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ABSTRACT. In this paper, we prove convergence rates
for a previously [22] proposed multilevel method for solving
nonlinear ill-posed operator equations

F (x) = y.

By minimizing the distance to some initial guess under the
constraint of a discretized version of the operator equation for
different levels of discretization, we define a sequence of regu-
larized approximations to the exact solution, that in [22] had
been shown to be stable and convergent for arbitrary initial
guess, and can be computed via a multilevel procedure that
altogether yields a globally convergent method. In the present
paper we prove optimal logarithmic and Hölder type conver-
gence rates under respective source conditions. Moreover we
provide a tool for possible numerical solution strategies for the
minimization problem on each level of discretization by pro-
viding an exact penalty function derived via an augmented
Lagrangian approach.

1. Introduction. Consider a nonlinear operator equation

(1) F (x) = y

with a continuous operator F : D(F ) ⊆ X → Y between Hilbert spaces
X , Y , that is ill-posed in the sense of unstable dependence of a solution
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on the data. Since in practice we are given only noisy data yδ (with
here presumably known noise level δ) according to

(2) ‖y − yδ‖ ≤ δ ,

it is necessary to apply regularization (see, e.g., [6, 12, 24, 25, 31, 36,
44, 46], and especially [1, 14, 15, 16, 23, 34, 40] on iterative methods
for nonlinear problems).

Combining the idea of regularization by discretization (cf., e.g., [4, 8,
13, 21, 24, 27, 28, 35, 37, 38, 45] ) with an iterative solution aspect,
in [22] we proposed a multilevel regularization method as follows:
Considering a sequence of finite dimensional subspaces (Yl)l∈IN of data
space Y with kl := dim(Yl) <∞ for all l ∈ IN, but kl → ∞ as l → ∞,
we restrict the original equation (1) to Yl by a mapping Ql : Y → Yl

(3) QlF (x) = Qly
δ .

A solution x in the infinite dimensional space X of the finitely many
equations defined by (3) is highly nonunique, so we adopt the concept
of a best approximate solution known from the linear case (see, e.g., [6,
33]), by minimizing the distance to some point x0

min‖x− x0‖ s.t. QlF (x) = Qly
δ .

Rather than exactly stipulating the equation (3) containing noisy
data, it makes sense to consider an inexact solution, so that we arrive
at minimization problems of the form

(PIl) min‖x− x0
2‖ s.t. ‖Ql(F (x) − yδ)‖2 ≤ η2

l .

where ηl ≥ δ, with δ being the noise level in (2). More precisely, we
will consider an a priori fixed monotonically decreasing sequence of
tolerances (ηl)l∈IN with

(4) ηl ↘ 0 as l → ∞

as well as a sequence of mappings (Ql)l∈IN, consider solutions xδ
l of

problem (PIl) for all l such that

ηl ≥ δ ,
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and choose the discretization level l∗ = l∗(δ), which here plays the role
of a regularization parameter, such that

ηl∗(δ) ∼ δ .

This corresponds to the well-known discrepancy principle (cf. Morozov
[31]).

Using a solution of (PIl) as a starting guess for the iterative min-
imization of (PIl+1), one arrives at a multilevel method that by the
use of information on coarser grids is highly efficient and has some nice
global convergence properties, cf. [22]. Additionally, the restrictions
on the nonlinearity of the forward operator that are usually required
in convergence proofs for regularization methods for nonlinear ill-posed
problems cf., e.g., [5, 14, 15, 16, 17, 19, 20, 34, 39, 40]), can be con-
siderably relaxed (cf. Remark 1 in [22]): In place of the often used
tangential cone condition

‖F (x) − F (x̄) − F ′(x̄)(x− x̄)‖ ≤ C‖x− x̄‖‖F ′(x̄)(x− x̄)‖(5)
∀ x, x̄ ∈ D(F )

in [22] the assumption

‖Ql(F (x + w) − F (x) − F ′(x)w)‖ ≤ 1
ηl
‖Ql(F (x + w) − F (x))‖2

∀ x, x+ w ∈ D(F ) ,

turned out to suffice, which is similar to (and actually motivated by)
the assumption in the multilevel approach in [41].

In the present paper we extend the results of [22] by proving optimal
convergence rates

(6) ‖xδ
l∗ − x†‖ = O

(
δ2ν/(2ν+1)

)
or ‖xδ

l∗ − x†‖ = O((− ln δ)−p) ,

under respective a priori regularity conditions of Hölder or logarithmic
type (cf., e.g., [17, 18] for the latter)

x0 − x† = (F ′(x†)∗F ′(x†))νv or(7)
x0 − x† = (− ln(F ′(x†)∗F ′(x†)))−pv ,
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for some v ∈ X , where f(F ′(x†)∗F ′(x†)) for some real function f is
defined in the sense of the functional calculus resulting from spectral
theory (see, e.g., [6]), x† is a solution of (1), and x0 an initial guess
that need not necessarily be close to x†, though.

Also, we will show that we do not need global minimizers of (PIl) but
it suffices to consider KKT (Karush Kuhn Tucker) points i.e., points
xδ

l that together with Lagrange multipliers λδ
l satisfy

xδ
l − x0 + λδ

l(QlF
′(xδ

l))∗Ql(F (xδ
l) − yδ) = 0

λδ
l ≥ 0 , ‖Ql(F (xδ

l) − yδ)‖ ≤ ηl ,

λδ(‖Ql(F (xδ
l) − yδ)‖ − ηl) = 0

⎫⎪⎬
⎪⎭ (KKTl) .

