
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 20, Number 2, Summer 2008

IDENTIFICATION OF A TEMPERATURE
DEPENDENT HEAT CONDUCTIVITY VIA

ADAPTIVE GRID REGULARIZATION

ANDREAS NEUBAUER

Communicated by Charles Groetsch

This paper is dedicated to the 70 th birthday of Zuhair Nashed

ABSTRACT. In this paper we treat the identification of
a temperature dependent heat conductivity in an elliptic par-
tial differential equation from a single boundary measurement.
We are especially interested in conductivities with discontinu-
ities. Therefore, we apply the recently developed adaptive
grid regularization method. After showing results about the
convergence of the method we present numerical results that
demonstrate in a convincing way that this method is a pow-
erful tool to identify discontinuous heat conductivities.

1. Introduction. In this paper we want to deal with the identifica-
tion of the parameter a in

−div(a(u)∇u) = f in Ω(1.1)

a(u)
∂u

∂n
= h on Γ = ∂Ω

from a single measurement of u at the boundary Γ.

Usually, one assumes that a varies spatially on x ∈ Ω. However, there
are interesting problems such as in the cooling process of a steel strand
where the heat conductivity depends merely on the temperature. The
stationary case leads to the nonlinear elliptic equation above.

Equation (1.1), however with mixed boundary conditions instead of
pure Neumann ones, was considered in [6], i.e., a Neumann condition
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was given on Γ1 and a Dirichlet condition u = g on Γ2 with Γ = Γ1∪Γ2.
The identification of a was done from a single measurement of u on
Γ1. Kügler showed that an identification is possible on the range
of u at Γ1 provided that g is constant and that a ∈ H1(I), where
I ⊂ R is a finite interval covering R(μ|Γ1). Moreover, he regularized
the ill-posed problem of identifying a via Tikhonov regularization and
gave smoothness conditions that guarantee convergence rates for the
regularized solutions.

We are interested in identifying parameters a that are not even con-
tinuous but have jumps. It is well known that standard regulariza-
tion methods (cf., e.g., [4]) do not yield good results for discontin-
uous solutions. Better suited regularization methods for such prob-
lems are bounded variation regularization techniques or methods that
have similar behavior (see, e.g., [1,5,7]). In [8,9] the author introduced
a new finite-dimensional regularization technique based on adaptive
grids. Numerical results in these papers show that this method is an
efficient and fast tool to identify discontinuous solutions of ill-posed
problems. The convergence analysis of this method was done in [10].

We will apply this method to the identification problem mentioned
above. It will turn out that this inverse problem can be reformulated via
a linear equation which makes the solution via regularization techniques
much easier.

First of all we will show in the next section that the direct problem
has a solution even for discontinuous parameters a. In Section 3, we will
describe the adaptive grid regularization method and give convergence
results when applied to the above identification problem. In the last
section we will present numerical results.

2. The direct and the inverse problem We consider equation
(1.1), where Ω is an open bounded convex subset of R

d (d = 1, 2, 3)
with Lipschitz boundary Γ, f ∈ L2(Ω), h ∈ L2(Γ), and the parameter
a satisfies the conditions

(2.1) 0 < a < a < a < ∞ and
a is continuous except at most countably many points

for some positive constants a, a. The direct problem consists in finding



IDENTIFICATION OF A TEMPERATURE DEPENDENT HEAT 231

a weak solution of (1.1), i.e., in looking for u ∈ H1(Ω) satisfying

〈a(u)∇u,∇v〉 = 〈f, v〉 +
∫

Γ

h v dσ

for all v ∈ H1(Ω), where 〈·, ·〉 denotes the inner product in L2(Ω).
Obviously, a solution can only exist if f and h satisfy the condition

(2.2)
∫

Ω

f dx +
∫

Γ

h dσ = 0,

which we assume to hold in the following. We will show in the next
proposition that (1.1) has a weak solution and that all solutions may
be expressed via the unique solution w ∈ V of

(2.3) 〈∇w,∇v〉 = 〈f, v〉 +
∫

Γ

h v dσ for all v ∈ V

with V := {v ∈ H1(Ω) :
∫
Ω

v dx = 0}. Note that existence and
uniqueness of w follow immediately from the Lax-Milgram Lemma.

