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ABSTRACT. The purpose of this paper is to deal with the
superposition operator as well as with solutions to nonlinear
integral equations in spaces of functions of bounded general-
ized ϕ-variation.

1. Introduction. The notion of ϕ-variation of a real function was
introduced by L.C. Young [13] (see also [14]) in connection with the
investigation of the behaviour of Fourier series. This concept seems to
be one of the most important generalizations of the classical variation in
the sense of Jordan. It is noteworthy to recall that the space of functions
of bounded ϕ-variation from the point of view of functional analysis and
some applications were studied by J. Musielak and W. Orlicz [11], and
R. Leśniewicz and W. Orlicz [9]. Additionally, composing functions of
bounded ϕ-variation were investigated by J. Ciemnoczo�lowski and W.
Orlicz [6]; in particular, they proved a generalization of the result by M.
Josephy [8] with regard to composing functions of bounded variation
in the sense of Jordan.

We recall that basic results concerning the superposition operator
in different spaces, in particular in the space of functions of bounded
variation in the sense of Jordan as well as exhaustive references on this
topic can be found in [2].
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We recall also that the parameter t in ϕ(t, u), in connection with
spaces of functions of bounded ϕ-variation, was introduced and inves-
tigated in papers by S. Gni�lka (see e.g. [7]). Such spaces are called
spaces of functions of generalized bounded ϕ-variation.

This paper serves two main purposes. Firstly, it will function to
further our interest in the superposition operator acting in the space
of functions of generalized bounded ϕ-variation. In particular, for
the large class of functions ϕ(t, u), we will formulate the conditions
which ensure the composition operator maps the space of functions
of generalized bounded ϕ-variation into itself (see Corollary 1). Our
results expand on the results proved by Ciemnoczo�lowski and Orlicz
[6].

Secondly, it will function as a medium by which we can observe solu-
tions, particularly continuous solutions, to nonlinear integral equations
which are functions of generalized bounded ϕ-variation.

Our results generalize the previous ones from the papers [3, 4, 5].
Let us draw a reader’s attention to Remark 1. In a sense, this remark
explains the significance of our results. In particular, for some class of
functions ϕ(t, u) we obtain solutions to equations under consideration,
which are functions of bounded variation in the sense of Jordan,
constant on each interval of continuity.

The paper is organized as follows. In Section 2 we will collect a
few definitions and facts which will be needed in the sequel. Section 3
contains results about the performana of the autonomous superposition
operator in the space of functions of generalized bounded ϕ-variation.
Finally, in Sections 4-6 we will deal with solutions to the nonlinear
Hammerstein as well as the Volterra-Hammerstein integral equation
which are functions of generalized bounded ϕ-variation. We will prove
a number of existence results concerning local and global solutions to
these equations.

The proofs of the theorems from Section 6 are based on the Leray-
Schauder alternative for contractions from [12].

2. Preliminaries. In this section we will collect some definitions
and results which will be needed in the sequel. Throughout this paper
we assume that ϕ : [0, a] × R+ → R+, a < +∞ satisfies the following
conditions:
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(i) ϕ(t, u) is a continuous, nondecreasing function of u ≥ 0 for every
t ∈ [0, a], ϕ(t, u) → +∞ as u→ +∞;

(ii) ϕ(t, 0) = 0 for every t ∈ [0, a] and ϕ(0, u) = 0 implies u = 0.

Let X = {x : [0, a] → R}. Recall that for a function x ∈ X , the
number

Vϕ(x) = sup
Π

n∑
i=1

ϕ(si, |x(ti) − x(ti−1)|),

where the supremum is taken over all partitions Π : 0 = t0 < t1 < · · · <
tn = a with intermediate points si ∈ [ti−1, ti], i = 1, . . . , n, is called
the generalized ϕ-variation of the function x in [0, a]. Let us denote

BVϕ = BVϕ(I) = {x ∈ X : Vϕ(λx) < +∞ for some λ > 0},

where I = [0, a]. It is well-known that, if ϕ satisfies the condition:

(iii) ϕ(t, u) is a convex function of u for all t ∈ [0, a],

then BVϕ(I) with the norm

‖x‖Vϕ = inf
{
ε > 0 : Vϕ

(x
ε

)
≤ 1
}

is a Banach space (see [10], Theorem 10.8, p.71 and Theorem 1.5, pp.
2-3). Elements of this space will be called generalized BVϕ-functions
and solutions to integral equations belonging to this space will be called
generalized BVϕ-solutions.

