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ABSTRACT. We propose a non-parametric stable calibra-
tion method based on Tikhonov regularization for the local
speed function in a local Lévy model. The jump term in this
model introduces an integral operator into the classic Black-
Scholes partial differential equation such that the associated
model calibration to observed option prices can be treated
as a parameter identification problem for a partial integro-
differential equation. This problem is shown to be ill-posed
and thus requires regularization. It is proven that nonlinear
Tikhonov regularization is a stable and convergent method
for this problem. Furthermore, convergence rate results are
established under an abstract source condition. Finally the
theoretical results are underpinned by numerical illustrations
including a real-world example.

1. Introduction. During the last decades, it became more and more
obvious that the famous Black & Scholes model cannot adequately
describe the stochastic behaviour of financial markets. Hence, much
work has been devoted to find more appropriate models, which are able
to reproduce the stylized facts of the observed asset price processes, as
skewed log-returns and volatility clusters.

One idea of adapting the Black & Scholes model was pioneered by
Dupire [13] and Derman & Kani [12], who modeled the volatility as a
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deterministic function of asset price and time (in contrast to assuming
a stochastic process for the volatility leading to so-called stochastic
volatility models, see e.g. [19] for diffusion-based or [5] for Lévy-type
models). The motivation behind this idea was given by Gyöngy [21],
who showed that the marginals of any Itô process can be recovered by
such a model.

It is essential for the applicability of any model that it can be cal-
ibrated to traded market prices. The major task in the local volatil-
ity framework is to identify the local volatility function, which is well
known to be an ill-posed problem and hence needs some regulariza-
tion. The robustness and basic convergence rates for the Tikhonov-
regularized inverse problem were proven e.g. by Crepey [11] and de-
tailed convergence rates were obtained by Egger & Engl [14]. Although
the Dupire model has some desireable properties (such as improving
upon modelling the smile phenomenon, simple option pricing schemes
and model completeness), there are also severe drawbacks. For in-
stance, the normal distribution is symmetric and hence skewness in
the local volatility model can only be introduced by means of a non-
constant volatility function. This often results in a local volatility sur-
face that tends to be steep for small t and to flatten out quite rapidly
for larger values of time t. The resulting term structure of the local
volatility function can lead to serious problems in pricing exotic options
with the Dupire model (for details see e.g. Andersen & Andreasen [2]
and references therein). Whereas the local volatility model is neverthe-
less widely used in practice as an interpolation scheme, it does not give
an interpretation of the resulting market dynamics.

On the other hand, exponential Lévy models (with constant volatil-
ity) can explain stylized facts such as skewness and excess kurtosis
through the presence of jumps in the asset price process, but usually
fail to give a reasonable fit to liquid vanilla market quotes across all
strikes and maturities (see e.g. [7, 36]).

To overcome these problems, Carr et al. [6] introduced the so-called
local Lévy model as a generalization of both the exponential Lévy and
the Dupire model. In this model, in addition to the local volatility
concept of the Dupire model, the asset price process includes jumps
driven by a Lévy process where the jump intensity is a parameter that
evolves deterministically over time and is called local speed function.
Just as in the Dupire model, where the log price process can be
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interpreted as a Brownian motion running at the speed of the square
of the local volatility function, the log price process in the local Lévy
model (in the absence of the diffusion component) can be interpreted
as a (fixed) Lévy process running at a space-time dependent speed.
The local Lévy model has, in addition to being capable of fitting the
whole European option price surface, also a persistent skew, if an
asymmetric jump size distribution is used for the jump part. In this
way, it incorporates the advantages of the Dupire model and at the
same time provides richer risk-neutral dynamics. In order to use the
local Lévy model one needs to identify the Lévy measure of the jump
part (together with the parameter of the continuous part) and the local
speed function.