Moreover, we will consider the constrained minimization problem
(PIl) on fixed level in more detail and take advantage of its similarity to
the trust region subproblem in unconstrained nonlinear programming
to define a differentiable exact penalty function Φα. The latter allows
to either replace (PIl) by unconstrained minimization of Φα or to use
Φα to define a merit function for the stepsize control of an SQP type
iteration applied to (PIl), see, e.g., [9, 10, 11].

2. Preliminaries and assumptions. First of all, we assume that
a solution x† of (1) exists, but need not necessarily be unique. The
initial guess x0 used in (PIl) need not be close to x† — this fact is
essential when speaking of global convergence. We will assume that x0

is not in the feasible set of (PIl), i.e.

(8) ‖Ql(F (x0) − yδ)‖ > ηl ,

which just excludes the trivial case that x0 itself solves (PIl) and
therewith is a quite natural assumption.

The operator F : D(F ) ⊆ X → Y (X , Y Hilbert spaces) is assumed
to be continuous, compact and (weakly) sequentially closed. i.e.,(

xk ⇀ x ∧ F (xk) → f
)

⇒
(
x ∈ D(F ) ∧ F (x) = f

)
.

Additionally, we assume the nonlinearity condition

∀ x ∈ D(F ) ∃F ′(x) ∈ L(X,Y ) ∀ w ∈ X s.t. x+ w ∈ D(F ) :(9)

‖Ql(F (x+w)−F (x)−F ′(x)w)‖≤ c

ηl
‖Ql(F (x+w)− F (x))‖2 + c̃γl‖w‖2
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to hold for some 0 < c < 1, c̃ > 0. In here, F ′(x) is not necessarily the
Fréchet derivative but only denotes some linearization of F satisfying
the first order Taylor remainder estimate (9) on some possibly non-open
set D(F ).

The sequence (Ql)l∈IN consists of linear operators mapping Y into
finite dimensional subsets

Yl = R(Ql) ⊆ Y

and is assumed to pointwise converge to the identity

(10) ∀ f ∈ Y : Qlf → f as l → ∞ .

The latter implies uniform boundedness of the operators Ql,

(11) ‖Ql‖ ≤ CQ ∀ l ∈ IN .

Additionally, we assume that

(12) ∀ f ∈ Y : ‖Q2
l f‖ ≥ cQl ‖Qlf‖

for some cQl > 0, and that

(13) N (Ql)⊥ ⊆ R(F ′(x)) ∀ x ∈ D(F ) .

To prove convergence rates we make an assumption quantifying the rate
of convergence of the approximation error on R(F ′(x†)), which by the
smoothing property of F ′(x) is typically a space of smoother functions
than general elements of Y :

(14) ‖(I −Ql)F ′(x†)‖ ≤ γl ,

with γl → 0 as l → ∞. Assumptions (10, 11, 12) are satisfied, e.g., if
the Ql are projections onto subspaces Yl of the data space, with

Y1 ⊆ Y2 ⊆ · · · ⊆ Y ∧
⋃

n∈IN

Yn = Y
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for all x ∈ D(F ). In this case cQl = 1 and, if the Ql are orthogonal
projections, CQ = 1.

From compactness of F ′(x) for x ∈ D(F ) it follows that for the
generalized inverses (cf [33]) of the projected operators there holds

(15) ‖(QlF
′(x))†‖ → ∞ as l → ∞ .

Conversely, each Yl is finite dimensional, so that by (13) we can assume

(16) inf
z∈Q∗

l
Y

‖F ′(x)∗z‖
‖z‖ ≥ γ̂l

to hold for a sequence γ̂l of strictly positive numbers, that tends to zero
due to (15). In general γ̂l will depend on x; an assumption we make
here is that a uniform constant γ̂l > 0 for all x ∈ D(F ) exists for each
level l. The lower bound (16) together with (12) and (13) implies the
estimate

(17) ‖(QlF
′(x))†‖Yl→Yl

≤ 1
γl
,

with γl = γ̂lc
Q
l , for the inverse of the linearized forward operator on

level l, as well as

(18) R(QlF
′(x)) = R(Ql) ∀ x ∈ D(F ) ,

cf. [22], which implies

(19) Ql(F (x) − yδ) ∈ R(Ql) = R(QlF
′(x))

= N ((QlF
′(x))∗)⊥, ∀ x ∈ D(F ) .

For the sequence of tolerances ηl,besides monotone decrease (4) we
will later on make some assumption on the decay rate, see (46) below.

Finally, we wish to comment on condition (9). As a matter of fact, it
is weaker than the usual tangential cone condition (5), since if the
latter holds and if we can restrict attention to a sufficiently small
neighborhood of the initial guess, i.e., consider

‖F (x+ w) − F (x) − F ′(x)w‖ ≤ C‖w‖ ‖F ′(x)w‖,(20)
∀ x, x+ w ∈ D(F ) ∩ Bρ(x0)
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extend (14) to all points x ∈ D(F )∩Bρ(x0) in place of x†, and assume
that γl/γl is uniformly bounded by some constant Cγ , as it is often
done, we can conclude, for all x, x+ w ∈ D(F ) ∩ Bρ(x0)

‖Ql(F (x+ w) − F (x) − F ′(x)w)‖
≤ CCQ‖w‖

(
‖QlF

′(x)w‖ + ‖(I −Ql)F ′(x)w‖
)

≤ CCQ‖w‖
(
‖QlF

′(x)w‖ + γl‖w‖
)

which by the second triangle inequality and provided ρ is small enough
so that 2ρCCQ < 1, yields

‖QlF
′(x)w‖ ≤ 1

1 − 2ρCCQ

(
‖Ql(F (x + w) − F (x))‖ + 2ρCCQγl‖w‖

)

