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ABSTRACT. We study the complexity of Fredholm prob-

lems of the second kind u −
∫
Ω

k(·, y)u(y) dy = f . Previous

work on the complexity of this problem has assumed that Ω
was the unit cube Id. In this paper, we allow Ω to be part of
the data specifying an instance of the problem, along with k
and f . More precisely, we assume that Ω is the diffeomorphic
image of the unit d-cube under a Cr1 mapping ρ: Id → Il.
In addition, we assume that k ∈ Cr2(I2l) and f ∈ Cr3(Il).
Using a change of variables, we can reduce this problem to an
integral equation over Id. Our information about the prob-
lem data consists of function evaluations, contaminated by
δ-bounded noise. Error is measured by the max norm. We
show that the problem is unsolvable if r1 = 1 and d < l.
Hence we assume that either r1 ≥ 2 or d = l in what follows.
We find that the nth minimal error is bounded from below by
Θ(n−µ1 + δ) and from above by Θ(n−µ2 + δ), where

μ1 = min

{
r1

d
,
r2

2d
,
r3

d

}
and μ2 = min

{
r1 − 1

d
,
r2

2d
,
r3

d

}
.

The upper bound is attained by a noisy modified Galerkin
method, which can be efficiently implemented by a two-grid
algorithm. We thus find bounds on the ε-complexity of
the problem, these bounds depending on the cost c(δ) of
calculating a δ-noisy function value. As an example, if c(δ) =

δ−b, we find that the ε-complexity is between (1/ε)b+1/µ1 and

(1/ε)b+1/µ2 .

1. Introduction. We are interested in the worst case complexity
of solving Fredholm problems of the second kind

(1.1) u(s) −
∫

Ω

k(s, t)u(t) dt = f(s) ∀ s ∈ Ω.
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Previous work on the complexity of this problem has dealt with the
case where the domain Ω of the integral equation has been the unit
cube Id. Moreover, most of this work has either assumed that we
have had complete information about k, or that k and f have had the
same smoothness (see, e.g., [8, 9, 11, 14, 20, 21, Sec. 6.3], and the
references contained therein). Furthermore, most of the work (with
the exception of [11] and a few papers referenced therein) has assumed
that the information was exact.

In [22], we studied the complexity of this problem under the assump-
tion that we had noisy standard information about the kernel k and
the right-hand side f , with k and f having different smoothness. This
lifted many of the restrictions in the previous studies of this problem.
However, [22] still assumed that the problem was being solved over the
unit cube.

Clearly, the assumption Ω = Id is exceptionally restrictive. We need
to be able to solve Fredholm problems over whatever domains they
naturally arise. Examples include the following:

• The solution of Poisson’s equation can be written in terms of
integral equations involving single layer potentials, see (e.g.) [6, pg.
390] and [10, Chap. 8].

• The solution of the exterior Helmholtz problem (which arises in
scattering theory) can be expressed in terms of the solution of a
Fredholm problem, see [2].

Note that the integral equations arising in these examples need to be
solved over whatever domain the particular problem is defined, and not
merely (say) a cube. For problems defined over boundaries of regions
(such as the examples given above), the domain in question is a d-
dimensional subset of R

d+1. This motivates our interest in solving
Fredholm problems over general d-dimensional subsets of R

l, where
d ≤ l.

In this paper, we study the worst case complexity of Fredholm
problems, assuming that we have noisy standard information about
all the elements that prescribe our problem. Roughly speaking, this
means the following:

1. The domain Ω is the image ρ(Id) of the closed unit d-cube under
an injection ρ ∈ Cr1(Id; I l). Hence Ω is a subregion of I l when d = l,
whereas Ω is a d-dimensional surface in I l if d < l.
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2. The kernel k belongs to a ball of Cr2(I2l). Moreover, the operator
appearing on the left-hand side of (1.1) is invertible, with all such
operators satisfying a “uniform invertibility” condition.

3. The right-hand side f belongs to the unit ball of Cr3(I l).

4. Only δ-noisy standard information (i.e., noisy function values) is
available about the functions ρ, f ◦ρ, and k◦ρ determining a particular
problem instance.1

Under these conditions, we can use a change of variables to reduce
the problem to a new integral equation that is defined over Id. Having
done so, we measure the error of an approximation as its worst case
error in the C(Id)-norm. The full details are given in §2.

We are able to determine bounds on the nth minimal radius r(n, δ) of
δ-noisy information, i.e., the minimal error when we use n evaluations
with a noise level of δ. In §3, we establish the following lower bounds:2

1. Let d < l and r1 = 1. Then

r(n, δ) � 1.

2. Let d = l or r1 ≥ 2. Then

r(n, δ) �
(

1
n

)μ1

+ δ,

where
μ1 = min

{r1

d
,
r2

2d
,
r3

d

}
.

Note that the problem is unsolvable if d < l and r1 = 1, i.e., we cannot
make the error arbitrarily small using finitely many noisy evaluations,
no matter how small the noise level nor how large the number of
evaluations. Hence, the problem is solvable only if d = l or if r1 > 1.

1One might expect that we would use simpler δ-noisy values of f and k, rather
than of composite noisy information about f ◦ρ and k ◦ρ. Our choice simplifies the
exposition somewhat. In addition, our choice involves no essential loss of generality;
the simpler noisy information is also noisy composite information, albeit with a
different value of δ that involves a Lipshcitz constant for ρ.

2 In this paper, we use �, �, and � to denote O-, Ω-, and Θ-relations. Here,
all proportionality factors are independent of n and δ.
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Next, we seek upper bounds on the nth minimal noisy error. These
bounds are given by a noisy Galerkin method, described in §4. This
method uses two meshsizes h̄ and h, for approximating the Fredholm
kernel k ◦ ρ and the right-hand side f ◦ ρ, respectively. In §5, we
analyze the error of this method in terms of h, h̄, and δ. Then in §6,
we show how to choose h and h̄ minimizing, for a given number n of
δ-noisy function evaluations, the upper bound on the error of the noisy
Galerkin method. We find that if d = l or r1 ≥ 1, then

r(n, δ) �
(

1
n

)μ2

+ δ,

where

μ2 = min
{

r1 − 1
d

,
r2

2d
,
r3

d

}
.

Note that we have tight bounds

r(n, δ) �
(

1
n

)μ

+ δ with μ = min
{ r2

2d
,
r3

d

}
for the solvable case (d = l or r1 ≥ 2) only when

(1.2) min
{ r2

2d
,
r3

d

}
≤ r1 − 1

d
.

When this inequality does not hold, there is a gap between our lower
and upper bonuds. An especially appalling case occurs when d = l and
r1 = 1. Then the upper bound on the minimal error does not converge
to zero as n → ∞, whereas the lower bound does converge to zero as
n → ∞, and so we don’t even know whether the problem is solvable for
this case. The task of determining tight bounds on the minimal error
in the remaining cases is currently an open problem.

What can we say about the cost of the noisy Galerkin method? We
use the model of computation found in [15, §2.9], under the proviso that
the noise bound δ is the same for all observations. Let c(δ) denote the
cost of evaluating a function with a noise level δ. Then the information
cost of this algorithm is c(δ)n. However, since this algorithm involves
the solution of a full linear system of equations, the combinatory cost
is much worse than Θ(n). We can overcome this difficulty by using a
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two-grid implementation of the noisy Galerkin method. This algorithm
has the same order of error as the original noisy Galerkin method, and
its combinatory cost is Θ(n). (We omit the detailed description and
the analysis of this algorithm, which are substantially the same as in
[22].) Hence, we can calculate the two-grid approximation using Θ(n)
arithmetic operations, which is optimal.

