z : f(z) =
0}.

Proof. Let A be a compactum contained in O\{z : f(z) = 0}. Let
fm =

∏m
n=1 gn on A. Clearly Log (fm) is analytic on A, and

Log (fm) −→ Log (f) + 2kπi, for some k ∈ Z

uniformly on A. The result then follows from the analytic convergence
theorem.

Corollary 1. If f(z) = Cg(z), C constant, then ωf (z) = ωg(z).

Note that these results apply only on the open set O \ {z : f(z) = 0}.
(O may be D or C+ as appropriate.) Establishing strong results for the
boundary values is beyond the scope of this paper. The boundary value
results used in this paper require that f belong to some smoothness
class within Hp.

3.1. Periodic analytic signals. Using the Cauchy-Riemann equations
and Definition 2, we have

lim
|z|→1−

ωf(z) = lim
|z|→1−

Im
(

∂

∂θ
Log f(z)

)
= lim

|z|→1−
Im

(
iz

d

dz
Log f(z)

)

= lim
|z|→1−

Re
(

z
f ′(z)
f(z)

)
.

(The limits here are understood to be taken nontangentially. See [3,
4].) This limit does not necessarily converge for f ∈ Hp. General
conditions for boundary convergence of the first derivative are still an
open question for the Hardy spaces. To guarantee the existence of these
limits on the boundary, further conditions will be imposed when this
formula is used to ensure convergence.

We restrict ourselves to functions f ∈ Hp(D) for which the boundary
value function f(θ) is differentiable, and satisfies

(4) ωf (θ) = lim
|z|→1−

ωf(z).
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Sufficient conditions used to guarantee this are given in Theorem 5.

Lemma 1. The instantaneous frequency of a finite Blaschke product
is nonnegative on ∂D.

This result is not new, see [7]. It is easily shown, see [6], for Blaschke
products that the instantaneous frequency function ωB(θ) is given by
a summation of Poisson kernels:

ωB(θ) =
∑

n

1 − r2
n

r2
n − 2rn cos (θn − θ) + 1

> 0.

Here zn = rneiθn are the zeros of B(z).

Lemma 2. For a singular function S(z), whose singular support
supp (dν) is a discrete set, instantaneous frequency is nonnegative.

Proof. The instantaneous frequency of a singular function in Hp(D)
is given by:

ωS(z) = Re
(

z
S′(z)
S(z)

)
(5)

= Re
(
−

∫ π

−π

2zeiu

(eiu − z)2
dμ(u)

)

= −
∫ π

−π

2Re (ze−iu − 2|z|2 + z̄|z|2eiu)
|eiu − z|4 dμ(u)

=
∫ π

−π

4|z|2 + 2(1 + |z|2)|z| cos(θ − u)
|eiu − z|4 dμ(u)

If supp (dν) is a discrete set, then limits can be taken almost everywhere
on the boundary, and we have:
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ωS(θ) = lim
|z|→1−

∫ π

−π

4|z|2 + 2(1 + |z|2)|z| cos(θ − u)
|eiu − z|4 dμ(u)

=
∫ π

−π

4(1 + cos(θ − u))
(|eiu|2 + |z|2 − 2|eiuz| cos θ − u))2

dμ(u), z /∈ supp (μ)(6)

=
∫ π

−π

4(1 + cos(θ − u))
(2 − 2 cos(θ − u))2

dμ(u), z /∈ supp (μ)

ωS(θ) =
∫ π

−π

1 + cos(θ − u)
(1 − cos(θ − u))2

dμ(u) ≥ 0, z /∈ supp (μ)

ωS(θ) ≥ 0 almost everywhere.

Theorem 4. An outer function G(z) which has a meromorphic
continuation to some open set S containing D ∪ ∂D has mean instan-
taneous frequency given by:

1
2π

∫ 2π

0

ωG(θ) dθ = π
∑

zm∈∂D

Re
[
Res

(
G′(z)
G(z)

; zm

)
1
2π

]
.

