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ABSTRACT. Prolate spheroidal wave functions (PSWFs)
arise as solutions of an integral equation. This makes them
bandlimited functions in a Paley-Wiener space, but because
they are also solutions to a Sturm-Liouville problem, they be-
have very much like polynomials locally. Chromatic series are
series expansions in which the coefficients are linear combina-
tions of derivatives of a function. They were introduced by
Ignjatovic as a replacement for Taylor’s series and are based
on orthogonal polynomials. Since the PSWFs are close to
orthogonal polynomials they can be used to replace them in
the Ignjatovic theory. The theory can be extended further to
prolate spheroidal wavelet series that then combine chromatic
series with sampling series. This leads to an overdetermined
system which can use either local or global data to approxi-
mate the original function.

1. Introduction. The theory of chromatic derivatives was intro-
duced by Ignjatovic [5] and colleagues in a series of technical reports of
the Kromos Corporation. See, e.g., [4,6,8]. In this theory, he proposed
an alternative to Taylor’s theorem suitable for signal processing appli-
cations. The approximations arising from Taylor’s theorem are almost
useless for band limited signals since the Taylor series do not converge
globally. There is another problem as well as we can see if this we write
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264 G. WALTER

the Taylor series of a σ−band limited function as

f(t) =
∑∞

n=0
f (n)(0)tn/n! =

∑∞
n=0

[
1
2π

∫ σ

−σ

(iω)nf̂(ω)dω

]
tn/n!,

where f̂ is the Fourier transform of f . This series clearly is not globally
convergent even though, as a band limited signal, f is an entire function
which may be rapidly decreasing. Also the coefficients given by the
integral involve primarily the values of f̂ near the endpoints of [−σ, σ].
In the Ignjatovic theory, other differential operators, which avoid this,
are used instead. These operators, based on orthogonal polynomials
{Pn(iω)}, may be used to get a good approximation to bandlimited
functions. Their coefficients involve integrals of the form

1
2π

∫ σ

−σ

Pn(iω)f̂(ω)dω = {Pn(D)f}(0).

Since orthogonal polynomials generally have a much more evenly dis-
tributed spectrum, these derivative operators Pn(D) are called chro-
matic derivatives. They lead to a series that is globally convergent as
shown in [4,6,8].

This theory is also an alternative to the Shannon sampling theorem
which is used to approximate bandlimited functions, but involves the
values of the function at infinitely many different points. In contrast
to the Taylor series, the partial sums of the sampling series converge
uniformly, but are not local since they require knowledge of the function
at all the integers. The Ignjatovic theory is also a local theory and
requires knowledge of the function (signal) only in a neighborhood of
the origin.

Another method giving good local approximation is the use of prolate
spheroidal wave functions (PSWFs). These do not strictly lead to
chromatic derivatives since they are not polynomials. However, they
are entire functions whose expansion converges very rapidly and can
be approximated by polynomials of low degree. These functions are
solutions of an integral equation and solve the problem of finding the
bandlimited function of unit total energy whose energy on a finite
(concentration) interval is maximized. Their study was pioneered by
Slepian and his colleagues at Bell Labs in the 1960’s [11,12], and has
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recently been revived because of applications in image analysis. These
functions form an orthogonal basis both of the space of bandlimited
functions and of L2 on the concentration interval. In this work we
show how these different approaches may be combined.

1.1 Quick Chromatic Derivatives In this section we present in ab-
breviated form the theory of chromatic derivatives as expounded in
[4,5,6,14] and several additional technical reports of Kromos corpo-
ration. This chromatic derivative is a generalization of the ordinary
derivative and leads to a series referred to as the chromatic expansion
of an analytic function f.

Let {pn} be a sequence of orthonormal polynomials with respect to
the bounded, non-negative weight function w(ω) on the real line, i.e.,∫ ∞

−∞
pn(ω)pk(ω)w(ω)dω = δnk.