We can now use our bounds on the nth minimal radius to determine
bounds on the ε-complexity of the Fredholm problem. First, suppose
that d < l and r1 = 1. Since the nth minimal radius is bounded away
from zero, there exists ε0 > 0 such that comp(ε) = ∞ for 0 ≤ ε ≤ ε0.
So, we consider the case where d = l or r1 ≥ 2. We can show that
there exist positive constants C1, C2, and C3, independent of ε, such
that the problem complexity is bounded from below by

comp(ε) ≥ inf
0<δ<C1ε

{
c(δ)

⌈(
1

C1ε − δ

)1/μ1
⌉}

and from above by

comp(ε) ≤ C2 inf
0<δ<C3ε

{
c(δ)

⌈(
1

C3ε − δ

)1/μ2
⌉}

.

Once again, the details are substantially the same as in [22]. These
upper bounds are attained by two-grid implementations of the noisy
modified Galerkin method, with δ chosen to minimize the right-hand
sides of the upper bound.

In particular, suppose that c(δ) = δ−b for some b > 0. We find that(
1
ε

)b+1/μ1

� comp(ε) �
(

1
ε

)b+1/μ2

,

Note that when μ1 = μ2 = μ, which happens if (1.2) holds, we have
tight bounds

comp(ε) �
(

1
ε

)b+1/μ

on the ε-complexity.

Finally, we note that the results of this paper lead to several open
questions. We address these questions in §7.
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2. Problem description. In this section, we precisely describe the
class of Fredholm problems whose solutions we wish to approximate.

For an ordered ring X, we shall let X+ and X++ respectively denote
the non-negative and positive elements of X. Hence (for example), Z

+

denotes the set of natural numbers (non-negative integers), whereas
Z

++ denotes the set of strictly positive integers. For a normed linear
space Y, we let BY denote the unit ball of Y. We assume that the
reader is familiar with the standard concepts and notations involving
Hölder and Sobolev norms and spaces, as found in, e.g., [4, 13].

As in [24], we shall deal only with nondegenerate domains that are
bijective images of Id (see Figure 1), the nondegeneracy meaning that
the Jacobian associated with the domain never vanishes.

More precisely, let ρ: Id → I l be a continuously differentiable injec-
tion, so that d ≤ l must necessarily hold. The gradient of ρ at x ∈ Id

is

(∇ρ)(x) =
[

∂ρi

∂xj
(x)
]

1≤i≤l,1≤j≤d

∈ R
l×d,

where ρ1, . . . , ρl are the components of ρ. The Jacobian of ρ(Id)
at x ∈ Id is defined to be

J(x; ρ) =
√

detA(x; ρ),

ρ

Figure 1: An admissible domain

where
A(x; ρ) = [(∇ρ)(x)]T[(∇ρ)(x)] ∈ R

d×d.
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The region ρ(Id) is nondegenerate if J(x; ρ) �= 0 for all x ∈ Id. For a
nondegenerate region, we have the change of variables formula

(2.1)
∫

Ωρ

v(t) dt =
∫

Id

v
(
ρ(x)
)
J(x; ρ) dt,

and so J(x; ρ) dx is the volume element (if d = l) or surface area element
(if d < l) of Ωρ at x ∈ Id. See [7, p. 334 ff.] for further discussion.

Given such ρ, let Ωρ = ρ(Id), and suppose that u is the solution of
the Fredholm problem (1.1) over the domain Ωρ, i.e.,

u(s) −
∫

Ωρ

k(s, t)u(t) dt = f(s) ∀ s ∈ Ωρ.

Writing s = ρ(x) and using the change of variables formula (2.1), this
may be rewritten

(2.2) u
(
ρ(x)
)−∫

Id

k
(
ρ(x), ρ(y)

)
u
(
ρ(y)
)
J(y; ρ) dy = f

(
ρ(x)
) ∀x ∈ Id

as a problem over Id.

It will be convenient to write (2.2) as an operator equation. Define

kρ(x, y) = k
(
ρ(x), ρ(y)

) ∀x, y ∈ Id.

Moreover, for any v: Id → R and g: I2d → R, let us write

Tρ,gv =
∫

Id

g(·, y)v(y)J(y; ρ) dy

and
vρ = v ◦ ρ.

Then we may rewrite (2.2) in the form

(2.3) (I − Tρ,kρ)uρ = fρ.

We are now ready to describe the admissible problem elements [ρ, k, f ].
We begin with the class R of functions ρ: Id → I l determining the do-
mains Ωρ = ρ(Id). Let positive numbers c1 and c2 be given, along with
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r1 ≥ 1. Then R consists of the functions ρ ∈ Cr1(Id; I l) that satisfy
the condition

‖ρ‖Cr1(Id;Il) ≤ c1,

where
‖ρ‖Cr1(Id;Il) = max

1≤i≤d
‖ρi‖Cr1(Id),

as well as the “uniform nondegeneracy condition”

min
x∈Id

J(x) ≥ c2.

For simplicity, we shall assume that c2 < 1 ≤ c1 in this paper.

Remark. The mapping id: Id → I l, defined as

(2.4) id(x) = (x, 0, . . . , 0︸ ︷︷ ︸
l−d zeros

) ∀x ∈ Id,

belongs to R.

Remark. Why do we require ρ(Id) ⊆ I l? Under this condition,
any k: I2l → R will be defined on Ωρ × Ωρ, and any f : I l → R will be
defined on Ωρ. Thus any such k and f will be allowable in our integral
equation (1.1). Had we not imposed this condition on ρ, we would
have needed to impose more complicated conditions on our k and f
than those stated below.

Remark. The conditions defining R imply that we have an a
priori bound on the volume or surface area element of Ωρ, which is
independent of ρ, namely

(2.5) J(·; ρ) ≤ κd,l =
{

1 if d = l,√
d! ldcd

1 if d < l.
∀ ρ ∈ R.

Indeed, the bound for the case d = l follows from the fact that the
codomain of ρ is the unit cube, whereas a very rough calculation shows
the bound for the case d < l. Hence for any ρ ∈ R, the volume (or
surface area) of Ωρ, which is merely ‖J(·; ρ)‖L1(Id), is at most κd,l.
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Next, we describe our class K of kernels. Let c3 > 0 and c4 > 1
be given, along with r2 ≥ 0 and p ∈ (1,∞). Then K consists of the
functions k ∈ Cr2(I2l) satisfying

‖k‖Cr2(I2l) ≤ c3,

for which the “uniform invertibility condition”

‖(I − Tρ,kρ)−1‖Lin[C(Id)] ≤ c4 ∀ ρ ∈ R

holds. Here, ‖ · ‖Lin[Y ] is the usual operator norm.

Our class of right-hand sides will be BCr3(I l). Hence our class of
problem elements will be

F = R × K × BCr3(I l).

Now we can define our solution operator S: F → C(Id) as

S([ρ, k, f ]) = (I − Tρ,kρ)−1fρ ∀ [ρ, k, f ] ∈ F.

Hence uρ = S([ρ, k, f ]) is the solution of the operator equation (2.3).

We wish to calculate approximate solutions to this problem, using
noisy standard information. To be specific, we will be using uniformly
sup-norm-bounded noise. Our notation and terminology is essentially
that of [15], although we sometimes use modifications found in [16].