Inserting this into the inequality above yields

‖Ql(F (x+ w) − F (x) − F ′(x)w)‖
≤ CCQ

1 − 2ρCCQ

(‖w‖‖Ql(F (x+ w) − F (x))‖ + γl‖w‖2
)

≤ CCQ

1 − 2ρCCQ

(
1
2ε

‖Ql(F (x+ w) − F (x))‖2 +
(ε

2
+ γl

)
‖w‖2

)

≤ c

ηl
‖Ql(F (x + w) − F (x))‖2 +

(
1 − 2ρCCQ

4cCCQ

ηl

γl
+ Cγ

)
γl‖w‖2

by setting ε := (1 − 2ρCCQ)/(2cCCQ) ηl. Hence choosing ηl ∼ γβ
l for

any β ∈ [1, 2] (to be compatible with assumption (46) that will we make
on (ηl) later in this paper), we arrive at (9). Note, that while for (5) the
full infinite dimensional Taylor remainder has to be estimated, (9) only
requires upper bounds on finite dimensional subspaces Yl. Moreover,
assuming (9) only for the fastest possible decaying sequence ηl ∼ γ2

l

(instead of ηl ∼ γβ
l for all β ∈ [1, 2]) gives a looser upper bound for the

first term on the right hand side.

3. Solution of the subproblem on level l. Having in mind
(PIl), in this section we consider problems of the form

(PI) min ‖x− x0‖2 s.t. ‖G(x)‖2 ≤ η2 .
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with a continuous, compact and (weakly) sequentially closed operator
G : D(G) ⊂ X → Ỹ satisfying the nonlinearity condition

∀ x ∈ D(G)∃G′(x) ∈ L(X,Y ) ∀ w ∈ X s.t. x+ w ∈ D(G) :(21)

‖G(x+ w) −G(x) −G′(x)w‖ ≤ c

η
‖G(x+ w) −G(x)‖2 + c̃γ‖w‖2

with 0 < c < 1, c̃ > 0, cf. (9), as well as

(22) ‖G′(x)†‖ ≤ 1
γ
,

cf. (17),

(23) G(x) ∈ N (G(x)∗)⊥ ,

cf. (19), and

(24) ‖G(x0)‖ > η ,

cf. (8).

The latter two assumptions and η > 0 imply that at global minimizers
the linear independence constraint qualification

(25) G′(x)∗G(x) �= 0

is satisfied for (PI), since global minimizers of (PI) by (24) automati-
cally satisfy the constraint with equality:

Lemma 1. (Lemma 1 in [22])

If there exists an x† such that ‖G(x†)‖ ≤ η, then Problem (PI) has
a global minimizer.

If (24) holds, then any minimizer of (PI) lies on the relative boundary
of the feasible set, i.e., the inequality constrained problem (PI) is
equivalent to the equality constrained problem

(PE) ‖x− x0‖2 = min! ‖G(x)‖2 = η .
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For sufficiently small c, c̃ in the nonlinearity condition (21), the primal
parts of KKT points of (PI), i.e., of solutions (x∗, λ∗) to

(KKT)
x∗ − x0 + λ∗G′(x∗)∗G(x∗) = 0

λ∗ ≥ 0 , ‖G(x∗)‖ ≤ η , λ∗(‖G(x∗)‖ − η) = 0

}
.

are already global minimizers:

Lemma 2. If (21) with c ≤ 1/2, holds, then for any solution (x∗, λ∗)
of (KKT ) satisfying c̃‖x∗ − x0‖ < 1/2, the primal part x∗ is a strict
(hence unique) global minimizer of (PI).

Proof. Let x �= x∗ be an arbitrary feasible point for (PI), i.e.,
satisfying ‖G(x)‖ ≤ η. We consider the representation

‖x− x0‖2 − ‖x∗ − x0‖2 = ‖x− x∗‖2 + 2〈x− x∗, x∗ − x0〉
= ‖x− x∗‖2 − 2λ∗〈G′(x∗)(x− x∗), G(x∗)〉

(where we have used the first line of (KKT )) of the difference between
the cost function values. According to the complementarity condition
λ∗(‖G(x∗)‖ − η) = 0, we distinguish between two cases:

If λ∗ = 0, then obviously (26) implies

(27) ‖x− x0‖2 > ‖x∗ − x0‖2 .

Otherwise, if λ∗ > 0 then ‖G(x∗)‖ = η, hence, from (26) we deduce

(28) ‖x− x0‖2 − ‖x∗ − x0‖2

= ‖x− x∗‖2

+ λ∗
(
‖G(x∗)‖2 − ‖G(x)‖2︸ ︷︷ ︸

=η2
l
−‖G(x)‖2≥0

+‖G(x) −G(x∗)‖2

+ 2〈G(x) −G(x∗) −G′(x∗)(x − x∗), G(x∗)〉
)
,
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Forming the inner product with (G′(x∗))†G(x∗) of the first line
of (KKT ), and using (23), we obtain an estimate on the Lagrange
multiplier λ∗:

(29) |λ∗| =
∣∣∣∣〈x∗ − x0, G

′(x∗)†G(x∗)〉
‖G(x∗)‖2

∣∣∣∣ ≤ ‖x∗ − x0‖ 1
‖G(x∗)‖γ .

Inserting this into (28) and using (21) with c ≤ 1/2, c̃‖x∗ − x0‖ < 1/2
yields (27).

The following lemma states existence of a KKT point, provided D(G)
is convex and there exists a multiple of the steepest descent direction
that yields a point in D(G) (condition (30)), which is, e.g., the case if
D(G) is open.