Let us denote ψ(u) = sup
0≤s≤a

ϕ(s, u) and we will assume that the

following condition is satisfied

(iv) if ψ(u) = 0, then u = 0.

For other basic concepts concerning modular spaces (as e.g. ϕ-
function, s-convexity, the condition Δ2 for small u) a reader is referred
to [10].

3. Superposition operator in BVϕ(I). We start with the following

Lemma 1. Let ϕ : [0, a] × R+ → R+ satisfy conditions (i) and (ii).
Let Fn : R → R be a sequence of functions such that Fn(0) = 0. Assume
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that for any v > 0 there exists Kv > 0 such that for any u1, u2 ∈ [−v, v]
and n ∈ N

|Fn(u1) − Fn(u2)| ≤ Kv|u1 − u2|.
Then for any x ∈ BVϕ there exists λ > 0 such that

sup
n∈N

Vϕ(λ(Fn ◦ x)) < +∞.

Proof. Fix x ∈ BVϕ and λ > 0 with Vϕ(λx) < +∞. By [10]
Theorem 10.7, (a), p. 69, there exists v > 0 such that for any t ∈ [0, a],
|x(t)| < v. By our assumptions, for any partition Π = {t0, t1, ..., tl} of
[0, a] and si ∈ [ti−1, ti], i = 1, ..., l, we have

l∑
i=1

ϕ(si,
λ

Kv
|Fn(x(ti)) − Fn(x(ti−1))|)

≤
l∑

i=1

ϕ(si, λ|x(ti) − x(ti−1)|) ≤ Vϕ(λx) < +∞.

Hence sup
n∈N

Vϕ( λ
Kv

(Fn ◦ x)) < +∞, as required.

Before presenting the next results, we firstly introduce some notation.
Let g : R+ → R+ be a continuous, nondecreasing function such that

(v) lim
u→+∞ g(u) = +∞;

(vi) g(u) = 0 if and only if u = 0;

(vii) g satisfies Δ2 condition for small u, that is there exists a constant
k̃ > 0 such that g(2u) ≤ k̃g(u) for 0 ≤ u ≤ ũ, where ũ > 0 is fixed.

Furthermore, we assume that there exist positive constants M,m and
u0 > 0 such that for any u ∈ [0, u0] and t ∈ [0, a]

(1) mg(u) ≤ ϕ(t, u) ≤Mg(u).

Now we can state



INTEGRAL EQUATIONS IN THE SPACE OF FUNCTIONS 5

Therorem 1. Let ϕ : [0, a] × R+ → R+ and g : R+ → R+ satisfy
the conditions (i),(ii), (v)-(vii) and (1). Let Fn : R → R be a sequence
of functions such that Fn(0) = 0. Then the following conditions are
equivalent:

(a) For any x ∈ BVϕ there exists k > 0 such that

sup
n∈N

Vϕ(k(Fn ◦ x)) < +∞;

(b) For any v > 0 there exists Kv > 0 such that for any u1, u2 ∈
[−v, v] and n ∈ N

g(|Fn(u1) − Fn(u2)|) ≤ Kvg(|u1 − u2|).

Proof. Assume that condition (a) is satisfied and fix x ∈ BVϕ. By
[10] Theorem 10.7, (b), p. 69, there exists M > 0 such that for any
n ∈ N and t ∈ [0, a],

(2) |Fn(x(t))| < M.

Hence there exists k1 > 0 such that k1|Fn(x(t))| < u0
2 for any t ∈ [0, a]

and n ∈ N. Without loss of generality, we can assume that k < 1 and
k1 < 1. Note that for any partition Π = {t0, t1, ..., tl} of [0, a], by (1)
and (a),

l∑
i=1

g(k1k|Fn(x(ti))−Fn(x(ti−1))|)

≤
l∑

i=1

ϕ(si, k1k|Fn(x(ti)) − Fn(x(ti−1))|)/m

≤
(

sup
n∈N

Vϕ(k1k(Fn ◦ x))
)
/m < +∞.

Consequently for any x ∈ BVϕ

(3) sup
n∈N

Vg(k1k(Fn ◦ x)) < +∞.
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Observe that by (1) and [10], Theorem 10.11, p. 74, BVϕ = BVg.
Hence for any x ∈ BVg (3) holds true. Now we show that

(4) sup
n∈N

Vg(Fn ◦ x) < +∞

for any x ∈ BVg. Since g satisfies local Δ2 condition and g is nonde-
creasing, for any M > 0 and u ∈ [0,M ], there exists LM > 0

g(2u) ≤ LMg(u).