Let δ ∈ [0, 1] be a noise level. For [ρ, k, f ] ∈ F, we calculate δ-noisy
information

z = [z1, . . . , zn(z)]

about [ρ, k, f ]. Here, for each index i ∈ {1, . . . , n(z)}, either

|zi − ρ(x(i))| ≤ δ for some x(i) ∈ Id,

or

(2.6)
∣∣∣zi − k

(
ρ(x(i)), ρ(y(i))

)∣∣∣ ≤ δ for some (x(i), y(i)) ∈ I2d,

or

(2.7)
∣∣∣zi − f

(
ρ(x(i))

)∣∣∣ ≤ δ for some x(i) ∈ Id.
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The choice of whether to evaluate ρ, kρ or fρ at the ith sample point,
as well as the choice of the ith sample point itself, may be determined
either nonadaptively or adaptively. Moreover, the information is al-
lowed to be of varying cardinality. Since we will be using the worst
case setting, the cardinality of the information Nδ is

cardNδ = sup
z∈Z (Nδ)

n(z).

Let Nδ be noisy information of finite cardinality. For [ρ, k, f ] ∈ F, we
let Nδ([ρ, k, f ]) denote the set of all such δ-noisy information z about
[ρ, k, f ], and we let

Z (Nδ) =
⋃

[ρ,k,f ]∈F

Nδ([ρ, k, f ])

denote the set of all possible noisy information values. Then an
algorithm using the noisy information Nδ is a mapping φ: Z (Nδ) →
C(Id), whose error is given as

e(φ, Nδ) = sup
[ρ,k,f ]∈F

sup
z∈Nδ([ρ,k,f ])

‖S([ρ, k, f ]) − φ(z)‖C(Id).

The radius of information

r(Nδ) = inf
φ using Nδ

e(φ, Nδ)

gives the minimal error achievable by algorithms using the given noisy
information Nδ.

Finally, let n ∈ Z
+ and δ ∈ [0, 1]. The nth minimal radius of noisy

information
r(n, δ) = inf{ r(Nδ) : cardNδ ≤ n },

is the minimal error among all algorithms using δ-noisy information of
cardinality at most n.

3. Lower bounds. In this section, we prove a lower bound on the
nth minimal radius of δ-noisy information.
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Theorem 3.1.

1. If d < l and r1 = 1, then

r(n, δ) � 1.

2. If d = l or r1 ≥ 2, let

μ1 = min
{r1

d
,
r2

2d
,
r3

d

}
.

There is a constant M0, independent of n and δ, such that

r(n, δ) ≥ M0(n−μ1 + δ)

for all n ∈ Z
+ and δ ∈ [0, 1].

Proof. We first consider the case d < l and r1 = 1. Let

ρ∗(x) = (0, x2, . . . , xd, x1, 0, . . . , 0︸ ︷︷ ︸
l−d−1 zeros

) ∀x = (x1, . . . , xd) ∈ Id,

and define k∗ ≡ 1
2 and f∗ ≡ 1. Since J(·, ρ∗) ≡ 1, it follows that

[ρ∗, k∗, f∗] ∈ F. Moreover, u∗
ρ∗ = S([ρ∗, k∗, f∗]) satisfies

u∗(ρ∗(x)
)

= 1
2

∫
Id

u∗(ρ∗(y)
)
J(y, ρ∗) dy + 1.

Since area (Ωρ∗) = 1, we have

u∗(ρ∗(x)
) ≡ 1

1 − 1
2 area (Ωρ∗)

= 2.

Let N be noise-free information of cardinality at most n. Without
loss of generality, assume that the ρ-evaluation points in N([ρ∗, k∗, f∗])
are x(1), . . . , x(n′). As on [23, pg. 461], we can construct a function
z: Id → R such that

z(x(1)) = · · · = z(x(n′)) = 0 and ‖z‖Cr1(Id;Il) = 1,
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and such that

(3.1)
∫

Id

d∑
j=1

(
∂z

∂xj

)2

(x) dx � 1.

Let

ρ∗∗(x) =

⎡
⎢⎣z(x)

2
√

d
, x2, . . . , xd, x1, 0, . . . , 0︸ ︷︷ ︸

l−d−1 zeros

⎤
⎥⎦ ∀x = (x1, . . . , xd) ∈ Id.

We find

J(x, ρ∗∗) =

√√√√1 +
1
4d

d∑
j=1

(
∂z

∂xj

)2

(x) ≥ 1,

from which it follows that ρ∗∗ ∈ R. Hence [ρ∗∗, k∗, f∗] ∈ F. Moreover,
u∗∗

ρ∗∗ satisfies

u∗∗(ρ∗∗(x)
)

= 1
2

∫
Id

u∗∗(ρ∗∗(y)
)
J(y, ρ∗∗)

)
dy + 1,

and so
u∗∗(ρ∗∗(x)

) ≡ 1
1 − 1

2 area (Ωρ∗∗)
.

Using [19, pp. 45, 49], we see that

r(N) ≥ 1
2‖u∗∗

ρ∗∗ − u∗
ρ∗‖C(Id) = 1

2

∣∣∣∣ 1
1 − 1

2 area (Ωρ∗∗)
− 1

1 − 1
2 area (Ωρ∗)

∣∣∣∣
= 1

2

| area (Ωρ∗∗) − area (Ωρ∗)|
|1 − 1

2 area (Ωρ∗∗)| .

Now

area (Ωρ∗∗) =
∫

Id

J(x; ρ∗∗) dx ≥ 1,

and so
1 − 1

2 area (Ωρ∗∗) ≥ 1
2 .



FREDHOLM EQUATIONS OF THE SECOND KIND 125

Hence

r(N) ≥ | area (Ωρ∗∗) − area (Ωρ∗)| =
∫

Id

d∑
j=1

(
∂z

∂xj

)2

(x)

√√√√1+
1
4d

d∑
j=1

(
∂z

∂xj

)2

(x)+1

dx

≥ 1
2

∫
Id

d∑
j=1

(
∂z

∂xj

)2

(x) dx � 1,

the latter by (3.1). Hence

r(n, δ) ≥ r(n, 0) � 1.

To see the matching upper bound, let Nδ be noisy information of
cardinality at most n, and let φ0 be the zero algorithm

φ0(z) ≡ 0 ∀ z ∈ Z (Nδ).

It is easy to see that the error of φ0 is bounded, independent of n and δ,
and so

r(n, δ) ≤ e(φ0, Nδ) � 1.

Thus
r(n, δ) � 1,

as claimed.

We now treat the case where d = l or r1 ≥ 2. First, note that if we
choose ρ = id, where id is given by (2.4), we can follow the proof of
[22, Thm. 2] to show that

r(n, δ) � n−min{r2/2d,r3/d} + δ.

Hence, we only need to show that

r(n, 0) � n−r1/d.

Let ρ ∈ R and define f∗ ∈ BCr3(I l) as

f∗(s) ≡ s ∀ s ∈ I l.
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Since Tρ,0 = 0, we see that S([ρ, 0, f∗]) = ρ1, the first component of ρ.
Define a solution operator S̃: R → C(Id) as

S̃(ρ) = S([ρ, 0, f∗]) = ρ1 ∀ ρ ∈ R.

Since the problem given by this solution operator is a special case of
our Fredholm problem, we see that the nth minimal noise-free radius
of S is bounded from below by that for S̃, which we may write

r(n, 0; S) ≥ r(n, 0; S̃).

Using [24, Lemma 3.4], we have

r(n, 0; S̃) � n−r1/d,

as required.

4. The noisy modified Galerkin method. Having established a
lower bound on the nth minimal radius for our problem, we now seek an
upper bound. Since our problem is unsolvable when d < l and r1 = 1,
we shall assume that d = l or r1 ≥ 2 in the sequel. Our upper bound
will be provided by a modified Galerkin method using noisy standard
information. In this section, we describe the method; we analyze its
error in the next section.