The first problem - a non-parametric estimation of an exponential
Lévy market - has attracted much attention lately. For instance,
Cont & Tankov [8,9] proposed a robust non-parametric method to
recover the Lévy measure from observed option prices, if the Lévy
measure is assumed to be bounded. Another approach was proposed
by Belomnesty & Reis [3, 4], who showed that the Lévy measure can be
identified using the semi-closed formula for option prices involving the
characteristic function of the asset price and an asymptotic analysis. In
financial practice it is also quite common to fix a certain type of Lévy
measure beforehand and then calibrate the involved parameters from
market data. Cont & Tankov [9] observed that the stably calibrated
exponential Lévy market model, while leading to good results for a
single maturity, cannot adequately fit the observed option prices across
several maturities. Furthermore they recognized that the Lévy measure
changes structurally over time. By introducing the local speed function
this behavior can be incorporated into the model. Hence by identifying
this function, a given exponential Lévy process can be adapted to a
more appropriate model for the asset price.

In this paper we are concerned with this question, i.e. given an
exponential Lévy model, how can this model be adapted by means
of the local speed function to fit the observed European option prices
across all maturities. Extending the analysis of Carr et al. [6], we
show a way to robustly identify the local speed function by using
the observed prices of European options and prove convergence results
for this inverse problem. Also, within regularization theory the usual
problem of bid-ask spreads of market option prices can be interpreted
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as a problem of data noise, which allows to incorporate the degree of
liquidity into the calibration procedure.

The structure of the paper is as follows: Section 2 introduces the
local Lévy model in more detail and defines the inverse problem to be
solved. To deal with the ill-posedness of the problem (see Section 5),
a regularization is needed to obtain robust calibration results. Section
3 proves that the corresponding forward operator is well-defined and
Section 4 establishes some of its properties. These are used in Section
5 to prove stability of the Tikhonov-regularized inverse problem and
to obtain convergence rates of the regularized solutions. Finally, in
Section 6 we give numerical illustrations of the theoretical results.

2. The local Lévy model and the inverse problem We will
assume the asset price S to have the following risk-free dynamics:

(1) St = S0 +
∫ t

0

(r − η)Ss− ds+
∫ t

0

σ0(Ss− , t)Ss− dWs

+
∫ t

0

∫
R

Ss− (ex − 1)
(
m(Ss− ,s)(dx, ds) − ν(Ss− ,s)(dx, ds)

)
,

where r is the riskless interest rate, η is the dividend yield, m is the
jump-count-measure and ν is its compensator. The above dynamics is
equivalent to the following representation:

(2) St = e(r−η)teXt ,

where eXt is a martingale.

Following Carr et al. [6] we may introduce the local speed function
a0(St, t) governing the speed at which the jumps arise, i.e., we set:

(3) ν(St− ,t)(dx, dt) = a0(St− , t)ν(dx, dt).

Note that the above setting implies that the arrival rate of the jumps
depends on time and state, while the jump size distribution itself
remains unchanged over time.

We want to calibrate the above model to the observed option prices.
As the call option payoff is a convex function, the Tanaka-Meyer for-
mula (see [32]) can be used to derive a partial integro-differential equa-
tion for the European call price C(K,T ) with strike K and maturity
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T . This was done in [6], and the partial integro-differential equation
(PIDE) reads as follows:

CT = −ηC − (r − η)KCK +
σ2

0(K,T )
2

K2CKK(4)

+
∫ ∞

0

Y CKK(Y, T )a0(Y, T )ψe

(
log
(
K

Y

))
dY on R

+ × [0, T ∗]

where r is the riskless interest rate, η is the dividend yield, σ0 is the
volatility, a0 is local speed function defined in (3), T ∗ is the finite
planning horizon (e.g. the largest option maturity available in the
market) and ψe is the double-exponential tail of the Lévy measure
given by

ψe =

⎧⎪⎪⎨
⎪⎪⎩

∫ z

−∞
(ez − ex) ν(dx) for z < 0∫ ∞

z

(ex − ez) ν(dx) for z > 0 .

Note that the function ψe is similar to the price of out-of-the money
puts and calls, respectively. In fact, for z > 0, it is the expected value
of (ex−ez)+ under the Lévy-measure ν, which governs the jumps of the
asset price process. As we shall see later on, ψe(z) plays a crucial role
in the calibration of the local speed function as well as in the degree of
ill-posedness of the inverse problem.