Proposition 2.1. Let a satisfy (2.1) and let f ∈ L2(Ω) and
h ∈ L2(Γ) satisfy (2.2). Then equation (1.1) has a weak solution and
all weak solutions uc may be calculated via

(2.4) uc := A−1(w + c),

where w ∈ V is the unique solution of (2.3), c ∈ R is a constant and A
is defined via

(2.5) A(s) :=
∫ s

0

a(ξ) dξ.

Proof. First of all note that, due to (2.1), A is continuous and strictly
monotonically increasing. Thus, A−1 exists and is also continuous
and strictly monotonically increasing. Moreover, for any function
u ∈ H1(Ω) it holds that A(u) ∈ H1(Ω) with ∇A(u) = a(u)∇u.
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Therefore, it follows with the definition of w that any weak solution
of (1.1) satisfies that A(u) = w + c for some constant c ∈ R and hence
u = A−1(w + c).

It remains to be shown that uc := A−1(w+ c) is an element of H1(Ω)
for all c ∈ R: It is an immediate consequence of (2.1) that

a s ≤ A(s) ≤ a s for s ≥ 0 and a s ≤ A(s) ≤ a s for s < 0

and hence that

a−1 t ≤ A−1(t) ≤ a−1 t for t ≥ 0 and(2.6)
a−1 t ≤ A−1(t) ≤ a−1 t for t < 0.

This implies that uc ∈ L2(Ω). We still have to show that uc is
differentiable. This is trivial if a is continuous. Since then it holds that
A−1 is continuously differentiable with (A−1)′(t) = (a(A−1(t))−1 which
by the chain rule yields that ∇uc = a(uc)−1∇w. We will now show that
this is still valid even if a is discontinuous in at most countably many
points.

Let kn be the piecewise linear hat function defined by kn(0) = n and
kn(±n−1) = 0. Then we define an := kn ∗ a, i.e.,

an(t) =
∫ t

t− 1
n

(n − n2(t − ξ))a(ξ) dξ +
∫ t+ 1

n

t

(n + n2(t − ξ))a(ξ) dξ .

Obviously, an is continuous, a ≤ an ≤ a, and

|an(tn) − a(t)| ≤ sup
ξ∈[t− 1

n ,t+ 1
n ]

|a(ξ) − a(t)|.

Therefore,

(2.7) an(tn) −−−→n→∞ a(t) if tn → t and a is continuous in t .

We now define uc,n := A−1
n (w+ c), where An is defined as in (2.5) with

a replaced by an. Then, we know from the considerations above that
uc,n ∈ H1(Ω) and

(2.8)

∫
Ω

uc,n(x)∇φ(x) dx = −
∫

Ω

∇w(x)
an(uc,n(x))

φ(x) dx

for all φ ∈ C1
c (Ω).
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We have to show that this formula also holds in the limiting case. Since,
due to (2.1) and (2.6), the estimates

|uc,n| ≤ |w + c|
a

and
∣∣∣∣ ∇w

an(uc,n)

∣∣∣∣ ≤ |∇w|
a

are valid, by the Lebesgue Dominated Convergence Theorem it suffices
to show that

(2.9) uc,n
pw−→ uc a.e. and

∇w

an(uc,n)
pw−→ ∇w

a(uc)
a.e.

at least for a subsequence (here pw stands for pointwise).