Fix M > 0 satisfying (2) and w ∈ N such that 2−w < kk1. Note that
for any partition Π = {t0, t1, ..., tl} of [0, a] and n ∈ N,

l∑
i=1

g(|Fn(x(ti))−Fn(x(ti−1))|)

≤ (LM )w
l∑

i=1

g(2−w|Fn(x(ti)) − Fn(x(ti−1))|)

≤ (LM )w(
l∑

i=1

g(kk1|Fn(x(ti)) − Fn(x(ti−1))|))

< (LM )w sup
n∈N

Vg(kk1(Fn ◦ x)) < +∞,

which shows our claim. By (4) and [6], Theorem 1 applied to g, for any
v > 0 there exists Kv > 0 such that for any u1, u2 ∈ [−v, v] and n ∈ N

(5) g(|Fn(u1) − Fn(u2)|) ≤ Kvg(|u1 − u2|),

which shows (b).
Now assume that (b) is satisfied and fix x ∈ BVϕ. Let k > 0 be such
that Vϕ(kx) < +∞. By [10], Theorem 10.7 a), p. 69 x is a bounded
function. Choose v > 0 such that |x(t)| < v for any t ∈ [0, a]. Since g
is nondecreasing, lim

u→+∞ g(u) = +∞, and Fn(0) = 0, by (5),

sup{|Fn(u)| : n ∈ N, u ∈ [−v, v]} < +∞.

Hence making k smaller, if necessary, we can assume that k|x(t)| < u0

and k|Fn(x(t))| ≤ u0
2 for any t ∈ [0, a] and n ∈ N. Since g satisfies
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local Δ2 condition, by (b) there exists Lv > 0 such that for any
u1, u2 ∈ [−v, v] and n ∈ N,

(6) g(k|Fn(u1) − Fn(u2)|) ≤ Lvg(k|u1 − u2|).
Note that for any partition Π = {t0, t1, ..., tl} of [0, a] and si ∈ [ti−1, ti],
i = 1, ..., l, by (1) and (6),

l∑
i=1

ϕ(si, k|Fn(x(ti))−Fn(x(ti−1))|)

≤M

(
l∑

i=1

g(k|Fn(x(ti)) − Fn(x(ti−1))|)
)

≤ (MLv)

(
l∑

i=1

g(k|x(ti) − x(ti−1)|)
)

≤ MLv

m

(
l∑

i=1

ϕ(si, k|x(ti) − x(ti−1)|)
)

≤ MLv

m
Vϕ(kx) < +∞.

Hence
sup
n∈N

Vϕ(k(Fn ◦ x)) < +∞,

which completes the proof.

Theorem 2. Let ϕ and g be as in Theorem 1. Furthermore, we
assume that g is s-convex for some s ∈ (0, 1] or there exists t ∈ [0, a]
such that ϕ(t, .) is s-convex for some s ∈ (0, 1]. Then (a) is equivalent
to

(c) For any v > 0 there exists Kv > 0 such that for any u1, u2 ∈
[−v, v] and n ∈ N

|Fn(u1) − Fn(u2)| ≤ Kv|u1 − u2|.

Proof. First we assume that g is s-convex. By Theorem 1, (a)
implies (b). Fix v > 0 and positive constant Lv corresponding to v
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by (b). Without loss of generality we can assume that Lv > 1. By
s-convexity,

g(
|Fn(u1) − Fn(u2)|

(Lv)1/s
) ≤ g(|Fn(u1) − Fn(u2)|)/Lv ≤ g(|u1 − u2|).

Since g is nondecreasing, this implies that

|Fn(u1) − Fn(u2)| ≤ (Lv)1/s|u1 − u2|

as required.

Now let us assume that ϕ(t, .) is an s-convex function for some
t ∈ [0, a] and s ∈ (0, 1]. We show that (b) implies (c). Fix v > 0.
Using the same logic as in the proof of Theorem 1 we can show that

sup{|Fn(u)| : u ∈ [−v, v], n ∈ N} < +∞.

Hence we can find k ∈ (0, 1) such that k|Fn(u)| < u0
2 and k|u| < u0

2 for
any n ∈ N and u ∈ [−v, v]. Since g satisfies local Δ2 condition, by (b)
and (1)

ϕ(t, k|Fn(u1) − Fn(u2)|) ≤Mg(k|Fn(u1) − Fn(u2)|)
≤ (LvM)g(|u1 − u2|) ≤MvMg(k|u1 − u2|) ≤ MvM

m
ϕ(t, k|u1 − u2|)

with some constant Mv > 0. Since ϕ(t, .) is s-convex, reasoning as in
the previous case, we get

k|Fn(u1) − Fn(u2)|
(MvM/m)1/s

≤ k|u1 − u2|,

which immediately give us (c) with the constant Kv = (MvM
m )1/s. By

Lemma 1, (c) implies (a). The proof is complete.