This weight function will usually, but not always, have compact sup-
port. We assume furthermore that {pn} is complete in that the ex-
pansion in terms of these polynomials of a appropriate function g(ω)
converges;

(1) g(ω) =
∑∞

n=0

{∫ ∞

−∞
pn(ξ)g(ξ)dξ

}
pn(ω)w(ω).

This happens automatically in the sense of L2 if g/w1/2 also be-
long to L2. Then Parseval’s equality for the orthonormal system
{pnw1/2}becomes∫

|g|2/w =
∑ ∣∣∣< g

w1/2
, pnw1/2 >

∣∣∣2 =
∑

| < g, pn > |2.

This equality may be expressed as

g(ω)/w1/2(ω) =
∑∞

n=0

{∫ ∞

−∞
pn(ξ)g(ξ)dξ

}
pn(ω)w1/2(ω)

where the convergence is in the sense of L2(R) It, in turn, leads
immediately to (1) since multiplication by the bounded function w1/2
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is a continuous operation in L2(R) It should be observed that if w
has compact support on an interval, so does g on the same or smaller
subset.

For other functions we can get a formal expansion if the integral in
(1) exists, but cannot deduce that the expansion converges without
additional conditions. Nonetheless we shall proceed formally and then
try to justify the steps later.

Now let f(t) ∈ L2(R) with a Fourier transform given by f̂(ω) = g(ω).
Suppose furthermore that the inverse Fourier transform of pnw is

φn(t) :=
1
2π

∫ ∞

−∞
eiωtpn(ω)w(ω)dω.

Then formally we find

f(t) =
∑∞

n=0

{∫ ∞

−∞
pn(ξ)g(ξ)dξ

}
φn(t)(2)

=
∑∞

n=0
2π{pn(−iD)f}(0)φn(t)

=
∑∞

n=0
anφn(t)

provided that the inverse Fourier transform of the terms in (1) con-
verges to the inverse Fourier transform of g, namely f.

Again this will happen if g ∈ L2(1/w) since, by Schwarz’s inequality
we have∣∣∣∣f(t) −

∑N

n=0
anφn(t)

∣∣∣∣
=

∣∣∣∣ 1
2π

∫ ∞

−∞
eiωt(g(ω) −

∑N

n=0
anpn(ω)w(ω))dω

∣∣∣∣
≤ 1

2π

{∫ ∞

−∞

∣∣∣∣ g(ω)
w1/2(ω)

−
∑N

n=0
anpn(ω)w1/2(ω)

∣∣∣∣2 dω

}1/2

{∫ ∞

−∞
w(ω)dω

}1/2

.

The series expansion of g/w1/2 converges to it in the sense of L2 and
hence the last line converges to 0. It is also independent of t and
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therefore the left hand side converges to 0 uniformly for t ∈ R as
N → ∞.

The second line in (2) follows from the fact that the Fourier transform
changes derivatives into multiplication by iω, or in terms of the inverse
transform

1
2π

∫ ∞

−∞
eiωtf̂(ω)(ωn)dω = {(−iDt)nf}(t) = (−i)nf (n)(t).

This is evaluated at 0 to deduce that

1
2π

∫ ∞

−∞
f̂(ω)(ωn)dω = {(−iDt)nf}(0)

which then gives us the formula (2) we want because of the linearity
of the Fourier transform. The expression in the last line of (2) is the
chromatic expansion, since it involves the differential operator P (−iD),
the chromatic derivative.

This procedure works for all the classical orthogonal polynomials,
but is most interesting when a closed form can be found for φn(t). This
happens for Chebyshev polynomials, in which φn is a Bessel function,
for Legendre polynomials, in which it is spherical Bessel function,
and for Hermite polynomials, in which it is the product of a monic
polynomial and a Gaussian function [4,7].