Lemma 3. Let D(G) be convex, x0 ∈ D(G), G Hölder continuous
with exponent α > 1/2, and let x∗ �= x0 be a local minimizer of (PI)
satisfying

(30) ∃ ε > 0 : x∗ − εG′(x∗)G(x∗) ∈ D(G) .

Then there exists a λ∗ such that (x∗, λ∗) solves (KKT ).

Proof. We will see that following the usual existence proof relying
on the Farkas Lemma which in its turn is a consequence of a strong sep-
aration theorem (see, e.g., [11]) for our special problem (PI) naturally
leads us to the use of assumption (30):

Denote
r(x∗) := G′(x∗)G(x∗)

and consider the set

M := {d ∈ X | ∃ τ > 0 : x∗ + τd ∈ D(G)}

Assume that no solution to (KKT ) exists, i.e.,

(31) x∗ − x0 �∈ C := {−λr(x∗) | λ ≥ 0} .
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Due to convexity and closedness of C, this set can be strictly separated
from the point x∗−x0 in the sense that there exists an element a ∈ M
such that

(32) ∀ y ∈ C : 〈a, y〉 ≥ 0 > 〈a, x∗ − x0〉

e.g.,

a := −λ̄r(x∗) − (x∗ − x0) with λ̄ := max
{

0,−〈x∗ − x0, r(x∗)〉
‖r(x∗)‖2

}
.

(The separation property (32) is readily checked, using the fact that by
our assumption (31) 〈x∗ − x0, r(x∗)〉2 < ‖x∗ − x0‖2‖r(x∗)‖2. The fact
that a ∈ M follows from convexity of D(G) by setting τ := ε/(ε+ λ̄).)
On the other hand,

(33) ∀ d ∈ M : 〈r(x∗), d〉 ≤ 0 ⇒ 〈d, x∗ − x0〉 ≥ 0 ,

which can be seen as follows: For arbitrary d ∈ M with 〈r(x∗), d〉 ≤ 0,
and any τ ∈ (0, τ/2], ε ∈ (0, ε/2], consider

dτ,ε := τd− εr ,

which by convexity of D(G) satisfies

x∗ + dτ,ε =
1
2

(
2τ
τ

(x∗ + τd) +
(

1 − 2τ
τ

)
x∗

)

+
1
2

(
2ε
ε

(x∗ − εr(x∗)) +
(

1 − 2ε
ε

)
x∗

)
∈ D(G) .

Therewith, we get

‖G(x∗ + dτ,ε)‖2 − η2

= ‖G(x∗)‖2 − η2 + 2〈r(x∗), dτ,ε〉
+ 2〈G(x∗), G(x∗ + dτ,ε) −G(x∗) −G′(x∗)dτ,ε〉
+ ‖G(x∗ + dτ,ε) −G(x∗)‖2

≤ −2ε‖r(x∗)‖2 +
(

1 +
2c‖G(x∗)‖

η

)
L2‖dτ,ε‖2α + 2c̃γ‖G(x∗)‖dτ,ε‖2
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where L denotes the constant in the Hölder estimate of G. With a
choice ε = ε(τ) = (ε/τ)τ , this implies

‖G(x∗ + dτ,ε(τ))‖2 − η2 ≤ 0

i.e., feasibility of dτ,ε(τ) for all τ sufficiently small. Hence, optimality
of x∗ yields

0 ≤ ‖x∗ + dτ,ε(τ) − x0‖2 − ‖x∗ − x0‖2 = 2〈dτ,ε(τ), x∗ − x0〉 + ‖dτ,ε(τ)‖2

from which, by letting τ tend to zero, we can conclude (33). However,
(33) is a contradiction to our previous construction of a ∈ M satisfying
(32) .

Note the similarity of (PI) to the trust region subproblem

min f(xk) + f ′(xk)d+ f ′′(xk)[d, d] s.t. ‖d‖2 ≤ Δ

for determining the step d within the kth iteration of the unconstrained
minimization of a functional f by a trust region method. With this
analogy as well the approach proposed by Lucidi, Palagi, and Roma
[26] (see also Section 14.3 in [10]) in mind, we show some properties
of (PI), that enable to derive an exact penalty function Φα, i.e., such
that (PI) is equivalent to the unconstrained minimization of Φα for
sufficiently large α. Equivalence is shown to hold true both in the sense
of global minimizers and in the sense of critical points, see Proposition
1 and Corollary 1 below.

An exact penalty function for (PI) can be derived analogously to the
trust region subproblem (cf., e.g., [10]) as follows: It is obvious, that

x �→ λ(x) = −〈x− x0, G
′(x)∗G(x)〉

‖G′(x)∗G(x)‖2

is a Lagrange multiplier function in the sense that if (x∗, λ∗) is a KKT
point and in λ(x∗) ≥ 0, then (x∗, λ(x∗)) is also a KKT point. (Note that
by the linear independence constraint qualification (25) the Lagrange
multiplier is unique.) Inserting this into the augmented Lagrangian

‖x− x0‖2 +
α

4

(
max2

{
0, λ+

2
α

(‖G(x)‖2 − η2)
}
− λ2

)
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with α > 0, we arrive at

Φα(x) = ‖x− x0‖2+
α

4

(
max2

{
0, λ(x) +

2
α

(‖G(x)‖2 − η2)
}
− λ(x)2

)
.

For sufficiently small α > 0, this is an exact penalty functional in the
following sense:

Proposition 1. Let G be twice Fréchet differentiable.

(i) If (x∗, λ(x∗)) is a KKT point of (PI) then for any α > 0, the
primal part x∗ is a stationary point of Φα and Φα(x∗) = ‖x∗ − x0‖.