Note that (2.1) and (2.7) imply that An converges pointwise towards
A. Since the estimates in (2.6) also hold for A−1

n , for an abitrary
subsequence of A−1

n (t) there is another subsequence (again denoted by
A−1

n (t)) and an element s ∈ R such that A−1
n (t) → s as n → ∞. The

estimate

|A(s) − t| ≤ |A(s) − An(s)| + |An(s) − t|
≤ |A(s) − An(s)| + |

∫ s

A−1
n (t)

an(ξ) dξ|

≤ |A(s) − An(s)| + a |s − A−1
n (t)| → 0

now shows that s = A−1(t) and that, hence, A−1
n converges pointwise

towards A−1. This already implies that the left assertion in (2.9) is
true for all x ∈ Ω. Due to (2.7), we now also obtain that the right
assertion holds for elements x ∈ Ω with a being continuous in uc(x).

Now let t be such that a is not continuous at t and let Dt := {x ∈
Ω : uc(x) = t}. From the definition of uc we then obtain that w|Dt is
constant. Now it follows from [2, Remark 3.93] that ∇w = 0 a.e. in
Dt. Thus, the second assertion in (2.9) also holds a.e. in Dt. Since a
is discontinuous in at most countably many points, the assertion holds
a.e. in Ω.

Finally, this yields that uc ∈ H1(Ω) with ∇uc = a(uc)−1∇w.

Obviously, the solution of a Neumann problem is not unique. How-
ever, it follows from the definition (2.4) similarly to (2.6) that

c2 − c1

a
≤ uc2(x) − uc1(x) ≤ c2 − c1

a
for c2 > c1, x ∈ Ω .
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This implies that
∫
Ω

uc(x) dx depends Lipschitz continuously on c and
that

lim
c→±∞

∫
Ω

uc(x) dx = ±∞ .

Now, by the Intermediate Value Theorem, it follows as for the
solution w of (2.3) that there exists a unique solution uc such that∫
Ω

uc(x) dx = 0, i.e., uc ∈ V .

Let us now turn to the inverse problem, i.e., from a given single
measurement of u at the boundary we want to identify a. The
first question that arises is of course if this problem has a unique
solution. The next proposition states similarly to [6, Theorem 3.1]
that an identification is possible only on the range of u at Γ, i.e., on
R(u|Γ) = R(γu). Here γ denotes the trace operator.

Proposition 2.2. Let a1 and a2 satisfy (2.1) and let f ∈ L2(Ω)
and h ∈ L2(Γ) satisfy (2.2). Moreover, let u1 and u2 be weak solutions
in H1(Ω) of equation (1.1) with a replaced by a1 and a2, respectively.

If γu1 = γu2, then a1 = a2 a.e. on R(u1|Γ).

If, in addition, γu1 is continuous on Γ and not constant, then
I := R(u1|Γ) is an interval and a1 = a2 for all points in I where
a1 and a2 are continuous.

Proof. It follows immediately from Proposition 2.1 that

∫ u1

0

a1(ξ) dξ −
∫ u2

0

a2(ξ) dξ = c1 − c2

Since, due to (2.1), it holds that γAi(u) = Ai(γu), i = 1, 2, for all
u ∈ H1(Ω) with Ai defined similarly as in (2.5), we now obtain for
γu1 = γu2 that

∫ τ

0

(a1(ξ) − a2(ξ)) dξ = c1 − c2 for all τ ∈ R(u1|Γ) .

This together with [2, Remark 3.93] yields that a1 = a2 a.e. on R(u1|Γ).
The remaining assertions are now trivial.
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Obviously, the result above is only of importance if R(u1|Γ) has
positive measure which is at least the case if γu1 is continuous on
Γ and not constant.

It is well known that the problem of identifying a is ill-posed. There-
fore, one has to use regularization techniques to solve this problem.
Usually, this is done by using the operator F that maps a onto a solu-
tion u. Even if we choose the unique solution u ∈ V , which makes the
operator F well defined, F is still a nonlinear operator. We will choose
a different way that allows to work merely with the measurements of u
on the boundary and where we have to find a regularized solution of a
linear equation.

Let us assume in the following that u ∈ H1(Ω) is a solution of the
forward problem for some a satisfying (2.1) and that u is bounded on
Γ and not constant, hence,

(2.10) R(u|Γ) ⊂ I := [umin, umax] with umax > umin .