Proof. If G has a meromorphic continuation to an open set O which
contains D∪∂D, then G′(z)/G(z) is also meromorphic on O and has no
poles inside D. Let P = {z ∈ O such that G′(z)/G(z) has a pole at z}.
Because G(z) is meromorphic on O, P must be a finite set of isolated
points. Let {zm} = P ∩ ∂D. Choose ε < 1/2 mink �=l |zk − zl|. Let
Qε = ∪zk

B(zk; ε) be the union of all the open ε-balls around the points
zk. Let Γε be the closed contour consisting of arcs on ∂D, and let arcs
on ∂Qε be given by Γε = (∂D\Qε) ∪ (∂Qε ∩ D). Clearly G′(z)/G(z)
has no poles on Γε ∪ int (Γε). Integrating counterclockwise around the
countour Γε gives

0 =
∫

Γε

G′(z)
G(z)

dz.
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Taking the limit as ε → 0 gives

0 = lim
ε→0+

∫
Γε

G′(z)
G(z)

dz

= lim
ε→0+

( ∫
Γε∩∂D

G′(z)
G(z)

dz

)
+ lim

ε→0+

( ∫
Γε∩D

G′(z)
G(z)

dz

)

=
∫

∂D

G′(z)
G(z)

dz − 1
2

∑
zm

2πiRes
[
G′(z)
G(z)

; zm

]

=
∫ 2π

0

G′(eiθ)
G(eiθ)

i eiθ dθ − πi
∑
zm

Res
[
G′(z)
G(z)

; zm

]

=
∫ 2π

0

G′(eiθ)
G(eiθ)

eiθ dθ − π
∑
zm

Res
[
G′(z)
G(z)

; zm

]

=
∫ 2π

0

Re
(

G′(eiθ)
G(eiθ)

eiθ

)
dθ − Re

(
π

∑
zm

Res
[
G′(z)
G(z)

; zm

])

=
∫ 2π

0

ωG(θ) dθ − Re
(

π
∑
zm

Res
[
G′(z)
G(z)

; zm

])
.

Corollary 2. An outer function G(z) which is nonzero on ∂D,
and which has an analytic continuation to some open set S containing
D ∪ ∂D has zero mean instantaneous frequency. Particularly, any
nonconstant outer function which has such an analytic continuation
has negative instantaneous frequency at some point on ∂D.

Theorem 5. If f ∈ Hp(D), and f has a meromorphic continuation
to some open set S containing D ∪ ∂D, then ωf(θ) can be decomposed
into

ωf(θ) = ωB(θ) + ωS(θ) + ωG(θ),

where B, S and G are determined by the canonical factorization of f .

Proof. The existence of a meromorphic continuation is a very strong
condition. It implies that the singular support supp (dν) of S(z) is
discrete, and also that the Blaschke product is finite (because any
infinite Blaschke product has infinitely many poles inside any such open
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set S). The result then follows from the canonical factorization theorem
and Theorem 3.

3.2. Nonperiodic analytic signals. Nonperiodic analytic signals are
elements of Hp(C+) spaces, which h = h shares many characteristics
with the Hp(D) spaces. (The most obvious difference is that nonzero
constant functions are not elements of Hp(C+), while they are elements
of Hp(D).) The results are stated without proof, as they are almost
identical to the results for Hp(D).

We restrict ourselves to functions F (z) ∈ Hp(C+) which are “nice”
on the boundary, giving:

(7) ωF (x) = lim
Im(z)→0+

Im
(

F ′(z)
F (z)

)
.

This is not true in general; the boundary value function F (x) may
not be differentiable, meaning the lefthand side of equation (7) is not
defined. In order to use equation (7), it is sufficient to assume that
F (z) has a meromorphic continuation to an open domain containing
R ∪ C+.

The canonical factorization theorem, Theorem 2, for Hp(C+) is
slightly different from that for Hp(D). (See [3, 4].)

Following the terminology for Hp(D), we will refer to the parts of
instantaneous frequency in Hp(C+) given by the factors in equation
(3) as the Fourier, Blaschke, singular and outer parts, respectively.
Under similar conditions to Hp(D), the instantaneous frequency of the
Fourier, Blaschke and singular parts in Hp(C+) are all nonnegative on
R. There are some differences worth noting:

1. It is sufficient to require that the zero set of the Blaschke product
be a discrete set. This ensures that the set of zeros {zn} has no cluster
points on R. This then guarantees that ωB(z) is well defined on R.
Note that in the case of Hp(D), the discreteness condition implies
finiteness of the Blaschke product. Thus, it is more appropriate to
think of discreteness as the general rule being applied, rather than
finiteness.