2. A generalization We first observe that we do not need the
orthogonality, but merely need a biorthogonal pair {pn, hk} for which
the integral satisfies

(3)
∫ ∞

−∞
pn(ω)hk(ω)dω = δnk

in order to get the expansion in (2). The completeness of the or-
thonormal sequence is replaced by the requirement that the {hn} be
a Schauder basis. We can also replace the polynomial pn by an en-
tire function θn provided its power series converges sufficiently rapidly.
Then the chromatic derivative will involve an infinite series of deriva-
tives rather than a finite sum.
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We can even replace the function hk by a generalized function (dis-
tribution) and the integral in (3) by the value of this distribution on
the test function θn, which we denote by < hk, θn > . We also need
to apply Fourier transforms to these distributions. There are several
theories of the Fourier transform that we can use based on different
types of generalized functions, but we shall initially restrict ourselves
to S′, the space of tempered distributions [25].

The series in (1) then has the form

g =
∑∞

n=0
anhn

where g is an element of S′ as well. The convergence of this series is
weak* convergence, that is,

< g, θ >=
∑∞

n=0
an < hn, θ >

for each test function θ ∈ S. In particular, it holds for θk and
hence < g, θk >= ak. The Fourier transform and its inverse are both
continuous operations in S′, and hence the inverse Fourier transform f
of g is given by

f =
∑∞

n=0
anh̃n

where h̃n is the inverse Fourier transform of hn. In order for this to
be a proper chromatic series, the coefficients must be given by linear
combinations of derivatives of f or limits of such linear combinations
on the support of g. This will work if each θk is analytic on the support
of g since then an = [θn(−iD)f ](0) makes sense.

A more general space of generalized functions is the space Z ′, the
space of ”ultradistributions” whose test function space Z is composed
of entire functions so that the condition that the θk be analytic is auto-
matically satisfied. A less general space is the space E ′ of ”distributions
of compact support”. Its test function space E contains all C ∞ func-
tions. Both can be used to obtain chromatic series.

Example 1. As an example let θn = pn be given by pn(ω) = ωn/n!,
which belongs to the space E . Then if we take hk = δ(k), we find that

< hk, pn >=< δ(k)(ω), ωn/n! >= (−1)k < δ(ω), ω(n−k)/(n − k)! >
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by the well known properties of the delta function ([25], p.188). Since
< δ, φ >= φ(0) by definition, it follows that

< hk, pn >=< δ(k)(ω), ωn/n! >= δnk.

In this case pn, although a member of the space E , is unbounded. To
find its inverse Fourier transform, we need to consider it as a tempered
distribution from which we find it to be exactly (−i)nδ(n)/n! [25],
p.188. The inverse Fourier transform of hk in this case is given by
φk(t) = 1

2π (−it)k. The chromatic expansion (2) for then will be

f(t) =
∑∞

n=0

{∫ ∞

−∞
(ξn/n!)g(ξ)dξ

}
φn(t)

=
∑∞

n=0
2π{(iD)nf}(0)φn(t)

=
∑∞

n=0
f (n)(0)(tn/n!),

a familiar expression. For the convergence implicit in this series to
work, we must have g ∈ E ′,i.e., have compact support, and be analytic
near 0. But the end result holds for analytic functions, of course, but
only locally. It does not converge in the sense of E ′.

Example 2. As another example, we replace pn by the function
einω/2π with n now ranging from −∞ to ∞. We take hk to be given by
e−ikωχπ(ω), where χπ is the indicator function of [−π, π]. The inverse
Fourier transform of einω is δ(t − n), while that of hk is the familiar
sinc function

φk(t) =
sin π(t − k)

π(t − k)
.

The chromatic expansion for this example will be

f(t) =
∑∞

n=−∞

{
1
2π

∫ ∞

−∞
(einξ)g(ξ)dξ

}
φn(t)

=
∑∞

n=−∞ f(n)
sin π(t − n)

π(t − n)

another familiar formula. In this case the convergence holds for all π−
bandlimited functions, and is uniform for all t on the real line.
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FIGURE 1. The PSWFs ϕ0, ϕ1, ϕ3, ϕ4, with parameter values σ = π and τ = 1 on
the concentration interval [−1, 1].