Remark 1. For notational convenience the following analysis is based
on the assumption that r and η are constants. The analysis can,
however, easily be extended to the case where r and η are deterministic
functions of time.

In order to solve the partial integro-differential equation (4) uniquely,
it has to be supplemented with initial and boundary values: The initial
value of the price of a European call option is given by

(5) C(K, 0) = (S −K)+ = max(S −K, 0).

Moreover, we impose the following boundary conditions

(6) C(0, T ) = e−ηTS, C(∞, T ) = 0.
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A change of variables k = ln K, y = ln Y and

c(k, T ) = eηTC(ek, T ) ⇐⇒ C(K,T ) = e−ηT c(log(K), T )

leads to the equation

(7) cT (k, T ) +
(
r − η +

σ(k, T )2

2

)
ck(k, T ) − σ2(k, T )

2
ckk(k, T )

=
∫ ∞

−∞
(ckk − ck) (y, T )a(y, T )ψe(k − y) dy on R × [0, T ∗],

with
a(y, T ) := a0(ey, T ) and σ(k, T ) := σ0(ek, T ).

The initial condition and the boundary conditions now read

c(k, 0) = (S − ek)+,(8)
c(∞, T ) = 0,(9)

c(−∞, T ) = S.(10)

Our aim is to identify the function a from the observed values of
c(k, T ) (the liquid European call option prices in the market) given fixed
values for the other model parameters, in particular a local volatility
function σ. We formulate the problem as an abstract operator equation,
which allows us to use a standard regularization approach for solving
it.

We define a forward operator F mapping the local speed function a
to the option price c(k, T ) for those time values T and log-strikes k,
where data are given. Since we do not know the price for all times T
and all strikes k, it is convenient to split F into an observation operator
O and a parameter-to-solution operator F̃ .

The mapping F̃

F̃ : a→ c(k, T ) k ∈ R, T ∈ [0, T ∗]

assigns to a given local speed function a the corresponding transformed
option price c(k, T ), which is a solution to (7 - 10) for all (k, T ) in
R × [0, T ∗].
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The linear observation operator O is simply the restriction of c to the
set of points Ωdat ⊂ R × [0, T ∗] for which data are given:

O : c→ c(k, T ) (k, T ) ∈ Ωdat.

In total, we have a forward operator

(11) F (a) := OF̃ (a)

and the calibration problem can be written as the operator equation

(12) F (a) = y,

where y are the given data of option prices at Ωdat.

We cannot expect that equation (12) can be solved stably for a, in fact
it is well-known that the similar identification problem of the volatility
in the Black-Scholes equation is ill-posed in reasonable function spaces
[14].

In Section 5 we show that the local Lévy problem above is ill-posed
as well. It is well-known that in this situation a standard algorithm for
solving (12) (e.g. just least squares minimization) might fail (because
of instability) and one should instead apply regularization methods to
this equation. The main idea of these methods is that, instead of the
ill-posed equation (12), a related (well-posed) problem is solved. By
solving this regularized problem the instability of the original problem
is removed, at the cost of introducing an additional approximation
error. In regularization theory one usually deals with a parameterized
family of regularized problems. Within this family of problems the
free regularization parameter has to be chosen in such a way to find
a compromise between accuracy of the approximation of the original
problem and stability. This choice of the regularization parameter
(parameter choice rule) has to be done depending on the level of noise
in the data y.

A very common regularization method, mainly for linear, but also for
nonlinear problems is Tikhonov regularization, by which an approxi-
mate solution is found by minimizing the so-called Tikhonov functional

(13) J(a) := ‖F (a) − yδ‖2 + α‖a− a∗‖2
s.
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Here F is the forward operator defined in (11), yδ is the data (the
observable option prices), possibly contaminated with noise, a∗ is an
initial guess, α > 0 the regularization parameter and ‖.‖s denotes an
appropriate norm in a Sobolev space. Convergence (and convergence
rates) of Tikhonov regularization for the linear case can be found in [20,
30] and for the nonlinear case in [17, 28, 31]. For further information
concerning Tikhonov regularization we refer to the monograph [16].