2. Similarly, it is sufficient to require that the singular support
supp (dν) be a discrete set.
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Under these conditions, we have

ω[eiαz](x) = α ≥ 0(8)

ωB(x) =
∑

n

2
yn

1
(xn − x/yn)2 + 1

≥ 0

ωS(x) =
∫ ∞

−∞

u2 + 1
(u − x)2

dν(u) ≥ 0(9)

When evaluating ωB(x) above, we admit the possibility that zn = i.

For outer functions in Hp(C+), we have the following result.

Theorem 6. Let G(z) be an outer function in Hp(C+) which has
a meromorphic continuation to some open set S containing C+ ∪ R.
Then

P.V.
∫
R

ωG(x) dx = π
∑

zk∈R

Re
[
Res

(
G′(z)
G(z)

; zk

)]
,

where P.V. denotes the Cauchy principal value of the integral.

This result may be proved in a similar manner to Theorem 4, with
modifications to allow for the fact that the function G′(z)/G(z) may
have an infinite number of isolated poles on R.

Corollary 3. An outer function G(z) which is nonzero on R,
and which has an analytic continuation to some open set S containing
C+∪R has zero mean instantaneous frequency, in the sense of Cauchy
principal value. Particularly, any outer function which is nonzero on
R which has such an analytic continuation has negative instantaneous
frequency at some point x0 ∈ R.

For nonperiodic signals, an analogous result to (5) then follows:

Theorem 7. If f ∈ Hp(C+), and f has a meromorphic con-
tinuation to some open set S containing C+ ∪ R, then ωf(t) can be
decomposed into

ωf(t) = α + ωB(t) + ωS(t) + ωG(t),
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where B, S, and G are determined by the canonical factorization of f .

Proof. Clearly ω[eiαt] = α. The existence of a meromorphic
continuation ensures that ω[eiαt], ωB(z), ωS(z), and ωG(z) all exist
and are well-defined on C+ ∪ R. The result then follows from the
canonical factorization theorem and Theorem 3.

4. Constructing ASNIFs. In recent literature [2, 8] it is of
particular interest how, given an amplitude function a(x), one can
construct an analytic signal with nonnegative instantaneous frequency
(ASNIF) with prescribed amplitude. Using the results found here, we
can give a more complete answer to this problem. In this section,
we state each result for only one of Hp(C+) and Hp(D). (In each
instance, analogous results for the other case are readily available with
appropriate modification.)

From Theorem 2 it is clear that an analytic signal F (x) has amplitude
|F (x)| = a(x) if and only if its outer factor G(z) is equal to

(10) G(z) = exp
{

1
iπ

∫ ∞

−∞

(1 + uz) log a(u)
(u − z)(1 + u2)

du

}
.

Thus, choosing a given amplitude function a(x) completely deter-
mines the outer factor of any ASNIF F (x) for which |F (x)| = a(x). (In
the rest of this section, any reference to G(z) or G(x) will refer to the
function given by equation (10), i.e., the outer function with amplitude
equal to a(x).)

We are then free to choose three other factors in the canonical factor-
ization as needed in order to ensure that F (z) = eiαzB(z)S(z)G(z) has
nonnegative frequency on the whole real line. It remains to be shown
under what conditions this is possible.

4.1. Outer functions with locally bounded instantaneous frequency.
The easiest outer function to make into an ASNIF is one which satisfies
the hypotheses of Theorem 6. For such an outer function, instantaneous
frequency is negative somewhere, but it is locally bounded for all x. If
it is uniformly bounded (by some M), all that is needed is a factor of
the form eiMx, giving F (x) = eiMxG(x) as an ASNIF with the required
amplitude.
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This is not the only way to construct an ASNIF F (x), only the
simplest. Multiplying two complex signals is equivalent to the pointwise
addition of their instantaneous frequencies. Singular inner functions or
Blaschke products may be used instead of eiMx. There are many such
choices available, and many different criteria that one might use to make
that choice. Those criteria are not dictated by the theoretical results
presented here. That choice would best be governed by application-
specific concerns (such as minimizing the total variation of phase, for
example).