Corollary 1. Let ϕ, g be as in Theorem 2. Assume that F : R → R

satisfies F (0) = 0. Then the composition operator x→ F ◦x maps BVϕ

into BVϕ if and only if F satisfies local Lipschitz condition.

Proof. Follows immediately from Lemma 1 and Theorem 2, taking
Fn = F for any n ∈ N.
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Corollary 2. Let ϕ, g and Fn be as in Theorem 2. Assume that
there exists s ∈ (0, 1] such that ϕ(t, ·) is an s-convex function for any
t ∈ [0, a]. Then (a) is equivalent to

(d) There exists C > 0 such that

sup{‖Fn ◦ x‖ϕ,s : x ∈ Vϕ, ‖x‖ϕ,s = 1, n ∈ N} ≤ C.

Proof. By Theorem 2, (a) implies (c). By s-convexity of ϕ(t, ·), (c)
implies (d). Conversely, (d) implies

(e) For any x ∈ Vϕ, there exists Cx > 0 with sup
n

‖Fn ◦ x‖ϕ,s < Cx.

It is clear that (e) implies (a), which completes the proof.

4. Hammerstein integral equation. For simplicity assume that
a = 1. Assume also that ϕ satisfies conditions (i)-(iv) from Section 2.
Consider the Hammerstein integral equation

(7) x(t) = g(t) + ν

∫
I

K(t, s)f(x(s))ds for t ∈ I, ν ∈ R.

Assume that

10 g : I → R is a generalized BVϕ-function (g(0) = 0);

20 f : R → R is a locally Lipschitz function;

30 K : I × I → R is a function such that K(t, ·) is integrable in the
Lebesgue sense (briefly: L-integrable) for every t ∈ I, K(0, s) = 0 and
there exists a number α > 0 such that Vϕ

(
K(·,s)

α

)
≤ M(s) for a.e.

s ∈ I, where M : I → R+ is an L-integrable function.

Theorem 3. Under the above assumptions there exists a number
ρ > 0 such that for every ν with |ν| < ρ, equation (7) has a unique
generalized BVϕ-solution, defined on I.

Proof. First, let us observe that from 30 it follows that

inf{ε > 0 :
∫
I

Vϕ

(
K(·, s)
ε

)
ds ≤ 1} =: c < +∞.
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Indeed, by 30 we have
∫
I

Vϕ

(
K(·,s)

α

)
ds < +∞. Let β =

∫
I

Vϕ

(
K(·,s)

α

)
ds

and γ = max(1, β)α. Now, we have

∫
I

Vϕ

(
K(·, s)
γ

)
ds ≤ 1

max(1, β)

∫
I

Vϕ

(
K(·, s)
α

)
ds =

β

max(1, β)
≤ 1,

so
∫
I

Vϕ

(
K(·,s)

γ

)
ds ≤ 1. Thus

inf
{
ε > 0 :

∫
I
Vϕ

(
K(·,s)

ε

)
ds ≤ 1

}
=: c ≤ γ.

Choose a positive number r > 0 such that ‖g‖Vϕ < r. Denote
by Lr the Lipschitz constant which corresponds to the function f
and the interval [−r, r]. Choose a number ρ > 0 such that ‖g‖Vϕ +
cρ sup

[−r,r]

|f(t)| < r and ρLrcc̃ < 1, where c̃ > 0 is the infimum of all

positive numbers ˜̃c such that ‖x‖sup ≤ ˜̃c‖x‖Vϕ . The existence of such a
number c̃ follows from [10], 10.7c, p. 69 and [1], Theorem 4.1, p. 119.
Let B̄r denote the closed ball of center zero and radius r in the space
BVϕ(I). Fix ν such that |ν| < ρ. Define the operators

F (x)(t) =
∫
I

K(t, s)f(x(s))ds,

G(x)(t) = g(t) + νF (x)(t),

where x ∈ B̄r and t ∈ I. By Lemma 1, f(x) ∈ BVϕ(I), so in view
of [10], 10.7a, p.69 and Theorem 10.9, p.71 it is Lebesgue measurable
and bounded. Thus the mappings F and G are well defined. Now, we
verify that G maps B̄r into itself. Indeed, for any x ∈ B̄r, we have

‖G(x)‖Vϕ ≤ ‖g‖Vϕ + ‖νF (x)‖Vϕ

= ‖g‖Vϕ + inf{ε > 0 : Vϕ

(
νF (x)
ε

)
≤ 1}.