We first present a weak formulation of our problem. For [ρ, k] ∈
R × K, define a bilinear form B(·, ·; ρ, kρ) on L∞(Id) × L1(Id) as

B(v, w; ρ, kρ) = 〈(I − Tρ,kρ)v, w〉 ∀ v ∈ L∞(Id), w ∈ L1(Id).

For f ∈ BCr3(I l), we see that uρ = S([ρ, k, f ]) ∈ C(Id) satisfies

B(uρ, w; ρ, kρ) = 〈fρ, w〉 ∀w ∈ L1(Id),

where

〈v, w〉 =
∫

Id

v(x)w(x) dx ∀ v ∈ L∞(Id), w ∈ L1(Id).

Next, we describe a class of useful spline spaces; for further details,
see [23]. Let m ∈ Z

++ (to be determined later) and h > 0. Then
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Sh denotes a d-fold tensor product of one-dimensional C1-splines of
degree m, over a uniform grid of mesh-size h.

Let nh = dimSh, noting that nh � h−d. Associated with Sh is a
quasi-interpolation operator

(4.1) (Qhw)(x) =
nh∑
j=1

λj,h(w)sj,h(x) ∀x ∈ Id, w ∈ C(Id),

where each sj,h is a d-fold tensor product of one-dimensional splines
and we can write

λj,h(w) = λj

({w(xi,h)}i

) ∀w ∈ C(Id)

where each λj(w) can be computed with cost independent of h, once the
values w(x1,h), . . . w(xnh,h) have been computed. For any h and any
q ∈ [1,∞], there is a projection operator Ph: Lq(Id) → Sh, defined by

〈Phv, w〉 = 〈v, w〉 ∀ v ∈ Lp(Id), w ∈ Sh.

Not only is the projection operator well-defined, but we also have

Lemma 4.1. For q ∈ [1,∞],

πq = sup
0<h≤1

‖Ph‖Lin [Lq(Id)]

is finite.

Proof. If q = 2, the result clearly holds, with π2 = 1. Shadrin’s
remarkable proof [18] of the de Boor conjecture establishes the result
for the case q = ∞ and d = 1; the case q = ∞ for arbitrary d easily
follows from the case with d = 1, as in [17]. By duality, it follows that
π1 = π∞. Finally, the result for arbitrary q ∈ (1, 2) may be obtained
by interpolating the results for q = 1 and q = 2, and the result for
q ∈ (2,∞) may be obtained by interpolating the results for q = 2 and
q = ∞.

We will also have need of a 2d-variate spline space S�⊗S� involving a
(possibly) different mesh-size h̄. The quasi-interpolation operator Qh̄⊗h̄
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of S� ⊗ S� takes the form

(4.2) (Qh̄⊗h̄w)(x, y) =
nh̄∑

i,j=1

λi,j,h̄

({w(xi′,h̄, xj′,h̄)}i′,j′
)
sj,h̄(y)si,h̄(x)

∀ x, y ∈ Id, w ∈ C(I2d).

Remark. Note since the maximum continuous differentiability of a
degree-m spline is m − 2, we must have m ≥ 3 to guarantee that Sh

and S� ⊗ S� are globally C1. We also note that Sh and S� ⊗ S�

are (respectively) subspaces of W 2,∞(Id) and W 2,∞(I2d), since Sh is
piecewise polynomial and globally C1; this follows from the L∞ version
of [4, Thm. 2.1.1].

Now that we have a bilinear form and a family of spline spaces, we
can define a “pure” Galerkin method. Let [ρ, k, f ] ∈ F and let h > 0.
Then the pure Galerkin method consists of finding uh ∈ Sh such that

B(uh, w; ρ, kρ) = 〈fρ, w〉 ∀w ∈ Sh.

Alternatively, we seek uh ∈ Sh satisfying

(I − PhTρ,kρ)uh = Phfρ,

where Ph is the projection operator mentioned above. Note that uh is
an approximation of uρ, and not of u.

Expanding uh in terms of the basis functions s1,h, . . . , snh,h, we see
that the pure Galerkin method requires the calculation of weighted
integrals involving ρ, kρ and fρ. Since we are only using (noisy)
standard information, the pure Galerkin method is not admissible
for us. Instead, we shall replace ρ, kρ, and fρ by their noisy quasi-
interpolants (defined below); this will give us an algorithm using
permissible information.

Let h, h̄, δ > 0, and let [ρ, k, f ] ∈ F. For j ∈ {1, . . . , nh}, calculate
ρ̃j;h,δ satisfying

|ρ̃j,h,δ − ρ(xj,h)| ≤ δ
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and f̃j,h,δ satisfying ∣∣f̃j,h,δ − f
(
ρ(xj,h)

)∣∣ ≤ δ.

For i, j ∈ {1, . . . , nh̄}, calculate k̃i,j,δ satisfying∣∣k̃i,j,δ − k
(
ρ(xi,h̄), ρ(xj,h̄)

)∣∣ ≤ δ.

Define noisy quasi-interpolants of ρ, fρ, and kρ by using the quasi-
interpolants (4.1) and (4.2), but using noisy function values instead of
exact function values. Thus

(Qh,δρ)(x) =
nh∑
j=1

λj,h

({ρ̃i,h,δ}i

)
sj,h(x),

(Qh,δfρ)(x) =
nh∑
j=1

λj,h

({f̃i,h,δ}i

)
sj,h(x),

(Qh,h̄,δkρ)(x, y) =
nh̄∑

i,j=1

λi,j,h̄

({k̃i′,j′,h,h̄,δ}i′,j′
)
sj,h̄(y)si,h̄(x).

For [ρ, k] ∈ R×K, we define a new bilinear form Bh,h̄,δ(·, ·; ρ, kρ) on
C(Id) × L1(Id) as

Bh,h̄,δ(v, w; ρ, kρ) = B(v, w; Qh,δρ, Qh,h̄,δkρ) ∀ v ∈ C(Id), w ∈ L1(Id)

and define a new linear functional f(·, ρ) on L1(Id) as

fh,δ(w, ρ) = 〈Qh,δfρ, w〉 ∀w ∈ L1(Id).

It would be reasonable to seek uh,h̄,δ ∈ Sh satisfying

Bh,h̄,δ(uh,h̄,δ, w; ρ, kρ) = fh,δ(w, ρ) ∀w ∈ Sh.

However when d < l, this formulation leads to a linear system whose
coefficient matrix contains entries that may not be computable. To see
why, let us write

uh,h̄,δ(x) =
nh∑
j=1

υjsj,h(x) ∀x ∈ Id,
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so that u = [υ1, . . . , υnh
] satisfies the linear system

(A − B)u = f ,

where
f = [fh,δ(s1,h, ρ) . . . fh,δ(snh,h, ρ)]T

and, for 1 ≤ i, j ≤ nh, we have

ai.j = 〈sj,h, si,h〉 and bi,j = 〈Tρ,kρ;h,h̄,δsj,h, si,h〉,
where

Tρ,kρ;h,h̄,δv =
∫

Id

(Qh,h̄,δkρ)(·, y)v(y)J(y; Qh,δρ) dy.

Hence

bi,j =
nh̄∑

i′,j′=1

k̃i,j,δ

[∫
Id

sj′,h̄(x)sj,h(x) dx

][∫
Id

si′,h̄(y)si,h(y)J(y; Qh,δρ) dy

]
.

If d < l, the integrands si′,h̄(y)si,h(y)J(y; Qh,δρ) involve the square
roots of piecewise polynomials. Hence these integrands may not have
closed form antiderivatives. Thus the entries of B may not be com-
putable, as claimed.