This is not a severe restriction, since in practice temperatures will be
bounded. The inverse problem of identifying a in (1.1) is now equivalent
to finding a and c ∈ R such that

(2.11) Ta(u(x)) :=
∫ u(x)

umin

a(ξ) dξ = w(x) + c , x ∈ Γ ,

where w ∈ V is the solution of (2.3). Since it is obvious in the notation
above, we wrote u and w instead of γu and γw, respectively.

3. Adaptive grid regularization We mentioned above that the
identification problem is ill-posed and has to be solved by regularization
techniques. We use Tikhonov regularization combined with adaptive
grid regularization. The method is described as follows:

The regularized solutions are computed iteratively. In each iteration
a Tikhonov functional is minimized over a finite-dimensional space
a∗ + Xn, where a∗ is an initial guess and Xn is the space of piecewise
linear functions on the interval I corresponding to the grid τn. After
each iteration not only the grid but also the regularizing norm is
adjusted. Obviously, there is no need for a regularization with respect
to c. The details of the algorithm are described below.
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Algorithm 3.1. (Adaptive grid regularization) Let α, β > 0.

(i) Start with a uniform (rather coarse) grid τ1 in I = [umin, umax].
Set n := 1 and a0 := 0.

(ii) Compute a minimizer an, cn in Xn × R of

(3.1) gα,β(a, c, wn) := ‖Ta(u(x)) − (w(x) + c − Ta∗(u(x))‖2

+ α

∫
I

|ȧ(ξ)|2 w−1
n (ξ) dξ

wn(ξ) := |I|
√

β2 + |ȧn−1(ξ)|2
/∫

I

√
β2 + |ȧn−1(ξ)|2 dξ.

(iii) If a stopping criterion is satisfied, the iteration is finished.
The final solution of the identification problem is given by a∗ + an.
Otherwise:

(iv) Perform a local grid refinement

(3.2) τn+1 := G(τn, an) ,

where τn is the grid corresponding to the finite-dimensional space Xn.
Set n := n + 1 and go to step (ii).

For the motivation and justification of the regularizing norm in step
(ii) see [10]. As grid refinement in (3.2) we have chosen the following
procedure:

Let us assume that the grid τn is given by the nodes

umin = ξ0 < ξ1 < · · · < ξm(n) = umax

and set Si := [ξi−1, ξi]. A subinterval Si is refined according to the
following rules: a refinement is only performed if the length of the
subinterval is larger than a certain threshold, i.e.,

(3.3) |ξi − ξi−1| > hmin

Under all admissible subintervals only those are refined where the
corresponding weight wn,i := wn|Si , which is constant on each subin-
terval Si, since we use piecewise linear functions, is not smaller than
the k-th largest weight and close enough to the largest weight, i.e.,

(3.4) wn,i ≥ w̄k := k-th largest element among all wn,j

with |ξj − ξj−1| ≥ hmin,
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(3.5) wn,i > κ ∗ max{wn,j : |ξj − ξj−1| ≥ hmin}.

for some k ∈ N and hmin, κ > 0. If a subinterval Si satisfies all criteria
then two equally spaced nodes are added within Si.

Since the operator T defined in (2.11) is continuous from L1(I) into
L2(Γ) and 1 /∈ N (T ) we may apply the convergence analysis from [10]:

Noting that, due to the refinement condition (3.3), no refinement will
occur anymore after some iteration step n̄, i.e., Xn = Xn̄ for all n ≥ n̄,
the question arises if (an, cn) is convergent in Xn̄ × R. An answer to
this question follows directly from Proposition 2.2 and Theorem 2.3 in
[10]:

Theorem 3.2. The regularized solutions (an, cn) in step (ii) of
Algorithm 3.1 exist and are unique. Moreover, it holds that (an, cn)
converge to the unique minimizer (aα,β,n̄, cα,β,n̄) of

fα,β(a, c) := ‖Ta(u(x)) − (w(x) + c − Ta∗(u(x))‖2(3.6)
+α|I|−1Jβ(a)2

in Xn̄ × R as n → ∞,

where

Jβ(a) := sup
{∫

Ω

(
a(ξ)v̇(ξ) + β

√
1 − |v(ξ)|2

)
dξ : v ∈ C1

c (I), |v| ≤ 1
}

.