Using the general and well-known theory of Tikhonov regulariza-
tion, in Section 5 we will show that under certain conditions nonlin-
ear Tikhonov regularization yields a convergent regularization method
also for the calibration problem (12). The main building blocks for the
applicability of the general theory are proving continuity and differen-
tiability properties of F , which we will be concerned with in Section
4.

However, we first have to show that F is a well-defined operator, i.e.
we have to show that the PIDE (7 - 10) has a unique solution c. This
is the topic of the next section.

3. Existence and Uniqueness of a solution to the PIDE. To
show the existence of a solution to the forward problem (7) together
with (8), (9) and (10), we will use some techniques (especially sub-
tracting the payoff from the call price to get homogeneous boundary
conditions) developed in Matache et al. [29], who showed solvability of
the backward problem in the exponential Lévy market case (see also
[10]). Here we extend this solvability result to the local Lévy market
case.

We denote by I the integral operator, defined as the convolution with
ψe:

I : v →
∫ ∞

−∞
v(y, T )ψe(k − y)dy

and by La the integro-differential operator

La : v →
(
r − η +

σ2(k, T )
2

)
vk(k, T ) − σ2(k, T )

2
vkk(k, T )

− (I [a(vkk − vk)]) (k, T ),

where the functions a, σ may depend on k, T .
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Then equation (7) can be written as

cT + Lac = 0.

Since the boundary conditions are not homogeneous following [29] we
subtract the payoff function from c and consider

(14) ĉ(k, T ) := c(k, T ) − (S − ek)+.

The derivatives of (S−ek)+ in the sense of distributions are as follows:

g0(k) := (S − ek)+

(15) g1(k) :=
d

dk
(S − ek)+ =

{
−ek k ≤ log(S)

0 else

(16) g2(k) :=
d2

dk2
(S − ek)+ =

{
−ek k ≤ log(S)

0 else
+ Sδlog(S).

Now, by definition (14), ĉ has to satisfy (g0 does not depend on time)

ĉT + Laĉ = −Lag0

with homogeneous boundary conditions.

We consider the following Hilbert spaces with the obvious inner
products:

H := L2(R) =
{
f :

∫
R

|f(x)|2dx <∞
}

V := H1(R) =
{
f ∈ L2(R) :

∫
R

|f(x)|2dx+
∫

R

|f ′(x)|2dx <∞.

}

It is well known, that V is the closure of C∞
0 (R) in the norm H1, i.e.

any element in V can be approximated by C∞
0 (R) functions.

We will show existence of a solution to (17) in the space L2([0, T ∗], V ).
Since the space V can be embedded continuously into H , V → H → V ′

(V ′ being the dual space of V ) forms a Gelfand triple. The crucial point
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for an existence proof of (17) is the G
◦
arding inequality (22) and the

fact that Lag0 ∈ L2([0, T ∗], V ′). To show these properties we need the
following assumptions:

Assumptions

σ(k, T ) ∈ L∞([0, T ∗],W 1,∞(R))(18)
σ(k, T ) ≥ c0 > 0 for (k, T ) ∈ R × [0, T ∗](19)

(20) E [St lnSt] <∞, 0 ≤ t ≤ T ∗, for St defined in (1)
(21) a(k, T ) ∈ L∞(R × [0, T ∗]), ak(k, T ) ∈ L∞([0, T ∗], L2(R)).

First we prove the G
◦
arding inequality for the integro-differential

operator La and continuity of the corresponding bilinear form:

Proposition 1. Let assumptions (18 - 21) hold, then there exist
some constants b > 0, γ and B such that

(22) (Lau, u)V ′,V ≥ b‖u‖2
V − γ‖u‖2

L2

and

(23) (Lau, v)V ′,V ≤ B‖u‖V ‖v‖V .

Proof. Let u, v ∈ C∞
0 . Multiplication of Lau by v and integration

gives a bilinear form AT

AT (u, v) := (Lau, v)

=
∫

R

((
r − η +

σ2(k, T )
2

)
uk(k) − σ2(k, T )

2
ukk(k)

)
v(k)dk

−
∫

R

(I [a(ukk − uk)]) (k, T )v(k)dk.