To deal with this problem, we use an approach found in [23, pg. 458]
(and given in more detail in [24]), namely, replacing the square root
appearing above by its Taylor expansion. For η ∈ R

++ and any
integer q, let Rq(·, η) denote the Taylor series of degree q − 1 for the
square root at the point η, i.e.,

(4.3) Rq(ξ, η) =
√

η +
q−1∑
i=1

βj(η)(ξ − η)j ∀ ξ ∈ (η − 1, η + 1),

where

βj(η) =
1
j!

(
d

dξ

)j√
ξ

∣∣∣∣∣
ξ=η

=
1

η(2j−1)/2

(
j − 3

2

j

)
.

Then

(4.4)
∣∣∣√ξ − Rq(ξ, η)

∣∣∣ ≤ |βq| |ξ − η|q ∀ ξ ∈ (η − 1, η + 1).
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We now define a modification T̃ρ,kρ;h,h̄,δ of our operator Tρ,kρ;h,h̄,δ.
First of all, if d = l, we simply take T̃ρ,kρ;h,h̄,δ = Tρ,kρ;h,h̄,δ. Now
suppose that d < l. Let Qh denote the set of h−d cubes of side h into
which Id is partitioned when constructing Sh. Then for v ∈ C(Id), we
let

(4.5) T̃ρ,kρ;h,h̄,δv

∣∣∣∣
K

= T̃ρ,kρ;h,h̄,δ;Kv ∀K ∈ Qh,

where

(4.6) T̃ρ,kρ;h,h̄,δ;Kv =∫
K

(Qh,h̄,δkρ)(·, y) v(y)Rq

(
A(y; Qh,δρ), A(y(K); Qh,δρ)

)
dy ∀K ∈ Qh,

with y(K) a fixed evaluation point in K (such as the center or a specific
corner) for each K ∈ Qh.

We are now ready to define our noisy modified Galerkin method.
For [ρ, k] ∈ R × K, we define a new bilinear form B̃h,h̄,δ

(·, ·; ρ, kρ

)
on

C(Id) × L1(Id) as

B̃h,h̄,δ(v, w; ρ, kρ) = 〈(I − T̃ρ,kρ;h,h̄,δ)v, w〉
∀ v ∈ C(Id), w ∈ L1(Id).

Then the noisy modified Galerkin method consists of finding uh,h̄,δ ∈ Sh

satisfying

B̃h,h̄,δ(uh,h̄,δ, w; ρ, kρ) = fh,δ(w, ρ) ∀w ∈ Sh.

If we write

uh,h̄,δ(x) =
nh∑
j=1

υjsj,h(x) ∀x ∈ Id,

then u = [υ1, . . . , υnh
] satisfies the linear system

(A − B)u = f ,

where
f = [fh,δ(s1,h, ρ) · · · fh,δ(snh,h, ρ)]T
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and, for 1 ≤ i, j ≤ nh, we have

ai.j = 〈sj,h, si,h〉 and bi,j = 〈T̃ρ,kρ;h,h̄,δsj,h, si,h〉.

Note that the integrand appearing in each bi,j is piecewise polynomial.
Hence the entries of B are computable, as required.

Let
Nh,h̄,δ([ρ, k, f ]) = [Nh,δ(ρ), Nh,δ(fρ), Nh̄,δ(kρ)],

where

Nh,δ(ρ) = [ρ̃1,δ, . . . , ρ̃nh,δ],

Nh,δ(fρ) = [f̃1,δ, . . . , f̃nh,δ],

and
Nh̄,δ(kρ) = [N

(1)

h̄,δ(kρ), . . . , N
(nh̄)

h̄,δ (kρ)].

with
N

(i)

h̄,δ(kρ) = [k̃i,1δ, . . . k̃i,nh̄δ] (1 ≤ i ≤ nh̄).

If uh,h̄,δ is well-defined, we can write

uh,h̄,δ = φh,h̄,δ

(
Nh,h̄,δ([ρ, k, f ])

)
,

where

cardNh,h̄,δ = n2
h̄ + 2hn �

(
m + 1

h̄

)2d

+
(

m + 1
h

)2

.

5. Error analysis of the noisy modified Galerkin method.
In this section, we establish an error bound for the noisy modified
Galerkin method. As mentioned above, since the problem is unsolvable
when d < l and r1 = 1, we only need to consider the case of d = l or
r1 ≥ 2. To derive our error bound, we first establish the uniform weak
coercivity of the bilinear forms B(·, ·; ρ, kρ) for [ρ, k] ∈ R × K. Once
we know that the bilinear forms are uniformly weakly coercive, we
can obtain an abstract error estimate, as a variant of the First Strang
Lemma (see, e.g., [4, pg. 186]). The remaining task is then to estimate
the various terms appearing in this abstract error estimate.
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So, the first task is to establish uniform weak coercivity. Before doing
so, we lay some groundwork.

The first thing we need to do is to recall approximation properties of
the quasi-interpolation operators introduced in the previous section:

Lemma 5.1. Let Sh and S� ⊗S� be the spline spaces of degree m
described in the previous section. For any a ∈ [1,∞] and q ∈ Z

++,
there exists M1 > 0 (independent of h and h̄) such that for any
r ∈ {0, . . . , min{m, q, 2}}, the following hold:

1. Let w ∈ W q,a(Id). Then

‖w − Qhw‖W r,a(Id) ≤ M1h
min{m+1,q}−r‖w‖W q,a(Id).

2. Let w ∈ Cq(Id). Then

‖w − Qhw‖C(Id) ≤ M1h
min{m+1,q}‖w‖Cq(Id).

3. Let w ∈ W q,a(I2d). Then

‖w − Qh̄⊗h̄w‖W r,a(I2d) ≤ M1h̄
min{m+1,q}−r‖w‖W q,a(I2d).

Proof. See, e.g., [17].

Next, we need to establish an auxiliary lemma, which shows that
the inverses of certain operators are uniformly bounded. By [24,
Lemma 3.1], there exists C◦ > 0 such that

‖kρ‖Cmin{r1,r2}(I2d) ≤ Co ∀ [ρ, k] ∈ R × K.

Let

h0 =
(

1
2M1Coc4

)1/ min{m+1,r1,r2}
.

Note that for any ρ ∈ R and any g ∈ C(I2d), the adjoint T ∗
ρ,g of Tρ,g

is given by

T ∗
ρ,gw = J(·, ρ)

∫
Id

g(x, ·)w(x) dx ∀w ∈ L1(Id).
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Lemma 5.2. Let h ∈ (0, h0] and k ∈ K. Then I − T ∗
ρ,Qh⊗hkρ

is
invertible on L1(Id), with

‖(I − T ∗
ρ,Qh⊗hkρ

)−1‖Lin[L1(Id)] ≤ 2 c4.

Proof. Let ρ ∈ K. Then

‖T ∗
ρ,g‖Lin[L1(Id)]≤ ‖J(·, ρ)‖C(Id)‖g‖C(I2d)≤ κd,l‖g‖C(I2d) ∀ g ∈ C(I2d),

where κd,l is defined in (2.5). For [ρ, k] ∈ R × K and h ∈ (0, h0], we
may use Lemma 5.1 to find that

‖T ∗
ρ,(I−Qh̄⊗h̄)kρ

‖Lin[L1(Id)] ≤ κd,l‖(I − Qh̄⊗h̄)kρ‖L∞(I2d)

≤ κd,lM1h
min{m+1,r1,r2}‖kρ‖Cmin{r1,r2}(I2d)

≤ κd,lM1h
min{m+1,r1,r2}
0 Co ≤ 1

2c4

We now have

‖T ∗
kρ−Πh⊗hkρ

‖Lin[L1(Id)]‖(I − T ∗
kρ

)−1‖Lin[L1(Id)] ≤
1

2 c4
· c4 = 1

2 .