Note that in Xn̄ the definition of Jβ(a) above coincides with∫
I

√
β2 + |ȧ(ξ)|2 dξ. However, the definition also makes sense for

functions of bounded variation.

As the threshold hmin in (3.3) gets smaller and smaller, then n̄
obviously becomes larger and larger. Therefore, we are also interested if
aα,β,n̄ ∈ Xn̄ converges to a minimizer in some infinite-dimensional space
if n̄ tends to infinity. The following result is an immediate consequence
of Theorem 2.4 and Example 2.6 in [10]:

Theorem 3.3. The sequence {(aα,β,n̄, cα,β,n̄)} has a weakly∗

convergent subsequence in BV (I) × R. The limit (ã, c̃) of every
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weakly∗ convergent subsequence is a minimizer of fα,β in BV (I) and
limn→∞ fα,β(aα,β,n̄, cα,β,n̄) = fα,β(ã, c̃).

If the minimizer (aα,β, cα,β) of fα,β in BV (I) is unique, then
{(aα,β,n̄, cα,β,n̄)} weakly∗ converges towards (aα,β , cα,β) and hence

aα,β,n̄
Lp−→ aα,β , for all 1 ≤ p < ∞ , and cα,β,n̄ → cα,β,n̄ .

BV (I) denotes the space of functions of bounded variation consisting
of all functions a ∈ L1(I) with J0(a) < ∞.

Of course, in practice the data u are not given exactly but only noisy
measurements uδ are available with ‖uδ − u‖L2(Γ) ≤ δ. Moreover, in
general the function w in (2.3) can not be computed exactly which
yields additional data noise for the solution of the inverse problem.
Covergence results for (aα,β , cα,β) when the noise and the parameters
α and β go to 0 can be derived similary as in [3, 4].

4. Numerical results We will now present numerical results for the
problem of identifying a in (1.1), where Ω = [0, 1]2 and the functions
f ∈ L2(Ω) and h ∈ L2(Γ) are defined by

f(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

− 8

− 8
(

157
70 + 58

7 t(x, y)
)

− 16

t(x, y) ≤ 0 ,

0 < t(x, y) ≤ 7
29 ,

7
29 < t(x, y) ,

h(x, 0) :=

⎧⎪⎪⎨
⎪⎪⎩

1 ,

1 + 29
7 t(x, y) ,

2 ,

t(x, 0) ≤ 0 ,

0 < t(x, 0) ≤ 7
29 ,

7
29 < t(x, 0) ,

h(0, y) :=

⎧⎪⎪⎨
⎪⎪⎩

4
3 ,

4
3

(
1 + 29

7 t(x, y)
)

,

8
3 ,

t(0, y) ≤ 0 ,

0 < t(0, y) ≤ 7
29 ,

7
29 < t(0, y) ,

h(x, 1) := 6 ,

h(1, y) := 16
3 ,
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with
t(x, y) := 2((x − 1

3 )2 + (y − 1
4 )2) − 3

10 .

For the parameter a defined via

a(t) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 ,

1 + 29
7 t ,

13
10 ,

5 ,
5
2 ,

t ≤ 0 ,

0 < t ≤ 7
29 ,

7
29 < t ≤ 15

29

15
29 < t ≤ 9

10

9
10 < t ,

one can show that the direct problem of (1.1) has the weak solution

u(x, y) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t(x, y) ,
7
29 + 20

13 (t(x, y) − 7
29 ) ,

15
29 + 2

5 (t(x, y) − 61
145 ) ,

9
10 + 4

5 (t(x, y) − 799
580 ) ,

t(x, y) ≤ 7
29 ,

7
29 < t(x, y) ≤ 61

145 ,
61
145 < t(x, y) ≤ 799

580 ,
799
580 < t(x, y) ,

with t(x, y) as above.