(ii) If for some R > 0,

(34) 0 < α <
4(γη)2

1 +RM/(γη)

with

M := M2
1 +M0M2 , Mj := sup

x∈BR(x0)

‖G(j)(x)‖ , j ∈ {0, 1, 2} ,

then for any stationary point x∗ ∈ BR(x0) of Φα with

(35) ‖G′(x∗)∗G(x∗)‖ ≥ γη ,

the pair (x∗, λ(x∗)) is a KKT point of (PI).

Remark 1. The notation in (35) is supposed to remind of the fact
that for G = QlF as in the previous section, this condition is typically
satisfied with γ = γl and η = ‖Ql(F (x∗) − yδ)‖. Note that by Lemma
1 the global minimizer of (PI) indeed satisfies ‖G(x)‖ = η (unless it
is trivial) and that in our original problem it is certainly easier to find
points with larger residuals ‖Ql(F (x) − yδ)‖ than points violating (35)
with η = ηl especially for larger l, since ηl → 0 as l → ∞.

Proof. We will use the fact the derivative of Φα into a direction
h ∈ X exists and is given by

Φ′
α(x)[h] = 2〈x− x0, h〉 + 2λ(x)〈G′(x)∗G(x), h〉(36)

(37) + max
{
−α

2
λ(x), ‖G(x)‖2 − η2

}(
λ′(x)[h] +

4
α
〈G′(x)∗G(x), h〉

)



214 B. KALTENBACHER

with

(38) λ′(x)[h] = − 1
‖r(x)‖2

(
〈r(x), h〉+ 〈x−x0, (I−2Projr(x))r′(x)h〉

)

where
r(x) = G′(x)∗G(x) .

Moreover, solutions of the second line in (KKT ) can be characterized
as zeros of the max function appearing in (37)

(39)
(
λ∗ ≥ 0 , ‖G(x∗)‖ ≤ η , λ∗(‖G(x∗)‖ − η) = 0

)
⇐⇒ max

{
−α

2
λ∗, ‖G(x)‖2 − η2

}
= 0 .

To show sufficiency (i) in the assertion of the proposition, assume that
(x∗, λ(x∗)) is a KKT point. Then by the first line in (KKT ), the
expression in (36) vanishes, and by the second line in (KKT ) and (39),
so does the term in (37), i.e. Φ′

α(x) = 0.

For α satisfying (34), necessity (ii) follows from

(40) 0 = Φ′
α(x∗)[G′(x∗)G(x∗)]

= max
{
−α

2
λ(x∗), ‖G(x∗)‖2 − η2

}
(λ′(x∗)G′(x∗)∗G(x∗)

+
4
α
‖G′(x∗)∗G(x∗)‖2) ,

where the second equation follows from the definition of λ(x). The term
multiplied with max{−α

2 λ, ‖G(x)‖2 − η2} in (40) is strictly positive,
since

λ′(x∗)G′(x∗)∗G(x∗) +
4
α
‖G′(x∗)∗G(x∗)‖2

= −1 − 1
‖r(x∗)‖2

〈x∗ − x0, (I − 2Projr(x∗))r′(x∗)r(x∗)〉 +
4
α
‖r(x∗)‖2

≥ −1 − RM

γη
+

4(γη)2

α
> 0 .
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Hence, by (39), we can conclude the second line of (KKT ) from (40).
Now the first line of (KKT ) directly follows from Φ′

α(x∗) = 0 and (36,
37).

Note that for the proof of Proposition 1 the nonlinearity condition
on G was not required.

Corollary 1. Let G be twice Fréchet differentiable, let the assump-
tions of Lemma 2 hold, and assume that α satisfies (34).

Then x∗ is a global minimizer of (PI) if and only if it is a global
minimizer of Φα.

Proof . Using Lemma 2 and Proposition 1, the proof can be carried
out exactly along the lines of the proof of Satz 14.14 in [10].

4. Convergence Rates. In [22] we have shown that for weakly
sequentially closed forward operators F , a minimizer of (PIl) exists,
converges to a solution for exact data and with an appropriately chosen
level l∗(δ) also for noisy data as δ → 0. Under additional nonlinearity
conditions (9) with c ≤ 1, c̃ = 0, these assertions could be carried over
to KKT points xδ

l of (PIl).

Since assumption (9) with c < 1 as made here allows to simplify
the convergence proof considerably and this new proof contains an
estimate that is the starting point also for our convergence rates proof,
we provide it in the following proposition. The stopping rule we will
use here is the generalized discrepancy principle

(41) τδ ≤ ηl∗(δ) ≤ τδ , τδ ≤ ‖Ql∗(δ)(F (xδ
l∗(δ)) − yδ)‖

with constants 0 < τ < τ , τ > 0 satisfying

(42) τ ≥ 1
1 − c

{
1 + 2c+

c

τ
CQ

}
CQ .

Well-definedness of l∗(δ) according to (41) immediately follows from
Lemmas 1, 2, if c ≤ 1/2.
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Proposition 2. Fix R > ‖x† − x0‖ and let, for each l, (xδ
l, λ

δ
l)

be a KKT point of (PIl) with ‖xδ
l − x0‖ ≤ R. Assume that (9) holds

with c < 1, c̃R < 1.

(i) Let yδ = y i.e., δ = 0 in (ii). Then (x0
l )l∈IN =: (xl)l∈IN has a

convergent subsequence and the limit of each convergent subsequence of
(xl)l∈IN is a solution to (1). If x† is the unique solution to (1), then xl

converges to x†.