If ωG(x) is locally bounded but not uniformly bounded, we need
to use an inner function I(z) whose instantaneous frequency ωI(x)
is everywhere greater than −ωG(x).1 Such a function can easily be
shown to exist. One way is to iteratively “build” a Blaschke product
or singular function by adding zeros, or adding point masses to the
singular measure, respectively, so that ωB(x) or ωS(x) is large enough
on each successive pair of intervals [−(k + 1),−k]∪ [k, k + 1]. This can
be done by a fairly simple induction.

4.2. Outer functions whose instantaneous frequency is not locally
bounded. For signals with nonlocally bounded instantaneous fre-
quency, we look at signals from Hp(D). If the outer function G(z)
has zeros and/or poles on ∂D, then ωG(t) is not locally bounded. This
is easily checked by letting G = (z− z0)kG1(z) where G1(z) is an outer
function which is analytic at z0. If k > 0, then G has a zero of order k
at z0; if k < 0, then G has a pole of order |k| at z0. In either case we
have

ωG(z) = ω
[
(z − z0)k

]
(z) + ω [G1(z)] (z)

=
kz

z − z0
+ ω [G1(z)] (z).

Clearly the first piece kz/(z − z0) is not locally bounded near z0,
whether k is positive or negative, i.e., whether G has a zero or a pole at
z0, respectively. Even so, it may still be possible to construct an inner
function I(z) such that the analytic signal I(t)G(t) has nonnegative
instantaneous frequency almost everywhere.

1 This is both necessary and sufficient, as ω1(x) ≥ 0 by definition. Thus
ω1(x) ≥ −ωG(x) ⇐⇒ ω1(x) ≥ min (0,−ωG(x))
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We restrict ourselves to signals G(t) for which G(z) has an analytic
continuation to some open set O containing D∪∂D, and for which the
function G′(z)/G(z) has a finite number of zeros and poles on ∂D. For
such signals, G(z) can be factorized into the form

(11) G(z) = G1(z)F (z),

where G1(z) is an outer function which satisfies Corollary 2, and F (z)
is of the form F (z) =

∏N
k=1(z − zk)pk , N < ∞, pk ∈ Z. (F (z) cannot

have any essential singularities as this would cause G(z) not to be an
outer function. See [3, 4].) We need only concern ourselves with the
instantaneous frequency of F (z), as G1(z) was addressed in the previous
section. We then have

ωF (t) =
N∑

k=1

d

dt
Im [Log ((t − xk)pk)]

=
N∑

k=1

d

dt
(pkπ · H(t − xk)), (H(t) is the Heaviside function.)

=
N∑

k=1

pkπ · δ(t − xk) = 0 almost everywhere.

It is not clear how a jump in phase relates to instantaneous frequency.
It is tempting to simply treat these jumps as being components of
a “weak” instantaneous frequency. (Hence the use of the δ function
above.) Upon closer inspection, it is clear that the value of a phase
jump is not well defined. A (nonzero) phase jump value is only unique
up to addition of 2nπ, n ∈ Z. Thus, it is not clear what is meant by a
positive, or negative, jump in instantaneous frequency.

In this paper we simply ignore the phase jumps, as there is currently
no clear way to reconcile them with the concept of instantaneous
frequency. This simplifies things greatly, as ωH(t) = 0 at every other
point. We continue with this simplified analysis, but it is an open
question how the phase jumps should be properly understood. If a
more precise framework for treating phase jumps is desired, one might
be tempted to define the phase jump at z0 as “the nontangential limit
of phase jump as one approaches z0.” However, this does not produce
a well-defined quantity.
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We now have everything we need to construct an ASNIF whose ampli-
tude is given by an outer function G(z) which has a meromorphic con-
tinuation. For any such G(z), find the factorization G(z) = G1(z)H(z)
prescribed in equation (11). Let B∗(t) be a Blaschke product such that
φB∗(t) ≥ |φG1(t)|. Then one ASNIF with outer part G is given by

F (t) = B∗(t)G(t).

5. Conclusions. It is important to note once more that the results
presented in this paper only apply to a fairly or meromorphic exclusive
If a more precise framework for treating phase jumps is desired, one
might be tempted to define the phase jump at z0 as “the non-tangential
limit of phase jump as one approaches z0”. However, this does not
produce a well-defined quantity.”subclass of analytic signals: those
elements of Hp(D) or Hp(C+) which admit an analytic continuation
which is “nice enough” on a suitably large open set. The results as
stated do not apply to the entire Hardy space in question. There is
significant work required to establish results which properly address
the questions of convergence for signals where the boundary values of
the first derivative (and thus the concept of instantaneous frequency
itself) are not readily available. However, for analytic signals which are
generated by real-world time series data the results in this paper are
often sufficient to conduct a meaningful analysis.