The sign ” sup
Π,{si}

” below denotes that the supremum is taken over

all partitions Π with all possible intermediate points si ∈ [ti−1, ti],
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i = 1, . . . , n. By the Jensen inequality, we have

Vϕ

(
νF (x)
ε

)
= sup

Π,{si}

n∑
i=1

ϕ

(
si,

|ν|
ε
|F (x)(ti) − F (x)(ti−1)|

)

≤ sup
Π,{si}

n∑
i=1

ϕ

(
si,

∫ 1

0

|ν|
ε
|K(ti, s) −K(ti−1, s)||f(x)(s)|ds

)

≤ sup
Π,{si}

n∑
i=1

ϕ

(
si,

∫ 1

0

|ν|
ε

sup
s∈I

|f(x)(s)||K(ti, s) −K(ti−1, s)|ds
)

≤ sup
Π,{si}

n∑
i=1

ϕ

(
si,

∫ 1

0

|ν|
ε

sup
t∈[−r,r]

|f(t)||K(ti, s) −K(ti−1, s)|ds
)

≤ sup
Π,{si}

n∑
i=1

∫ 1

0

ϕ

(
si,

|ν|
ε

sup
t∈[−r,r]

|f(t)||K(ti, s) −K(ti−1, s)|
)
ds

≤
∫ 1

0

Vϕ

(
|ν| sup

t∈[−r,r]

|f(t)|K(·, s)
ε

)
ds

and

inf
{
ε > 0 :Vϕ

(
νF (x)
ε

)
≤ 1
}

≤ inf

{
ε > 0 :

∫ 1

0

Vϕ

(
|ν| sup

t∈[−r,r]

|f(t)|K(·, s)
ε

)
ds ≤ 1

}

= |ν| sup
t∈[−r,r]

|f(t)| inf
{
ε > 0 :

∫ 1

0

Vϕ

(
K(·, s)
ε

)
ds ≤ 1

}

= |ν| sup
t∈[−r,r]

|f(t)|c.

Therefore, we conclude that

‖G(x)‖Vϕ ≤ ‖g‖Vϕ + |ν| sup
[−r,r]

|f(t)|c < r,

which means that G maps B̄r into itself.
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Similarly, for any x, y ∈ B̄r we have

Vϕ

(
ν(F (x) − F (y))

ε

)

≤ sup
Π,{si}

n∑
i=1

ϕ

(
si,

∫ 1

0

|ν|
ε
|K(ti, s) −K(ti−1, s)||f(x(s)) − f(y(s))|ds

)

≤ sup
Π,{si}

n∑
i=1

∫ 1

0

ϕ

(
si,

|ν|
ε

sup
s∈I

|f(x(s))−f(y(s))||K(ti, s)−K(ti−1, s)|
)
ds

≤ sup
Π,{si}

n∑
i=1

∫ 1

0

ϕ

(
si,

|ν|
ε
Lr sup

s∈I
|x(s)−y(s)||K(ti, s)−K(ti−1, s)|

)
ds

≤
∫ 1

0

Vϕ

(
|ν|Lr sup

s∈I
|x(s) − y(s)|K(·, s)

ε

)
ds,

and

‖G(x)−G(y)‖Vϕ = inf
{
ε > 0 : Vϕ

(
ν(F (x) − F (y))

ε

)
≤ 1
}

≤ inf
{
ε > 0 :

∫ 1

0

Vϕ(|ν|Lr sup
s∈I

|x(s) − y(s)|K(·, s)
ε

)ds ≤ 1
}

= |ν|Lrcc̃‖x− y‖Vϕ ,

so G is a contraction. Now, applying the Banach contraction principle
we infer that G has a unique fixed point in B̄r, which is a generalized
BVϕ-solution to equation (7).

Remark 1. (1) Let ϕ be a ϕ-function without parameter. Then
Theorem 3 reduces to Theorem 1 from [3].