Integrating by parts we get

AT (u, v) = I1(u, v) + I2(u, v) + I3(u, v),
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where

I1(u, v) =
∫

R

(
r − η +

σ2(k, T )
2

+ σ(k, T )σk(k, T )
)
uk(k)v(k) dk

I2(u, v) =
∫
uk(k)

σ2(k, T )
2

vk(k) dk

I3(u, v) = −
∫

(I [a(ukk − uk)])(k, T )v(k) dk

If we assume (18), we obtain with some constants B0, B1

|I1(u, v)| ≤ (B0 + ‖σ(., T )‖2
L∞ + ‖σ(., T )‖L∞‖σk(., T )‖L∞)‖uk‖L2‖v‖L2

≤ B1‖uk‖L2‖v‖L2 .

From (19) we obtain
I2(u, u) ≥ c0‖uk‖2

L2

and again with (18)

I2(u, v) ≤ B2‖uk‖L2‖vk‖L2 .

Now let us look at the term I3: substituting k = k + y, integrating
by parts and interchanging the order of integration (applying Fubini’s
theorem) yields

|I3(u, v)| =
∣∣∣∣
∫

R

∫
R

ψe(k − y)a(y, T )(ukk(y) − uk(y)) dy v(k) dk
∣∣∣∣

≤ |i1| + |i2| + |i3|

with

|i1| =
∣∣∣∣
∫

R

ψe(k)
∫

R

v(k + y)a(y, T )uk(y) dy dk
∣∣∣∣ ,

|i2| =
∣∣∣∣
∫

R

ψe(k)
∫

R

v(k + y)ak(y, T )uk(y) dy dk
∣∣∣∣ ,

|i3| =
∣∣∣∣
∫

R

ψe(k)
∫

R

vk(k + y)a(y, T )uk(y) dy dk
∣∣∣∣ .
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Before discussing these integrals in detail we show that |ψe| is inte-
grable: ∫ ∞

−∞
|ψe(x)|dx =

∫ ∞

0

∫ ∞

z

(ex − ez) ν(dx) dz

+
∫ 0

−∞

∫ z

−∞
(ez − ex) ν(dx) dz.

For the sake of brevity we will just consider the first integral, as for
the second one the arguments are similar. With the help of Tonelli’s
theorem we can interchange the order of integration to find∫ ∞

0

∫ ∞

z

(ex − ez) ν(dx) dz =
∫ ∞

0

∫ x

0

(ex − ez) dz ν(dx)

=
∫ 1

0

(xex − ex + 1) ν(dx) (∗)

+
∫ ∞

1

(xex − ex + 1) ν(dx) (∗∗).

The integral (∗) exists, since

lim
x→0

xex − ex + 1
x2

=
1
2

and
∫ 1

0
x2ν(dx) <∞ for every Lévy measure. The integral (∗∗) is finite,

if (20) is met (cf. Sato [35, Cor. 25.8]).

Turning to the estimates for the integrals we find with the help of
(21) and the Hölder inequality for the first integral:

|i1| ≤ ‖a(., T )‖L∞‖v‖L2‖uk‖L2

∫
R

|ψe(k)| dk.

For i2 using the Sobolev embedding theorem results in:

|i2| ≤ ‖v‖L∞‖ak(., T )‖L2‖uk‖L2

∫
R

|ψe(k)| dk

≤ B4‖v‖Hs‖ak(., T )‖L2‖uk‖L2

∫
R

|ψe(k)| dk,
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with 1/2 < s < 1.

Hence we are left to deal with the Hs-norm of v. To that end we
consider the interpolation inequality

‖v‖Hs ≤ B5‖v‖s
H1‖v‖1−s

L2 .

Then by Young’s inequality we get that for any ε > 0 a B6(ε) exists
with

|i2| ≤
( ε

4
‖v‖H1 +B6(ε)‖v‖L2

)
‖ak(., T )‖L2‖uk‖L2

∫
R

|ψe(k)| dk.