3. Prolate spheroidal wave functions The prolate spheroidal
wave functions (PSWFs) have a combination of local and global prop-
erties that might make them a suitable generalization of chromatic
expansions. They are obtained by separating the variables in the wave
equation

∇2w + κ2w = 0

on a prolate spheroid. This leads to the differential equation eigenvalue
problem

(4) Pσ,τy := (τ2 − t2)
d2y

dt2
− 2t

dy

dt
− σ2t2y = μy,

which is similar to that of the Legendre polynomials. In Figure 1 we
show four of the PSFWs on their concentration interval [−τ, τ ] where
τ is the parameter appearing in (4); their similarity to Legendre poly-
nomials is apparent. But the solutions, i.e. the eigenfunctions {ϕn},
are not polynomials, although they share many of their properties.
These solutions are the PSWFs and constitute an orthogonal basis of
L2[−τ, τ ].
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FIGURE 2. The PSWFs ϕ0 with parameter values σ = π and τ = 1 on a larger
interval.
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FIGURE 3. The PSWFs ϕ0 with parameter values σ = π and τ = 2 on a larger
interval.
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In common with polynomials they can be extended to the entire
real line and even to the complex plane. However, in contrast to
polynomials, they are bounded on the real line and are entire functions
of exponential type in the complex plane. Figure 2 shows ϕ0, with
parameter values σ = π and τ = 1, on a larger interval; it is positive
on [−1, 1] and is smaller outside this interval. If τ is taken to have the
larger value 2 as in Figure 3, this concentration is even more apparent.

It appears almost to have compact support, but it cannot since it is
an entire function. In fact, as we shall see later, more than 99.9% of
the energy of ϕ0 is concentrated on [−2, 2].

They are also solutions to another problem, that of maximizing
the energy on an interval [−τ, τ ] of a σ−bandlimited function. This
problem is important in communications theory since all real signals
are bandlimited; as such they cannot be time limited as a consequence
of the Heisenberg uncertainty principle. The next best thing is to
maximize the ratio

(5) ρ =

∫ τ

−τ |f(t)|2dt∫ ∞
−∞ |f(t)|2dt

,

which lead to an integral equation

(6) [Sσ,τf ](t) :=
∫ τ

−τ

f(x)Sσ(t − x)dx = λf(t),

where Sσ is a rescaled sinc function. The function which maximizes the
ratio in (5) is the first PSWF ϕ0, the function among those orthogonal
to ϕ0 that maximizes this ratio is the next PSWF ϕ1, etc.

The reason the same functions are eigenfunctions of both the differ-
ential operator in (4) and the integral operator in (6) is that the two
operators commute. This was called a ”lucky accident” by Slepian, one
of the founders of the theory in the 1960s [11]. These PSWFs have
many additional unusual properties [21,23], some of which we list here.

3.1 Properties of PSWFs. We now restrict ourselves to σ = π in
order to simplify some of the formulas, but continue to allow τ to be
a variable parameter but suppress it in our notation. In addition to
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the equation (6), the {ϕn} satisfy an integral equation over (−∞,∞)
as well since all functions in Bπ do:∫ ∞

−∞
ϕn(x)S(t − x)dx = (ϕn ∗ S)(t) = ϕn(t)

This leads to a dual orthogonality [23]∫ τ

−τ

ϕn(x)ϕm(x)dx = λnδnm,

∫ ∞

−∞
ϕn(x)ϕm(x)dx = δnm.

In fact, the {ϕn} constitute an orthogonal basis of L2 (−τ, τ) , as
well as an orthonormal basis of the subspace Bπ of π− bandlimited
functions in L2 (−∞,∞) . Because of the isometric property of the
Fourier transform, it follows that {ϕ̂n} is also an orthogonal basis of
L2[−π, π].