(2) Again, let ϕ be a ϕ-function without parameter satisfying the
conditions u−1ϕ(u) → +∞ as u → 0+ and ϕ(u1 + · · · + un) ≤
k(ϕ(λu1) + . . . + ϕ(λun)) for n ∈ N with some constants k, λ > 0.
Let us denote

sx(t) = x(0 + 0) − x(0) +
∑
ti<t

(x(ti + 0) − x(ti − 0)) + x(t) − x(t− 0)

for 0 < t ≤ a for every x ∈ Vϕ, where t1, t2, . . . are all points of
discontinuity of x. It can be shown that in this case x(t) = sx(t) for
every t ∈ [0, a] (see [10], pp. 73-74 for details).
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(3) Now, assume that ϕ(t, u) satisfies the condition uψ−1(u) → +∞,
as u→ 0+, where ψ is the function defined in (iv) and let x ∈ Vϕ. One
can easily verify then that the function x is of bounded variation in
[0, a], in the usual sense. Moreover, it can be shown that x is constant
in each interval of continuity (see again [10], p. 73 for details).

To finish this section we indicate a class of functions which satisfy
the assumption 30.

Example 1. Let K : I × I → R be defined as follows: K(t, s) =
K1(t)K2(s) for (t, s) ∈ I2, where K2 is an L-measurable and bounded
function on I, Vϕ(K1) < +∞ and K1(0) = 0. Obviously K(t, ·) is
L-integrable on I for every t ∈ I. Moreover, we have

Vϕ(
K(·, s)
α

) = sup
Π,{si}

n∑
i=1

ϕ

(
si,

|K(ti, s) −K(ti−1, s)|
α

)

≤ |K2(s)|
α

sup
Π,{si}

n∑
i=1

ϕ(si, |K1(ti) −K1(ti−1)|)

=
|K2(s)|
α

Vϕ(K1),

where α = sup
s∈I

|K2(s)| (obviously, we can assume α > 0 to avoid

triviality) and the function s → |K2(s)|
α Vϕ(K1) is L-integrable on I.

Hence the function K satisfies assumption 30.

5. Volterra-Hammerstein integral equation. Throughout this
section we assume that ϕ-function ϕ is convex and satisfies following
Δ2-condition:

ϕ(t, 2u) ≤ kϕ(t, u) for 0 ≤ u ≤ u0, t ∈ [0, a],

where u0 > 0 is fixed and k is a positive constant. For simplicity we

assume again that a = 1. For x ∈ X , we shall denote by
1∨
s

ϕ(x) the

ϕ-variation of x on the interval [s, 1], where 0 ≤ s < 1.

Consider the following Volterra-Hammerstein integral equation

(8) x(t) = g(t) +

t∫
0

K(t, s)f(x(s))ds for t ∈ I.
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Let us define K̃(t, s) =
{
K(t, s) , 0 ≤ s ≤ t,

0 , t < s ≤ 1.
To continue we will need the following assumption

40 Let T = {(t, s) : 0 ≤ t ≤ 1, 0 ≤ s ≤ t} and K : T → R be a
function such that K(t, ·) is an L-integrable on [0, t] for every t ∈ I,

and there exists a number α > 0 such that
1∨
0

ϕ

(
K̃(·,s)

α

)
≤ m(s) for

a.e. s ∈ I, where m : I → R+ is an L-integrable function.

Now, we prove the following

Theorem 4. Suppose conditions 10, 20 and 40 are satisfied. Then
there exists an interval J ⊂ I such that the equation (8) has a unique
generalized BVϕ-solution, defined on J .

Proof. Let r, Lr and c̃ be as in the proof of Theorem 3. Choose
a positive integer N such that sup

t∈[−r,r]

|f(t)| α
2N + ‖g‖Vϕ < r and

Lrc̃
α
2N < 1. Further, let 0 < d ≤ min{u0, 1} be such that

(9)
∫ d

0

d∨
0

ϕ

(
2NK̃(·, s)

α

)
ds ≤ kN

∫ d

0

m(s)ds ≤ 1.

Indeed, by 40 and the absolute continuity of the Lebesgue integral,
there exists 0 < d ≤ min{u0, 1} such that∫ d

0

d∨
0

ϕ

(
K̃(·, s)
α

)
ds ≤

∫ d

0

m(s)ds ≤ 1.