Let us now turn to the integral i3. For arbitrary δ, applying partial
integration to the integral over {|k| > δ}, it can be bounded by

|i3| ≤
∣∣∣∣(ψe(δ) + ψe(−δ)

) ∫
R

v(k + δ)a(y, T )uk(y) dy dk
∣∣∣∣

+

∣∣∣∣∣
∫
{|k|>δ}

∂

∂k
ψe(k)

∫
R

v(k + y)a(y, T )uk(y) dy dk

∣∣∣∣∣
+

∣∣∣∣∣
∫
{|k|≤δ}

ψe(k)
∫

R

vk(k + y)a(y, T )uk(y) dy dk

∣∣∣∣∣
≤ B6‖a(., T )‖L∞‖v‖L2‖uk‖L2(

ψe(δ) + ψe(−δ) +
∫
{|k|>δ}

∣∣∣∣ ∂∂kψe(k)
∣∣∣∣ dk

)

+B7‖a(., T )‖L∞‖vk‖L2‖uk‖L2

∫ δ

−δ

|ψe(k)| dk

≤ 2B6‖a(., T )‖L∞‖v‖L2‖uk‖L2(ψe(δ) + ψe(−δ))

+B7(δ)‖a(., T )‖L∞‖vk‖L2‖uk‖L2

∫ δ

−δ

|ψe(k)| dk,

where the fact was used, that ψe is differentiable everywhere except
in zero, ∂

∂kψe(k) is non-positive for k > 0 and non-negative for k < 0
and furthermore limk→∞ ψe(k) = 0. Hence for any δ > 0 the integral∫
{|k|>δ}

∣∣ ∂
∂kψe(k)

∣∣ dk is bounded.
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Since
∫ δ

−δ |ψe(k)| dk → 0 for δ → 0 there is a δ > 0, such that∫ δ

−δ
|ψe(k)| dk < ε/4 and hence:

|I3(u, v)| ≤ B8(ε)‖uk‖L2‖v‖L2 +
ε

2
‖uk‖L2‖vk‖L2.

For later reference we state the main estimate of |I3|:

|I3(u, v)| ≤ R
(
‖a(., T )‖L∞ + ‖ak(., T )‖L2

)
‖ψe‖L1‖uk‖L2‖v‖V

for some constant R > 0.

Thus AT (u, u) fulfills

AT (u, u) ≥ (c0 − ε/2)‖uk‖2
L2 −B9‖uk‖L2‖u‖H −B10‖u‖L2‖u‖L2.

with a constant B9 depending on the norms of σ and a. By Young’s
inequality, we have

‖uk‖L2‖u‖H ≤ ε

2
‖uk‖2

L2 +
1
2ε

‖u‖2
H

and
AT (u, u) ≥ (c0 − ε)‖u‖2

V − γ(ε)‖u‖2
H.

Since ε can be arbitrarily small, AT satisfies the inequality (22).
Moreover, by the same estimates we obtain

|AT (u, v)| ≤ B‖u‖V ‖v‖V ,

which proves continuity of the bilinear form.

Now we can prove the main existence theorem:

Theorem 1. Let a and σ be such that (18 - 21) hold. Then there
exists a unique weak solution ĉ ∈ L2([0, T ∗], V ) of (17), i.e. a solution
satisfying

(ĉT , φ)L2 + (Laĉ, φ)L2 = (−Lag0, φ)L2 ∀φ ∈ V,(26)
ĉ(0) = 0(27)
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and there are constants B,B′ such that

(28) ‖ĉ‖L2([0,T ],V ) ≤ B‖Lag0‖L2([0,T ],V ′) ≤ B′.

Proof. The existence and uniqueness of a weak solution results from
standard parabolic theory (e.g. [18, 27]) using Proposition 1, if the
right hand side of (17) is in L2([0, T ], V ′). But this follows directly
with the estimates for I1, I2, I3 in the proof of Proposition 1: Indeed,
since g1 ∈ L2(R) we get

|(Lag0, v)| ≤ B0‖g1‖L2(‖v‖L2 + ‖vk‖L2),

for any v ∈ H1 and hence Lag0 ∈ L2([0, T ], V ′).

Note that using the same techniques as in Carr et al [6] it can be
shown that e(η−r)T

E[(ST −K)+]− (S0−K)+ fulfills equation (26) and
hence corresponds in fact to the solution of the weak formulation of the
PIDE.