As progress is made towards a complete characterization of ASNIFs,
we see more clearly the parallels and differences between how one should
understand “instantaneous frequency” (IF) and the classical concept of
“Fourier frequency” (FF).

The components of instantaneous frequency in the IF setting have
natural parallels in the FF setting. Blaschke products for Hp(D) are
natural generalizations of the individual modes of the Fourier series.2

Taking this one step further, the set of inner functions is an even
broader generalization of the Fourier modes. In the case of Hp(C+)
and Hp(D), the set of inner functions is a family of “pure instantaneous
frequency” functions which is a natural generalization of the “pure
Fourier frequency” functions.

The notion of what a “pure amplitude” function should be illustrates
a divergence between the IF and FF perspectives. In the FF under-
standing, an amplitude function is understood to be purely real (and
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nonnegative). In the IF world, amplitude functions correspond to outer
functions, which are never purely real valued.3 In fact, they always have
nonzero instantaneous frequency if they have any amplitude modula-
tion. At first glance, this seems like a stark contrast between the IF and
FF perspectives. A more careful read on the situation brings to light
a surprising parallel: Outer functions (that are reasonably nice) have
zero mean instantaneous frequency; the Fourier transform of a purely
amplitude modulated (AM) signal has symmetric support. This leads
to analogous procedures for making signals with positive frequency in
both the IF and FF realms. In the FF realm, a band limited signal
is made to have positive Fourier frequency by modulating it with a
carrier frequency (a pure FF function) high enough to shift the Fourier
frequencies above zero. (This is the well-known procedure for making
an analytic signal out of an arbitrary band-limited signal.) In the IF
realm, an analytic signal is made to have positive instantaneous fre-
quency by modulating it with an inner function (a pure IF function)
appropriately chosen to shift the instantaneous frequencies above zero.
The analogy is quite clear: ASNIFs are to analytic signals as analytic
signals are to “left band-limited signals.”4

One problem of interest in applications is how to construct an ASNIF
with a given amplitude function. This is solved here for a reasonably
general class of outer functions. The restriction of the amplitude
function to having only a finite number of zeros and poles (of only finite
order) on the boundary is general enough for many applications. The
focus of this paper is not so much on obtaining a particularly “good”
ASNIF, but rather to outline the general approach, leaving the choice
of method to be decided by the needs of the particular application.

Using tools from Hardy spaces to investigate analytic signals, a char-
acterization of sufficiently smooth ASNIFs is a fairly straightforward
exercise. The canonical factorization theorem gives telling insight into
the order of developments made towards characterizing ASNIFs: First
the Fourier part was described [8], then the Blaschke part [2], and fi-
nally the outer and singular parts. For sufficiently smooth signals the
results presented here are sufficient. However, there are significant open
questions remaining:

1. Can instantaneous frequency be defined meaningfully for classes
of nonsmooth analytic signals? If so, how?

2. Do such results (or the possible lack thereof) illustrate significant
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parallels or differences between the concepts of Fourier and instanta-
neous frequency?

ENDNOTES

1. This is both necessary and sufficient, as ωI(x) ≥ 0 by definition.
Thus ωI(x) ≥ −ωG(x) ⇔ ωI(x) ≥ min(0,−ωG(x)).

2. The Fourier modes for periodic functions are in fact Blaschke
products which have no zeros other than at the origin. For nonperiodic
signals, the Fourier transform modes correspond to singular inner
functions which have only one point mass at infinity. “At infinity”
is used loosely here. The meaning is clear when looking at a conformal
mapping of D → H . The singular inner functions for D which have a
point mass at the preimage of ∞ become the Fourier modes eiωt.

3. In the Hp(D) setting, outer functions may be constant. Thus,
G(z) = c ∈ R is an outer function for Hp(D). In Hp(C+), outer
functions may not be constant, ruling out this possibility. In either
case, there are no nontrivial real-valued outer functions.

4. That is to say, signals whose Fourier transform vanishes for
ω < K ∈ R.
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