(ii) Let (yn)n∈IN be a sequence of data such that ‖yn − y‖ ≤ δn

with noise levels (δn)n∈IN tending to zero. Then the sequence (xn)n∈IN

defined by xn := xδn

l∗(δn) with l∗ chosen according to (41) with (42) has
a convergent subsequence and the limit of each convergent subsequence
of (xn)n∈IN is a solution to (1). Again, if x† is the unique solution to
(1), then xn converges to x†.

Remark 2. Note that on one hand the caseR = ∞, c̃ = 0 (and c̃R := 0
by definition) is included in this proposition. On the other hand, it is
readily checked that since x† is feasible for (PIl), l ≥ l∗(δ), a global
minimizer xδ

l of (PIl) satisfies ‖xδ
l − x0‖ ≤ ‖x† − x0‖, hence it makes

sense to restrict attention to KKT points satisfying ‖xδ
l − x0‖ ≤ R for

some R > ‖x† − x0‖.

Proof. First of all, consider the case xδ
l �= x0, which by the first line

in (KKTl) and (19) implies λδ
l �= 0, Ql(F (xδ

l)− yδ) �= 0. Analogously
to (29) we get

|λδ
l| =

∣∣∣∣ 〈xδ
l − x0, (QlF

′(xδ
l))†Ql(F (xδ

l) − yδ)〉
‖Ql(F (xδ

l) − yδ)‖2

∣∣∣∣(43)

≤ ‖xδ
l − x0‖ 1

‖Ql(F (xδ
l) − yδ)‖γl

.

Taking the inner product of the first line in (KKTl) with xδ
l − x†, we
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get

‖xδ
l − x†‖2

= 〈x0 − x†, xδ
l − x†〉 − λδ

l〈Ql(F (xδ
l) − yδ), QlF

′(xδ
l)(xδ

l − x†)〉
≤ 〈x0 − x†, xδ

l − x†〉
− λδ

l‖Ql(F (xδ
l) − yδ)‖

{
‖Ql(F (xδ

l) − yδ)‖

−
( c
ηl

(‖Ql(F (xδ
l) − yδ)‖ + CQδ)2 + CQδ

)
− c̃γl‖xδ

l − x†‖2
}

≤ 〈x0 − x†, xδ
l − x†〉

− λδ
l‖Ql(F (xδ

l) − yδ)‖
{
(1 − c)‖Ql(F (xδ

l) − yδ)‖

−
(
1 + 2c+

cδ

ηl
CQ

)
CQδ

}
+ c̃R‖xδ

l − x†‖2

which for l = l∗ by (41, 42) implies

(44) (1 − c̃R)‖xδ
l∗(δ) − x†‖2 ≤ 〈x0 − x†, xδ

l∗(δ) − x†〉 ,

and in the noise free case

(45) (1 − c̃R)‖xl − x†‖2 ≤ 〈x0 − x†, xl − x†〉 ,

for all l ∈ IN. In case xδ
l = x0 these inequalities trivially hold. By the

Cauchy-Schwarz inequality, this implies boundedness of xδ
l∗(δ) or xl,

respectively. Since therewith the rest of the proof is exactly the same
as the one for Theorem 1 in [22], (which, in its turn is analogous to the
convergence proof for Tikhonov regularization in [42], see also [7]), we
omit it here.

Now we proceed to our main result, the proof of optimal convergence
rates.

Theorem 1. Fix R > ‖x† − x0‖ and let (xδ
l∗(δ), λ

δ
l∗(δ)) be a KKT

point of (PIl∗(δ)) with ‖xδ
l∗(δ) − x0‖ ≤ R and l∗(δ) chosen according

to (41) with (42). Assume that (9) holds with c < 1, c̃R < 1 and that
and (ηl) is chosen so that

(46) ηl ≥ cγ(γl + c̃Rγl)2
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for some cγ > 0.

Then the following assertions hold.

(a) If ‖F ′(x†)‖2 ≤ e−(2p+1), and the initial error satisfies the source
condition

(47) x0 − x† = (− ln(F ′(x†)∗F ′(x†)))−pv

for some v ∈ X, p > 0, then

(48) ‖xδ
l∗ − x†‖ = O((− ln δ)−p) ,

(b) If the initial error satisfies the source condition

(49) x0 − x† = (F ′(x†)∗F ′(x†))νv

for some v ∈ X, ν ∈ [0, 1/2], then

(50) ‖xδ
l∗ − x†‖ = O

(
δ2ν/(2ν+1)

)
.

Remark 3. The restriction ν ≤ 1/2 corresponds to the well known
saturation phenomenon of Tikhonov regularization at ν = 1 which is
shifted to ν = 1/2 if the discrepancy principle is used for regularization
parameter choice.

Proof. We make use of Jensen’s inequality

(51) φ

(∫
χdμ∫
dμ

)
≤

∫
φ ◦ χdμ∫
dμ

,

that holds for a convex function φ ∈ C2(α, β) with α, β ∈ IR∪{±∞}, a
finite measure μ on some measure space Ω and χ ∈ L1(Ω, dμ) satisfying
α ≤ χ ≤ β almost everywhere dμ. Also, we invoke the spectral theorem
for bounded self-adjoint operators, that implies existence of a locally
compact space Ω, a positive Borel measure μ on Ω, a unitary map

W : L2(Ω, dμ) −→ X,



CONVERGENCE RATES OF A MULTILEVEL METHOD 219

and a real-valued function λ ∈ C(Ω), such that

W−1F ′(x†)∗F ′(x†)W = Mλ,

where Mλ ∈ L(L2(Ω, dμ)) is the multiplication operator defined by
(Mλψ)(ω) := λ(ω)ψ(ω) for ψ ∈ L2(Ω, dμ) and ω ∈ Ω, cf., e.g. Section
8.1 in [43].