As one might expect, the PSWFs are closely related to the Fourier
transforms. Indeed, the Fourier transform is given by

ϕ̂n(ω) = (−1)n

√
2τ

λn
ϕn

(τω

π

)
χπ(ω)

where χπ(ω) is the characteristic function of (−π, π). By a change of
scale we see that the PSWFs are also eigenfunctions of still another
integral operator [11]. In fact, if τ = π, then they are exactly
eigenfunctions of the Fourier transform on the interval [−π, π] and

1
2π

∫ π

−π

(−1)n

√
2π

λn
ϕn(ω)eiωtdω = ϕn(t).

They have some nice discrete properties arising from two types of
discrete orthogonality [21],

(7)
∞∑

k=−∞
ϕn(k)ϕm(k) = δmn,

∞∑
n=0

ϕn(k)ϕn(m) = δmk.

These may be used when one has only the sequence of sampled values
{f(k)} of the signal. It has the series expansion

f(k) =
∑

n

anϕn(k).
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The inverse is given by the series

(8) an =
∑

k

f(k)ϕn(k)

because of the orthogonality given by (7). These are the same coeffi-
cients as in the continuous expansion.

4. PSWF series as chromatic expansions The are several
ways in which series of these PSWFs can be interpreted as the general
chromatic expansions talked about in the section 2. We consider two of
them. The first involves using the standard orthogonal system {ϕn(ω)}
discussed above while the second involves the wavelet system based on
them introduced in [21].

4.1 Orthogonal expansions of PSWFs. We first take the orthogonal
system consisting of their Fourier transforms { ϕ̂n(ω)} on [−π, π]. Then,
for any g ∈ L2[−π, π], we have

g(ω) =
∑∞

n=0

{∫ π

−π

ϕ̂n(ξ)g(ξ)dξ

}
ϕ̂n(ω)

in place of (1), and the inverse Fourier transform gives

(9) f(t) =
∑∞

n=0
2π{ϕn(−iD)f}(0)ϕn(t).

Since the ϕn are entire functions, the chromatic derivative is given by
a power series which converges very rapidly but only locally. A better
choice would be to approximate the ϕn by Legendre polynomials on
the interval [−π, π], which is the procedure used in most numerical
calculations [16].

These approximations will be true chromatic derivatives, and will be
quite low order polynomials.

Two such polynomials are shown in Figures 4 and 6 with the errors
shown in Figures 5 and 7 respectively. Notice the different vertical
scales in the graphs of the errors.

The uniform error is less than 10−3 in both cases. The Legendre
polynomial approximation improves as n increases and for large n, ϕn
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FIGURE 4. The Legendre polynomial P0 approximation of degree 6 to ϕ0, σ =
π, τ = 1 on [−1, 1].
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FIGURE 5. The error in the polynomial approximation to ϕ0 on the interval [−1, 1].
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is very close to a polynomial of degree n. The formulae for the two
polynomial approximation used in Figures 4 and 6 are given below:

P0(t) := .94558− 1.07769t2 + .43213t4 − .07335t6

P4(t) := .02432− .30605t2 + .50760t4 − .18284t6 + .02570t8.

The PSWFs in these calculations are normalized such that
∫ ∞
−∞ |ϕn|2 =

1. Since as n increases, more of the energy of ϕn will be outside of the
interval [−τ, τ ], both it and the polynomial approximation will be small
in this interval and can be ignored eventually. For example if n = 20,
the maximum on [−1, 1] of |ϕ20| will be about 10−20. Of course, in our
theory, these approximations are taken in the Fourier transform do-
main; the corresponding approximations to the chromatic derivatives
are found by taking the inverse Fourier transform, which again will be
quite small.

The coefficients in (9) have an alternative expression obtained from
(8). It is

(9a) f(t) =
∑∞

n=0

∑∞
k=−∞ f(k)ϕn(k)ϕn(t).

Thus the same series can be interpreted as a chromatic series or as a
sampling series. If the data is very localized then the coefficients in (9)
are appropriate, whereas if the data is more global, then (9a) is better.