As mentioned in Section 2, the inverse problem now consists in
identifying a from a single measurement of u at the boundary. Using
Algorithm 3.1 we have to compute Tikhonov regularized solutions (cf.
(3.1)). This is achieved by solving the linear system

(An + αMn)ηn = vn , ηn = (cn, an,0, . . . , am(n),0) ,

where

An :=
[ 〈1, 1〉L2(Γ)

−〈1, Tϕn,i(u)〉L2(Γ)

−〈1, Tϕn,j(u)L2(Γ)

〈Tϕn,i(u), Tϕn,j(u)〉L2(Γ)

]
,

Mn :=

⎡
⎣ 0 0

0
∫

I

ϕ̇n,i(ξ) ϕ̇n,j(ξ)w−1
n (ξ) dξ

⎤
⎦ ,

vn :=
[ −〈w − u, 1〉L2(Γ)

〈w − u, Tϕn,j(u)〉L2(Γ)

]
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FIGURE 4.1: results for exact u: left: n = 1; middle: n = 10; right: n = 25.

with I = [umin, umax], wn as in (3.1) and w as in (2.3). The functions
ϕn,i are the usual piecewise linear hat functions. As initial guess we
have chosen a∗ = 1.

The parameters in the refinement rules (3.3) - (3.5) and β were chosen
as: k = 20, hmin = 0.02, κ = 0.3, and β2 = 0.1. The initial grid τ1 was
a uniform mesh with dimension m(1) = 10.

The solution w of the Neumann problem (2.3) was calculated approx-
imately using bilinear finite elements on a uniform mesh of 101 × 101
nodes. All integrals were approximated using a Gaussian quadrature
rule based on 4 nodes in each subinterval. The number of subintervals
for each side of the square [0, 1]2 is denoted by sI .

To further speed up the algorithm in addition to refinement also
coarsening steps were performed after 20 iterations according to the
following rule: a node is dropped if the difference to the linear approx-
imation without this node is below a certain bound.

Figure 4.1 shows the results for the case where u is assumed to be
known exactly everywhere at the boundary:

umin = − 7
40 = −0.175, umax = 7628

6525 ≈ 1.169, sI = 10, α = 10−7.
After 10 iterations (dimension of τ10 : m(10) = 68) one can already
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FIGURE 4.2: results for noisy u: left: n = 28, 0.017% noise; middle: n = 30, 1%
noise; right: n = 30, 5% noise.

clearly see the jumps. Up to the 20th iteration the dimension grows to
148. Then coarsening starts: iterate 24 with dimension m(24) = 53 is
almost identical to the exact solution. Only the sharp corner can not
be identified.

Of course, in practice data are not measured everywhere. Thus, we
now assume that the solution u is only measured at the corners of
the subintervals, where the Gaussian quadrature is used. Choosing
sI = 100 means that u is evaluated at 400 equally spaced nodes at the
boundary. Between the nodes, u is calculated via linear interpolation.
This already yields to a noise of 0.017 % with resepect to ‖u‖L2(Γ).
The 28th iterate (m(28) = 60, umin and umax as above, α = 10−6) is
shown in the left part of Figure 4.2. The result is almost as good as
for the exact u; close to the sharp corner it is slightly worse.

Then we added random noise to the values of u at the nodes. The
middle part of Figure 4.2 shows the 30th iterate (m(30) = 100, umin =
−0.185, umax = 1.171, α = 5·10−6) when 1% noise was added. At least
the jumps could be identified, however not exactly the values between
the jumps. When adding 5% noise, the result were even worse, however
still much better than with standard Tikhonov regularization; see the
right part showing the 30th iterate (m(30) = 106, umin = −0.226,
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umax = 1.179, α = 5 · 10−5).
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