Using [10, Lemma 1.3.14], we see that I − T ∗
Πh⊗hkρ

is invertible, with

‖(I − T ∗
Πh⊗hkρ

)−1‖Lin[L1(Id)]

≤ ‖(I − T ∗
kρ

)−1‖Lin[L1(Id)]

1 − ‖T ∗
kρ−Πh⊗hkρ

‖Lin[L1(Id)]‖(I − T ∗
kρ

)−1‖Lin[L1(Id)]

≤ 2 c4,

as required.

We now establish uniform weak coercivity.

Lemma 5.3. There exist h1 > 0 and γ > 0 such that the following
holds: for any [ρ, k] ∈ R × K, any h ∈ (0, h1], and any v ∈ Sh, there
exists nonzero w ∈ Sh such that

B(v, w; ρ, kρ) ≥ γ‖v‖C(Id)‖w‖L1(Id).
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Proof. Let [ρ, k] ∈ R × K and h ∈ (0, h0]. Let v ∈ Sh. If v = 0,
then this inequality holds for any nonzero w ∈ Sh. So, we may restrict
our attention to the case v �= 0.

By [22, Lemma 10], there exists nonzero g ∈ L1(Id) such that

〈v, g〉 ≥ 1
2‖v‖C(Id)‖g‖L1(Id).

Choose
w = (I − T ∗

Qh̄⊗h̄kρ
)−1Phg.

Since T ∗
Qh̄⊗h̄kρ

: Sh → Sh, we may use Lemma 4.1 and Lemma 5.2 to
see that w is a well-defined element of Sh, and that

‖w‖L1(Id) ≤ 2π1c4‖g‖L1(Id).

Hence

〈(I −Tρ,Qh̄⊗h̄kρ)v, w〉 ≥ 1
2‖v‖C(Id)‖g‖L1(Id) ≥

1
4π1c4

‖v‖C(Id)‖w‖L1(Id),

from which we see that w �= 0.

Using the Minkowski inequality, we find that

|〈Tρ,(I−Qh̄⊗h̄)kρ
v, w〉| ≤ ‖(I − Qh̄⊗h̄)kρ‖L∞(I2d)‖v‖C(Id)‖w‖L1(Id)

≤ M1Coh
min{m+1,r1,r2}
0 ‖v‖C(Id)‖w‖L1(Id).

Combining the last two inequalities and setting

h1 = min
{

1
8π1c4M1Co

, h0

}
and γ =

1
8π1c4

,

the lemma follows.

Since the bilinear forms B(·, ·; ρ, k) are uniformly weakly coercive for
k ∈ K, we have the following variant of the First Strang Lemma found
in [4, pg. 186] and [21, pp. 310–312]:

Lemma 5.4. Suppose there exist δ0 ∈ (0, 1] and h2 ∈ (0, h1] such
that the following holds: for any δ ∈ [0, δ0], any h, h̄ ∈ (0, h2], any
[ρ, k] ∈ R × K, and any v, w ∈ Sh, we have

|B(v, w; ρ, kρ) − B̃h,h̄,δ(v, w; ρ, kρ)| ≤ 1
2γ ‖v‖C(Id)‖w‖L1(Id)
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where γ is as in Lemma 5.3. Then there exists M2 > 0 such that the
following hold for any δ ∈ [0, δ0] and any h, h̄ ∈ (0, h2]:

1. The noisy modified Galerkin method is well-defined. That is, there
exists a unique uh,h̄,δ ∈ Sh such that

B̃h,h̄,δ(uh,h̄,δ, w; ρ, kρ) = fh,δ(w; ρ) ∀w ∈ Sh.

2. Let uρ = S([f, k]). Then

‖uρ − uh,h̄,δ‖C(Id)

≤ M2 inf
v∈Sh

[
‖uρ − v‖C(Id)

+ sup
w∈Sh

(
|B(v, w; ρ, kρ) − B̃h,h̄,δ(v, w; ρ, kρ)|

‖w‖L1(Id)

+
|〈f, w〉 − fh,δ(w; ρ)|

‖w‖L1(Id)

)]
.

We now estimate the quantities appearing in the second part of
Lemma 5.4. First, we estimate the difference between the bilinear forms
B(·, ·; ρ, kρ) and B̃h,h̄,δ(·, ·; ρ, kρ).

Lemma 5.5. Suppose that d = l or r1 ≥ 2. Let m ≥ max{r1, r2}−1
and let q ≥ r1 − 1 in (4.5) and (4.6). There exists M3 > 0 such that
for any positive h, h̄, and δ, for any [ρ, k] ∈ K, and for any v, w ∈ Sh,
we have

|B(v, w; ρ, kρ) − B̃h,h̄,δ(v, w; ρ, kρ)|
≤ M3(hr1−1 + h̄ r2 + δ)‖v‖C(Id)‖w‖L1(Id).

Proof. Given h, h̄, δ, ρ, k, v, and w as in the statement of the
lemma, define

A1 = 〈(Tρ,kρ − Tρ,kρ;h̄)v, w〉,
A2 = 〈(Tρ,kρ;h̄ − Tρ,kρ;h,h̄)v, w〉,
A3 = 〈(Tρ,kρ;h,h̄ − Tρ,kρ;h,h̄,δ)v, w〉,
A4 = 〈(Tρ,kρ;h,h̄,δ − T̃ρ,kρ;h,h̄,δ)v, w〉,
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where
Tρ,kρ;h̄v =

∫
Id

(Qh̄⊗h̄kρ)(·, y)v(y)J(y; ρ) dy

and
Tρ,kρ;h,h̄v =

∫
Id

(Qh̄⊗h̄kρ)(·, y)v(y)J(y; Qhρ) dy.

Then

(5.1) |B(v, w; ρ, kρ) − Bh,h̄,δ(v, w; ρ, kρ)| ≤ |A1| + |A2| + |A3| + |A4|.

We first estimate |A1|. From (2.5), we see that

‖J(·, ρ)‖L1(Id) ≤ κd,l.

Using Lemma 5.1, we obtain

|A1| ≤ ‖(Tρ,kρ − Tρ,kρ;h̄)v‖C(Id)‖w‖L1(Id)

≤ κd,l‖(I − Qh̄⊗h̄)kρ‖L∞(I2d)‖v‖C(Id)‖w‖L1(Id)

� h̄ r2‖v‖C(Id)‖w‖L1(Id).

Next, we estimate |A2|. We have

A2 =
∫

Id

[∫
Id

(Qh̄⊗h̄kρ)(x, y)v(y)[J(y; ρ) − J(y; Qhρ)] dy

]
w(x) dx

=
∫

Id

∫
Id

ω(x, y)[detA(y; ρ) − detA(y; Qhρ)] dy dx,

where

ω(x, y) =
(Qh̄⊗h̄kρ)(x, y)

J(y; ρ) + J(y; Qhρ)
.

Let Πd denote the set of all permutations of {1, . . . , d}. For π ∈ Πd,
define

bπ,i,j(x, y)
= ω(x, y)āπ1,1(y) . . . āπi−1,i−1(y)aπi+1,i+1(y) . . . aπd,d(y)(∂iρj)(y)

and

b̄π,i,j(x, y)
= ω(x, y)āπ1,1(y) . . . āπi−1,i−1(y)aπi+1,i+1(y) . . . aπd,d(y)(∂πi ρ̄j)(y),
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where ∂i = (∂/∂yi) and ai,j and āi,j respectively denote the (i, j)th
components of A(·, ρ) and A(·, Qhρ).