For χ = φ−1 = f2 with

f(λ) = (− lnλ)−p in case (a) and f(λ) = λν in case (b),

it is readily checked that φ is convex and strictly monotonically increas-
ing, since

f(λ) > 0 , f ′(λ) > 0 , f(λ)f ′′(λ) + (f ′(λ))2 ≤ 0 ,
for all λ ∈ (0, ‖F ′(x†)‖2] ,

and

φ′(ξ) =
1

(f2)′(λ)
=

1
2f(λ)f ′(λ)

> 0 ,

φ′′(ξ) = − (f2)′′(λ)
((f2)′(λ))2

= −2f(λ)f ′′(λ) + 2f ′(λ)2

((f2)′(λ))2
≥ 0

with λ = (f2)−1(ξ) , for all λ ∈ (0, ‖F ′(x†)‖2] .

Moreover, χ ∈ L1(Ω, dμ), where we set dμ = W−1(xδ
l∗(δ) − x†)dμ.

Therewith, and with the notation

K = F ′(x†) , e = xδ
l∗(δ) − x†

we get from (44) and (47) or (49), respectively,

‖e‖2 ≤ 1
1 − c̃R

〈x0 − x†, e〉 =
1

1 − c̃R
〈v, f(K∗K)e〉

≤ 1
1 − c̃R

‖v‖
√∫ (

f(λ)W−1e
)2

dμ=
1

1 − c̃R
‖v‖ ‖e‖

√∫
f2(λ) dμ∫

dμ

≤ 1
1 − c̃R

‖v‖ ‖e‖
√
f2

(∫
λdμ∫
dμ

)
=

1
1 − c̃R

‖v‖ ‖e‖f
(‖Ke‖2

‖e‖2

)
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This together with the estimate

‖Ke‖ ≤ ‖(I −Ql∗(δ))Ke‖ + ‖Ql∗(δ)(F (xδ
l∗(δ)) − yδ)‖

+
( c

ηl∗(δ)
(‖Ql∗(δ)(F (xδ

l∗(δ))−yδ)‖+CQδ)2+c̃γl∗(δ)‖e‖2+CQδ
)

≤ (γl∗(δ) + c̃Rγl∗(δ))︸ ︷︷ ︸
=:γ̃l∗(δ)

‖e‖ +
{
τ + CQ +

c

τ
(τ + CQ)2

}
︸ ︷︷ ︸

=:C̃

δ

yields

(52) ‖e‖ ≤ 1
1 − c̃R

‖v‖f
(

(γ̃l∗(δ)‖e‖ + C̃δ)2

‖e‖2

)

In case (a), we choose some constant Ĉ > τ/cγ and distinguish
between two subcases: If (γ̃l∗(δ)‖e‖ + C̃δ)2/‖e‖2 ≥ Ĉδ, then ‖e‖
has to lie between the two roots of the quadratic polynomial ζ �→(
Ĉ −

(
γ̃2

l∗(δ)

)
/δ
)
ζ2 − 2C̃γ̃l∗(δ)ζ − C̃2δ,

ζ1,2 =
C̃
(
γ̃l∗(δ) ±

√
Ĉδ

)
Ĉ − γ̃2

l∗(δ)/δ
,

hence by (41, 46)

‖e‖ ≤
C̃
(√

τ/cγ +
√
Ĉ
)

Ĉ − τ/cγ

√
δ ≤ C(− ln δ)−p

for all δ sufficiently small. If (γ̃l∗(δ)‖e‖+ C̃δ)2/‖e‖2 ≤ Ĉδ we can make
use of the monotonicity of f in (52) to conclude

‖e‖ ≤ 1
1 − c̃R

‖v‖f
(
Ĉδ

)
≤ C‖v‖f (δ) .

for some constant C > 0 independent of δ.
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In case (b), (52) directly implies

‖e‖ ≤ 1
1 − c̃R

‖v‖
(

(γ̃l∗(δ)‖e‖ + C̃δ)2

‖e‖2

)ν

,

hence if γ̃l∗(δ) ≤ δ/‖e‖, we already arrive at (50). Otherwise, i.e., in
case γ̃l∗(δ) > δ/‖e‖, we get

‖e‖ ≤ 1
1 − c̃R

‖v‖(1 + C̃)2ν γ̃2ν
l∗(δ) ≤

1
1 − c̃R

‖v‖(1 + C̃)2ν

(
τ

cγ
δ

)ν

,

where we have used (41, 46) in the last estimate. Hence, by ν ≤ 1/2
we can conclude (50).

5. Numerical Experiments. To illustrate the convergence
rates result as well as the assertions on the exactness of Φα, we
implemented a gradient method with an Armijo stepsize choice for the
unconstrained minimization of Φα and carried out computational tests
for the test example from [22] using the same starting function x0 and
three different exact solutions x† such that

(a) only a very weak source condition

(b) a logarithmic source condition

(c) a Hölder type source condition

is satisfied. In the context of (a), we wish to mention that it can be
shown that there is always an index function ϕ : (0, a] → (0,∞) such
that a general source condition

x0 − x† = ϕ(F ′(x†)∗F ′(x†))v

holds for some v ∈ X , and refer, e.g., to [3, 29, 30, 32] for convergence
rates results under such general source conditions.