In view of the Δ2-condition, we obtain∫ d

0

d∨
0

ϕ

(
2K̃(·, s)

α

)
ds ≤ k

∫ d

0

m(s)ds,

so one can choose d such that k
∫ d

0
m(s)ds ≤ 1. Using arguments

from above we deduce that for every N ∈ N there exists a number
0 < d ≤ min{u0, 1} which satisfies (9). From (9) we get the inequality

(10) inf

{
ε > 0 :

∫ d

0

d∨
0

ϕ

(
K̃(·, s)
ε

)
ds ≤ 1

}
≤ α

2N
.
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Define J = [0, d] and G(x)(t) = g(t) + F (x)(t), where

F (x)(t) =
∫ t

0

K(t, s)f(x(s))ds, for x ∈ B̄r, t ∈ J,

(B̄r denotes here the same ball as in the proof of Theorem 3). Now,
we verify that G maps B̄r into itself. We have obviously

‖G(x)‖Vϕ ≤‖g‖Vϕ +‖F (x)‖Vϕ =‖g‖Vϕ +inf

{
ε > 0 :

d∨
0

ϕ(
F (x)
ε

) ≤ 1

}
.

Since
d∨
0

ϕ

(
F (x)
ε

)
= sup

Π,{si}

n∑
i=1

ϕ

(
si,

1
ε
|F (x)(ti) − F (x)(ti−1)|

)

= sup
Π,{si}

n∑
i=1

ϕ

(
si,

∣∣∣∣
∫ ti

0

1
ε
K(ti, s)f(x(s))ds−

∫ ti−1

0

1
ε
K(ti−1, s)f(x(s))ds

∣∣∣∣
)

= sup
Π,{si}

n∑
i=1

ϕ

(
si,

∣∣∣∣∣
∫ d

0

1
ε

(K̃(ti, s) − K̃(ti−1, s))f(x(s))ds

∣∣∣∣∣
)

≤ sup
Π,{si}

n∑
i=1

ϕ

(
si,

1
d

∫ d

0

d
1
ε

sup
s∈J

|f(x(s))||K̃(ti, s) − K̃(ti−1, s)|ds
)

≤ sup
Π,{si}

n∑
i=1

1
d

∫ d

0

ϕ

(
si,

d

ε
sup

t∈[−r,r]

|f(t)||K̃(ti, s) − K̃(ti−1, s)|
)
ds

≤
∫ d

0

d∨
0

ϕ

(
sup

t∈[−r,r]

|f(t)|K̃(·, s)
ε

)
ds,

so

inf
{
ε > 0 :

d∨
0

ϕ

(
F (x)
ε

)
≤ 1
}

≤ inf

{
ε > 0 :

∫ d

0

d∨
0

ϕ

(
sup

t∈[−r,r]

|f(t)|K̃(·, s)
ε

)
ds ≤ 1

}

= sup
t∈[−r,r]

|f(t)| inf

{
ε > 0 :

∫ d

0

d∨
0

ϕ

(
K̃(·, s)
ε

)
ds ≤ 1

}
.
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Further, by (10), we get

inf

{
ε > 0 :

d∨
0

ϕ(
F (x)
ε

) ≤ 1

}
≤ sup

t∈[−r,r]

|f(t)| α
2N

.

Thus ‖G(x)‖Vϕ < r which means that G(B̄r) ⊂ B̄r.

Now, for any x, y ∈ B̄r we have

‖G(x) −G(y)‖Vϕ = inf

{
ε > 0 :

d∨
0

ϕ(
F (x) − F (y)

ε
) ≤ 1

}

and

d∨
0

ϕ

(
F (x) − F (y)

ε

)

= sup
Π,{si}

n∑
i=1

ϕ

(
si,

1
ε
|F (x)(ti) − F (x)(ti−1) − F (y)(ti) + F (y)(ti−1)|

)

≤ sup
Π,{si}

n∑
i=1

ϕ

(
si,

∫ d

0

1
ε
|K̃(ti, s) − K̃(ti−1, s)||f(x(s)) − f(y(s))|ds

)

≤ sup
Π,{si}

n∑
i=1

∫ d

0

ϕ

(
si,

1
ε

sup
s∈J

|f(x(s))−f(y(s))||K̃(ti, s)−K̃(ti−1, s)|
)
ds

≤ sup
Π,{si}

n∑
i=1

∫ d

0

ϕ

(
si,

1
ε
Lr sup

s∈J
|x(s) − y(s)||K̃(ti, s) − K̃(ti−1, s)|

)
ds

≤
∫ d

0

d∨
0

ϕ

(
Lr sup

s∈J
|x(s) − y(s)|K̃(·, s)

ε

)
ds,

so, by (10), we get

‖G(x)−G(y)‖Vϕ

≤ inf

{
ε > 0 :

∫ d

0

d∨
0

ϕ(Lr sup
s∈J

|x(s) − y(s)|K̃(·, s)
ε

)ds ≤ 1

}

≤ Lr sup
s∈J

|x(s) − y(s)| α
2N

≤ Lrc̃
α

2N
‖x− y‖Vϕ.
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By the Banach contraction principle, we infer that G has a unique fixed
point in B̄r, which is a generalized BVϕ-solution of the equation (8).