As on [23, pp. 455–456], we find

A2 =
∑

π∈Πd

(−1)|π|
d∑

i=1

d∑
j=1

θπ,i,j,

with |π| denoting the sign of π ∈ Πd and with

θπ,i,j =
∫

Id

[ ∫
Id

bπ,i,j(x, y)v(y)∂πi

(
ρj(y) − ρ̄j(y)

)
dy

]
w(x) dx

+
∫

Id

[ ∫
Id

b̄π,i,j(x, y)v(y)∂i

(
ρj(y) − ρ̄j(y)

)
dy

]
w(x) dx

for π ∈ Πd and i, j ∈ {1, . . . , d}. Since

|θπ,i,j| ≤ ‖bπ,i,j‖L∞(I2d)‖ρj − ρ̄j‖W 1,∞(Id)‖v‖C(Id)‖w‖L1(Id)

� hr1−1‖v‖C(Id)‖w‖L1(Id),

we have

(5.3) |A2| � hr1−1‖v‖C(Id)‖w‖L1(Id) if r1 ≥ 1 or r2 ≥ 1.

We next note that

(5.4) |A3| � δ‖v‖C(Id)‖w‖L1(Id),

the details being substantially the same as in the proof of the analogous
bound for |A2| in [22, Lemma 13].

We now estimate |A4|. Of course, A4 = 0 when d = l, so we only
need to consider the case d < l. For a cube K ∈ Qh, let

θK =
∫

Id

{∫
K

(Qh,h̄,δkρ)(x, y)

[
J(y; Qh,δρ) − Rq

(
A(y; Qh,δρ), A(y(K); Qh,δρ)

)]
v(y) dy

}
w(x) dx.
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Recalling the definition (4.6), along with the error estimate (4.4), we
find that

|θK | � hr1−1

∫
Id

[∫
K

|v(y)| dy

]
|w(x)| dx.

Hence

(5.5) |A4| ≤
∑

K∈Qh

|θK | � hr1−1

∫
Id

[ ∫
Id

|v(y)| dy

]
|w(x)| dx

= hr1−1‖v‖L1(Id)‖w‖L1(Id)

≤ hr1−1‖v‖C(Id)‖w‖L1(Id).

Finally, substituting (5.2)–(5.5) into (5.1), we get the estimate in the
statement of our lemma.

Next, we need to estimate the difference between the linear forms
〈fρ, ·〉 and fh,δ(·, ρ). Before doing this, we recall a result concerning
the smoothness of composite functions:

Lemma 5.6. Let ρ ∈ R and v ∈ Cr3(I l). There exists M4 > 0,
independent of ρ, such that

‖vρ‖Cmin{r1,r3}(Id) ≤ M4‖v‖Cr3(Il) ∀ v ∈ Cr3(I l).

Proof. This is [24, Lemma 3.1]

Using this lemma, we are now able to estimate the difference between
the linear forms 〈fρ, ·〉 and fh,δ(·, ρ).

Lemma 5.7. Let m ≥ r3 − 1. There exists M5 > 0 such that

|〈fρ, w〉 − fh,δ(w; ρ)| ≤ M5(hmin{r1,r3} + δ)‖f‖Cr3(Il)‖w‖L1(Id)

for all ρ ∈ R, f ∈ Cr3(I l), h > 0, δ ≥ 0, and w ∈ Sh.

Proof. Choose ρ ∈ R, f ∈ Cr3(I l), h > 0, δ ≥ 0, and w ∈ Sh. Then

(5.6) |〈fρ, w〉 − fh,δ(w; ρ)| ≤ |A1| + |A2|,
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where
A1 = 〈fρ − Qhfρ, w〉

and
A2 = 〈Qhfρ, w〉 − fh,δ(w; ρ).

Using Lemmas 5.1 and 5.6, we have

|A1| ≤ ‖fρ − Qhfρ‖C(Id)‖w‖L1(Id)

≤ M1h
min{r1,r3}‖fρ‖Cmin{r1,r3}(Id)‖w‖L1(Id)

≤ M1M4h
min{r1,r3}‖f‖Cr3(Il)‖w‖L1(Id).

Moreover, we also have

|A2| � δ‖w‖L1(Id),

the proof following that of the bound for |A4| in [22, Lemma 14]. Our
lemma follows from these last two inequalities, along with (5.6).

Our final preparatory step is to note that a “shift theorem” relates
the smoothness of (I − Tρ,kρ)−1f to the smoothnesses of ρ, k, and f .

Lemma 5.8. Let [ρ, k] ∈ R × K and f ∈ Cr3(I l).. Then

‖(I − Tρ,kρ)−1fρ‖Cmin{r1,r2,r3}(Id) ≤ M6‖f‖Cr3(Il),

where M6 > 0 is independent of ρ, k, and f .

Proof. Given such ρ, k, and f , use the Hölder version of [22,
Lemma 16], along with Lemma 5.6, to see that

‖(I − Tρ,kρ)−1fρ‖Cmin{r1,r2,r3}(Id) � ‖fρ‖Cmin{r1,r2,r3}(Id)

≤ M4‖f‖Cr3(Il),

as required.

We are now ready to show that the noisy modified Galerkin method
is well-defined, as well as to give an upper bound on its error.
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Theorem 5.1. Suppose that d = l or r1 ≥ 2. Let m ≥
max{r1, r2} − 1 and let q ≥ r1 − 1 in (4.5) and (4.6). Choose h2 > 0
and δ0 > 0 such that

M3(hr1−1
1 + hr2

2 + δ0) ≤ 1
2γ,

where h1 and γ are as in Lemma 5.3. There exists M7 > 0 such that
for any h ∈ (0, h1], h̄ ∈ (0, h2], and δ ∈ [0, δ0]:

1. The noisy modified Galerkin method is well-defined.

2. We have the error bound

e(φh,h̄,δ, Nh,h̄,δ) ≤ M7(hmin{r1−1,r2,r3} + h̄ r2 + δ).

Proof. Let h, h̄, and δ be as described. Choose [ρ, k, f ] ∈ F, and let
uρ = S([ρ, k, f ]). Using Lemmas 5.4 and 5.5, we immediately see that
uh,h̄,δ = φh,h̄,δ

(
Nh,h̄,δ([ρ, k, f ])

)
is well-defined. It only remains to prove

the error bound. Let r = min{r1 − 1, r2, r3}, and set v = Qhuρ. Using
Lemmas 5.1 and 5.8, along with the conditions defining the class F,
we have

‖uρ − v‖C(Id) ≤ M1h
r‖uρ‖Cr(Id) ≤ M1h

r‖uρ‖Cmin{r1,r2,r3}(Id)

≤ M1M6h
r‖f‖Cr3(Il) ≤ M1M6h

r.

The desired result follows once we substitute this inequality, along with
the results of Lemmas 5.5 and 5.7, into the error bound of Lemma 5.4.

6. Minimizing the error of the noisy modified Galerkin
method. Let n ∈ Z

+, and consider noisy modified Galerkin methods
using at most n noisy function evaluations. How can we choose the
parameters h and h̄ that will minimize the error of the noisy modified
Galerkin method?

Recall that
cardNh,h̄,δ � n2

h̄ + nh,

where

nh =
(

m + 1
h

)
and nh̄ =

(
m + 1

h̄

)d

.
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It will be useful to rewrite this bound in terms of a proportionality
constant, so that we have

cardNh,h̄,δ ≤ Ccard

(
n2

h̄ + nh

)
.

As in the proof of Theorem 5.1, let

r = min {r1 − 1, r2, r3} .

Let

τ =
max{r1, r2}
min{r1, r2} .

We define parameters κ and κ̄ as follows:

1. Suppose that r2 < 2r, so that r2 < 2 min{r1, r2}. Take

κ =
(

n

τ2dCcard

)r2/(2min{r1,r2})
and κ̄ =

√
n

θ2dCcard
− κ.