The details on the test example are the following: Consider the
nonlinear integral equation

(53)
∫ 1

0

1√
1 + (t− s)2 + x(s)2

ds = y(t) t ∈ [0, 1] ,
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δ (per cent) l∗
‖xδ

l∗−x†‖
‖x†‖

0.5 7 0.3174
1 6 0.3211
2 5 0.3249
4 4 0.3285
8 3 0.3482

TABLE 1: Mean relative errors for δ = 0.5, . . . , 8 per cent noise for example (a).

on the spaces X = Y = L2(0, 1) with

(a) x†(s) =

⎧⎪⎪⎨
⎪⎪⎩

2 s ∈
[
0,

1
2

]

1 s ∈
(

1
2
, 1
] ,

y(t) = ln

⎛
⎜⎜⎝
(

1
2 − t+

√(
1
2 − t

)2 + 5
)(

1 − t+
√

(1 − t)2 + 2
)

(−t+
√
t2 + 5

)(
1
2 − t+

√(
1
2 − t

)2 + 2
)

⎞
⎟⎟⎠

(b) x†(s) =

⎧⎪⎪⎨
⎪⎪⎩

2(1 − s) s ∈
[
0,

1
2

]

1 s ∈
(

1
2
, 1
] ,

y(t) = ln

⎛
⎜⎜⎝
(

1
2 − t̃+

√(
1
2 − t̃

)2 + a2

)(
1 − t+

√
(1 − t)2 + 2

)
(
−t̃+

√
t̃2 + a2

)(
1
2 − t+

√(
1
2 − t

)2 + 2
)

⎞
⎟⎟⎠

with a2 := 1 + 4
5 (t− 1)2, t̃ = t+4√

5

(c) x†(s) ≡ 1,

y(t) = ln

⎛
⎝
(
1 − t+

√
(1 − t)2 + 2

)
(−t+

√
t2 + 2

)
⎞
⎠

Note that these explicit formulas for the solutions and the data allow
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us to avoid an inverse crime. The forward operator F defined by the
integral operator in (53) is continuous and compact from L2(0, 1) into
itself. Since the kernel is analytic, the inverse problem is exponentially
ill-posed. Thus we expect that

(a) since x0 − x† is not even continuous, only a very weak source
condition

(b) since x0 − x† is continuous but not differentiable a logarithmic
source condition

(c) since x0 − x† is analytic, a Hölder type source condition

is satisfied. The optimal exponents p and ν in (7) for (b) and (c) are
not known analytically, however, by the numerical results (see Figure
1) we conjecture that p = 1/4 and ν ≥ 1/2.

Note that since we partially consider nondifferentiable solutions x†

here, F is not differentiable at these points. Nevertheless, due to the
practical relevance of discontinuous solutions in view of the relation of
(53) to geophysical applications (cf., e.g., [47]) we study the numerical
behaviour of the proposed method for this kind of examples as well.

The operators Ql are defined by L2 projection to the piecewise
linear functions with breakpoints at the equidistant nodes t1, . . . , tkl

,
where kl = 2l−1, the tolerances ηl were chosen as ηl = 0.01 ∗ 2−(l−5).
Discretization in preimage space was done with piecewise linear splines
on an equidistant grid of size 0.05 that turned out to be sufficiently
fine in all of our computations. To simulate perturbed data, we added
random noise at the levels given in the tables to the exact data y. Each
test was carried out at least five times and the tables display the mean
values of the resulting relative errors, while the plots show the results
of the actual realizations. As an initial guess x0 we used the constant
function with value 5. This function was also the starting point of the
gradient method with Armijo linesearch. Figure 1 displays the relative
errors plotted over noise levels in per cent and Tables 1-3 show the mean
relative errors with different noise levels for the test cases (a), (b), (c),
respectively. The convergence behavior appears to correspond to (a)
a very slow rate, (b) an O((− ln δ)−p) rate, and (c) an O

(
δ2ν/(2ν+1)

)
rate. In the latter two cases the rates O((− ln δ)−0.25), O(

√
δ) show up

as dashed lines in the respective plots for comparison.
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6. Conclusions and Remarks. In this paper we show conver-
gence rates for a regularization method based on a sequence of finite
dimensional constrained minimization problems. Moreover, we provide
an exact penalty function that enables one to treat each of these con-
strained problems via unconstrained minimization.

FIGURE 1: Relative errors for different moise levels δ for examples (a) (top left),
(b) (top right), (c) (bottom left), (c) in a doubly logarithmic plot (bottom right) and
expected rates (dashed).

δ (per cent) l∗
‖xδ

l∗−x†‖
‖x†‖

0.5 7 0.2157
1 6 0.2223
2 5 0.2242
4 4 0.2403
8 3 0.3002

TABLE 2: Mean relative errors for δ = 0.5, . . . , 8 per cent noise for example (b).
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δ (per cent) l∗
‖xδ

l∗−x†‖
‖x†‖

2 5 0.0743
4 4 0.1114
8 3 0.1944

12 2 0.2327

TABLE 3: Mean relative errors for δ = 2, . . . , 12 per cent noise for example (c).

The present approach allows one to improve the multilevel method
proposed in [22] in the sense that the globally convergent gradient
method with Armijo stepsize choice for the exact penalty function Φα

allows for larger distances between subsequent levels of discretization.
Note that especially the closeness assumptions made to guarantee
nonnegativity of the Lagrange multiplier in [22] were quite strict. This
can now be completely avoided.

Of course we are aware of the fact that carrying out a gradient method
for an exact penalty function is usually not the method of choice
in numerical optimization, since the small (but finite!) parameter
α deteriorates the condition of the problem, which leads to a slow
convergence of the gradient method. Computational efficiency of the
multilevel method can be considerably improved by using an SQP
method. Here again the exact penalty function Φα can be made use of
to define a merit function in the stepsize control.

Acknowledgment. The author wishes to express her thanks to
the referee whose detailed report has led to a considerably improved
presentation of the paper.
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