6. Global solutions of equations (7) and (8). Let us begin
with the Hammerstein integral equation of the form

(11) x(t) = g(t) +
∫
I

K(t, s)f(x(s))ds, for t ∈ I,

where I = [0, 1] for simplicity. Assume that

50 f : R → R;

60 there exists Ψ : [0,+∞) → [0,+∞) with Ψ(u) > 0 for u > 0 and
sup

s∈[0,1]

|f(x(s))| ≤ Ψ(‖x‖Vϕ) for any x ∈ BVϕ(I);

70 there exists M0 > 0 with M0/‖g‖Vϕ + Ψ(M0)c > 1, where c is the
constant defined in the proof of Theorem 3;

80 there exists a continuous and nondecreasing function ϕM0 :
[0,+∞) → [0,+∞) such that cϕM0(c̃z) < z for z > 0 and |f(x) −
f(y)| < ϕM0(|x− y|), for |x|, |y| ≤M0, where c̃ is the constant defined
in the proof of Theorem 3.

Now we prove the following existence result for equation (11).

Theorem 5. Under the assumptions 10, 30, 50-80, equation (11)
has a generalized BVϕ-solution, defined on I.

Proof. Let B̄M0 denote the closed ball of center zero and radius M0

in the space BVϕ(I). Define

G(x)(t) = g(t) +
∫
I

K(t, s)f(x(s))ds, for x ∈ B̄M0 and t ∈ I.

For any x, y ∈ B̄M0 we have

‖G(x) −G(y)‖Vϕ

≤ inf

⎧⎨
⎩ε > 0 :

∫
I

Vϕ

(
K(·, s)
ε

sup
s∈I

ϕM0(|x(s) − y(s)|)
)
ds ≤ 1

⎫⎬
⎭

≤ cϕM0(c̃‖x− y‖Vϕ).
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From the above inequality it follows, in particular, that G(B̄M0) is
a bounded set. Now suppose that x ∈ BVϕ(I) with ‖x‖Vϕ = M0 is a
solution of

x(t) = λ

⎛
⎝g(t) +

∫
I

K(t, s)f(x(s))ds

⎞
⎠ for t ∈ I,

where λ ∈ (0, 1]. By 60 and 70, we have

‖x‖Vϕ ≤ ‖g‖Vϕ + sup
s∈I

|f(x(s))| · c ≤ ‖g‖Vϕ + cΨ(‖x‖Vϕ),

so

(12)
‖x‖Vϕ

‖g‖Vϕ + cΨ(‖x‖Vϕ)
≤ 1.

Since ‖x‖Vϕ = M0, (12) implies that

M0

‖g‖Vϕ + cΨ(M0)
≤ 1

which contradicts 70. Applying the nonlinear alternative of Leray-
Schauder type (see [12] Theorem 3.9) we infer that G has a fixed point
in the open ball BM0 , which obviously is a global generalized BVϕ

solution of (11).

Now, consider again equation (8), and write it in the following form

(13) x(t) = g(t) +
∫
I

K̃(t, s)f(x(s))ds, for t ∈ I.

Hence, as a corollary from Theorem 5 we obtain the following result
for equation (8).

Theorem 6. Suppose 10, 40, 50 and 60 are satisfied. Moreover,
assume that

90 there exists M0 > 0 with M0/‖g‖Vϕ + Ψ(M0)c̄ > 1, where c̄ =

inf
{
ε > 0 :

1∫
0

1∨
0

ϕ

(
K̃(·,s)

α

)
ds ≤ 1

}
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and condition 80 with c̄ instead of c holds. Then equation (13) has a
generalized BVϕ-solution, defined on I.

Remark 2. Note that the inequality ‖x‖sup ≤ ˜̃c‖x‖Vϕ , x ∈ BVϕ(I),
mentioned in the proof of Theorem 3, in particular implies that continu-
ous functions of bounded generalized ϕ-variation form a closed subspace
of the space BVϕ(I). Therefore, it is clear that if we assume addition-
ally that g is continuous and impose a suitable continuity assumption
on the kernel K, one can obtain the existence and uniqueness results
concerning continuous generalized BVϕ solutions to equations (7) and
(8).
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