The series in these expressions generally converge very rapidly. This
arises because of the properties of the eigenvalues λn, which satisfy
1 > λ0 > λ1 > λ3 > ... > 0. The first [2τ ] are relatively close to 1 while
the remaining ones are close to 0 [11]. Thus the series in (9) may be
approximated by a small number of terms if the function f has most
of its energy concentrated in the interval [−τ, τ ]. In fact, we have the
following formulae

∞∑
n=0

λn = 2τ. and
∞∑

n=0

λn(1 − λn) ≤ A log+ τ + B.

These are important because of the version of Parseval’s equality for
f ∈ Bπ when the integrals are taken over the interval [−τ, τ ] :∫ τ

−τ

|f(x)|2dx =
∞∑

n=0

λn|an|2 ≈
2τ∑

n=0

λn|an|2
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–5e–06

0

5e–06

1e–05

1.5e–05

2e–05

2.5e–05

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

t

FIGURE 7. The error in the polynomial approximation to ϕ4 on the interval [−1, 1].



278 G. WALTER

For example, for τ = 1, the first three eigenvalues are 0.981, 0.749,
0.243, while the sum of all the remaining eigenvalues is 0.027. For
τ = 2, the first eigenvalue is 0.9994 which is also the proportion of
energy of the first PSWF ϕ0 concentrated on [−2, 2]. (See [23]). Thus
the values of ϕ0 outside of this interval will be negligible (as seen in
Figure 3).

4.2 Prolate spheroidal wavelets. As an alternative, we may use the
prolate spheroidal wavelets to obtain series representations of functions
in Bπ.

The first prolate spheroidal wave function, ϕ0, the one with maximum
concentration on [−τ, τ ], may be used to generate a basis of Bπ by the
expedient of taking its integer translates. The set of all such translates
{ϕ0(t − n)} has been shown to be a Riesz basis of Bπ [21]. In the
setting of wavelet theory, ϕ0 is a scaling function or father wavelet and
the closed linear span of {ϕ0(t−n)} is the space usually denoted as V0,
in this case, our Paley-Wiener space Bπ.

A Riesz basis has a dual basis {ϕ̃0(t − n)} which together with
{ϕ0(t − n)}constitute a biorthogonal system. We can get this dual
basis by defining the Fourier transform of the dual function ϕ̃0(t) as

(10) ̂̃ϕ0(ω) :=
ϕ̂0(ω)∑

k |ϕ̂0(ω − 2πk)|2 .

From this it follows that
∑

k
̂̃ϕ0(ω − 2πk)ϕ̂0(ω − 2πk) = 1, which, as

shown in wavelet theory, is equivalent to biorthogonality [2]. Since ϕ0

has support on [−π, π], it follows that the sum in the denominator re-
duces to a single term so that ̂̃ϕ0(ω) = (1/ϕ̂0(ω))χπ(ω). Furthermore,
since ϕ̂0 has no zeros in [−π, π], ̂̃ϕ0 will be a bounded function contin-
uous on [−π, π]. Now we can put this into a chromatic series setting
by using the generalization to (2). The role of φn will be played by
ϕ̃0(t − n), while the coefficients will be given by

∫ ∞

−∞
̂ϕ0(· − n)(ξ)g(ξ)dξ =

∫ ∞

−∞
ϕ̂0(ξ)e−inξg(ξ)dξ

= 2π{ϕ0(−iD)f}(n).
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Hence (2) in this case is

(11) f(t) =
∑

n
2π{ϕ0(−iD)f}(n)ϕ̃0(t − n).

Now ϕ̂0 is not a polynomial, but again can accurately be approxi-
mated by Legendre polynomials since it is just a multiple of ϕ0 with a
scale change [17].

Thus we have two possible approaches based on PSWFs. The first
involves the standard expansion in PSWF given by (9) which uses only
local values for the series while the second given by (11) involves global
values. If we combine the two, we have an overdetermined system, but
can use some terms from (9) to get good local approximation and then
some from (11) to get global approximation. If f is highly concentrated
on [−τ, τ ], the former series works better, if not, the latter works better.
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