2. Suppose that r2 = 2r. Take

κ =
n

2θ2dCcard
and κ̄ =

√
n

2θ2dCcard
.

3. Suppose that r2 > 2r. Take

κ̄ =
(

n

θ2dCcard

)r/r2

and κ =
n

θ2dCcard
− κ̄2.

With these definitions of κ and κ̄, define meshsizes

(6.1) h =
min{r1, r2}

κ1/d
and h̄ =

min{r1, r2}
κ̄1/d

.

Since the degree of the spline space satisfies

m = max{r1, r2} − 1,

we find that
nh = τdκ and nh̄ = τdκ̄.
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In the sequel, we shall assume without loss of generality that h and h̄
have been chosen so that nh and nh̄ are positive integers. With these
choices of h and h̄, let

Nn,δ = Nh,h̄,δ and φn,δ = φh,h̄,δ.

Then

cardNn,δ ≤ Ccard

(
n2

h̄ + nh

) ≤ Ccardθ2d(κ̄2 + κ) ≤ n.

Using a case-by-case analysis (as in [22, Thm. 18]), we have

Theorem 6.1. Suppose that d = l or r1 ≥ 2. Let m =
max{r1, r2} − 1 and let q ≥ r1 − 1 in (4.5) and (4.6). Then there
exists n0 ∈ Z

++ and δ0 > 0 such that φn,δ is well-defined for n ≥ n0

and δ ∈ [0, δ0]. Furthermore, there exists a positive constant M8 such
that

e(φn,δ, Nn,δ) ≤ M8(n−μ2 + δ) ∀n ≥ n0, δ ∈ [0, δ0],

where

μ2 = min
{

r1 − 1
d

,
r2

2d
,
r3

d

}
.

Comparing Theorems 3.1 and 6.1, we find the following bounds on
the nth minimal error of noisy information:

Corollary 6.1. Let

μ1 = min
{r1

d
,
r2

2d
,
r3

d

}
and μ2 = min

{
r1 − 1

d
,
r2

2d
,
r3

d

}
.

1. If d < l and r1 = 1, then

r(n, δ) � 1.

2. If d = l or r1 ≥ 2, then(
1
n

)μ1

+ δ � r(n, δ) �
(

1
n

)μ2

+ δ.
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Using Corollary 6.1, we see that for some values of the parameters r1,
r2, r3, d, l, and p, we can obtain the tight bounds on the minimal noisy
error that are given in the Introduction. However, tight bounds for the
remaining cases remain an open problem.

7. Open questions. The results of this paper lead to several open
questions. The most obvious is that the lower and upper bounds are
not always tight; we hope to remedy this problem in the near future.

The remaining questions deal with

1. solving problems over more general domains, and

2. solving problems when k and f belong to Sobolev spaces.

We treat these questions in turn.

7.1. More general domains. We often want to solve the Fredholm
problem over a domain that is not the diffeomorphic image of a cube,
such as

• the boundary of a given region, and

• a smooth domain (such as a ball or sphere).

How can we solve such problems?

One simple idea for solving problems over smooth domains would be
to let Ω be the image of a ball, rather than a cube. This approach
was studied (for the surface approximation and integration problems)
in [24, §5]; it appears that the results of this paper also apply to
the case where the domain is the image of a ball, the main difference
being a slight extra complication appearing in the definitions of certain
integrals that will appear in the noisy Galerkin method.

A more general technique would be to use oriented cellulated regions
[7, pp. 369–370], which essentially means that the domains are finite
unions of images of cubes. This would allow us to handle smooth
regions, as well as domains that are boundaries of regions in R

d. We
hope to analyze the complexity of Fredholm problems over such regions
in a future paper.



FREDHOLM EQUATIONS OF THE SECOND KIND 145

7.2. Sobolev space data. To a certain extent, the problem studied in
this paper generalizes that of [22], since that paper dealt with problems
defined over Id, whereas the current paper deals with problems defined
over more general domains. However, there is one important difference
between these papers. In [22], we assumed that k and f belonged to
Sobolev spaces, whereas the current paper assumes that they belong to
Hölder spaces. The reason for this change is that we need to know the
smoothness of composite functions v◦ρ, where v is a possible right-hand
side for our Fredholm problem and ρ ∈ R. We know the smoothness
for the Hölder case, but not for the Sobolev case.

In the Hölder case studied in this paper, this information was pro-
vided by Lemma 5.6. This lemma was actually proved in [24]. The
proof consists of using the Faa di Bruno formula [5, Thm. 2.1] for
derivatives of a composite function, along with the fact that the re-
striction of a Cr(Ω) function to some Ω′ ⊂ Ω is a Cr(Ω′) function, even
if Ω′ is of lower dimension than Ω.

Now suppose that we consider the Sobolev case. Here, the set R will
be as it was in the rest of this paper, but K and the set of right-hand-
side functions f will be Sobolev classes. That is, we let K consist of
the functions k ∈ Cr2(I2l) satisfying

‖k‖Cr2(I2l) ≤ c3,

along with the uniform invertibility condition

‖(I − Tρ,kρ)−1‖Lin[Lp(Id)] ≤ c4 ∀ ρ ∈ R

that are suitable for the Sobolev case. Our right-hand-side functions f
will be the unit ball of W r3,p(I l). We measure error in the Lp(Id)-sense.

If we were to try to establish a Sobolev version of Lemma 5.6, we
would once again start with the Faa di Bruno formula. We would
be done once we knew the Sobolev ρ(Id)-smoothness of a Sobolev I l

function for ρ ∈ R.

First, suppose that d = l. We can then use the Sobolev space change-
of-variables theorem [1, Thm. 3.35] to see that there exists C > 0 such
that

‖v‖Wmin{r1,r3/p}(ρ(Id)) ≤ C‖v‖W r3,p(Id) ∀ v ∈ W r3,p(Id)
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for any ρ ∈ R. This is sufficient to establish the Sobolev version of
Lemma 5.6 that we need for the case d = l. It is not too difficult to see
that the results in §5 now extend to this case. The main difference is
that C(Id) and L∞(Id) should be replaced by Lp(Id), and that L1(Id)
should be replaced by Lp′(Id), where p′ = p/(p− 1).

Now suppose that d < l. Let v ∈ W r3,p(I l). The Sobolev trace
theorem tells us that v ∈ W r3−1/p,p(∂I l). Now consider a face of ∂I l,
such as I l−1 × {0}. Then the restriction of v to I l−1 × {0} lies in the
space W r3−1/p,p(I l−1×{0}). Treating such a face as I l−1 and repeating
this argument, we eventually find that v ∈ W r3−(l−d)/p,p(id(Id)).

However, we are interested in the Sobolev smoothness of f over ρ(Id),
rather than over id(Id). For ρ sufficiently smooth (i.e., r1 ≥ r3), this
result is covered by [3, § 5.5, Remark 21]. But we need a more general
result, holding for all admissible values of r1 and r3.

Based on the discussion above, we state

Conjecture 7.1. There exists C > 0 such that

‖v‖Wmin{r1,r3−(l−d)/p}(ρ(Id)) ≤ C‖v‖W r3,p(Il) ∀ v ∈ W r3,p(I l)

for any ρ ∈ R.

We emphasize that this conjecture holds if d = l or r1 ≤ r3; it only
needs to be proved when d < l and r1 < r3.

If this conjecture holds, it can be shown that the results of this paper
may be extended to the Sobolev case, provided that we redefine

μ1 = min
{

r1

d
,
r2

2d
,
r3 − (l − d)/p

d

}
and μ2

= min
{

r1 − 1
d

,
r2

2d
,
r3 − (l − d)/p

d

}
.
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