Remark 2. Let us discuss the assumptions on the problem in more
detail. The smoothness and positivity condition (18, 19) on the
volatility σ are common for such problems, similar assumptions are
also used for the local volatility problem in the Black-Scholes setting.
They are certainly satisfied, if σ is taken to be a positive constant.
Condition (21) is a smoothness condition on the local speed function
and it defines the space in which we search for a.

Condition (20) is a sufficient condition such that the double expo-
nential tail is integrable. It translates the integrability condition into
a condition of the stochastic process modelling the underlying S. By
definition, E[St] = ertS0 < ∞ for all arbitrage-free market models so
that (20) is not very restrictive (for instance, it holds if E[S1+δ

t ] < ∞
for some δ > 0, which is in particular the case whenever the variance
of the asset price is finite).

Remark 3. The main difficulty in the proof of Theorem 1 was the
estimate concerning the convolution terms. It is based on the special
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form of the double exponential kernel such that its derivative is in
L1

loc(R \ {0}) and the fact that ψe is integrable. Let us mention
that the proof holds under alternative conditions on ψe, which do
not take into account the specific form of the kernel. For instance,
if ψe is such that I acts as a smoothing operator in Sobolev spaces
H−s → L2, for any s > 0 the term |i2| could be estimated from above by
‖a‖L∞‖v‖H1−s‖uk‖L2 and with an interpolation inequality and Young’s
inequality we still arrive at (25). Alternatively, if ψe is such that I is
a compact operator from L2 → L2 one could use Ehrling’s lemma [34]
with the same conclusion.

4. Properties of the parameter to solution map. For the
application of regularization theory [16] we have to prove some basic
continuity and – for convergence rates results [16, 17] – differentiability
properties of the forward operator F defined in (11). This is the topic
of this section. At first we focus on continuity of the parameter-
to-solution map F̃ in a reasonable space, i.e., the well-posedness of
the forward problem. Note that F̃ was defined as a mapping of
the local speed function a to c (which is a solution to (7)). In
Section 3 it was convenient to subtract g0 from c and state the
integro-differential equation for ĉ defined in (14). For investigating
the continuity properties of F̃ we will again subtract g0 from c and will
analyze the operator

(29) G : a→ ĉ = F̃ (a) − g0.

Of course, since g0 is a known function, which does not depend on a,
continuity of G will also imply continuity of F̃ , if g0 lies in the same
space as G(a). The only difficulty we face here is that g0(k) is not an
L2(R) function, since limk→−∞ g0(k) = S is a nonzero constant. Hence
F̃ (a) is not in L2(R). One possibility to prove continuity of F̃ would
be to use a weighted L2-norm for the image space of F̃ (compare [1]).
Another possibility, which we will follow here, is to subtract g0 from
F̃ and also from the data to state an equivalent identification problem
with G as parameter-to-solution operator. This is convenient, because
in this case we can work with the usual L2 space.

4.1 Continuity. We now show the continuity of the modified
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parameter-to-solution operator (29)

G : a→ ĉ,

with ĉ the solution to (17).

We will use the following space for the local speed function a:

(30) X := {a(k, T ) ∈ L∞(R× [0, T ∗]) | ak(k, T ) ∈ L∞([0, T ∗], L2(R))}

with norm

‖a‖X := ‖a‖L∞(R×[0,T∗]) + sup
T∈[0,T∗]

‖ak(·, T )‖L2(R).

For the norm on the image space of G we use L2([0, T ∗], V ).

Proposition 2. G is Lipschitz continuous from X → L2([0, T ∗], V ),
i.e. there exists a constant B such that for all a1, a2 ∈ X

‖G(a1) −G(a2)‖L2([0,T∗],V ) ≤ B‖a1 − a2‖X .

Proof. According to the definition we have

G(a1) −G(a2) = ĉ1 − ĉ2,

where ĉ1, ĉ2 solve (17) with parameters a1 and a2, respectively. Now
consider the difference

v := ĉ1 − ĉ2.

Note that v ∈ H1 satisfies

vT + La1v = La2g0 − La1g0 + La2 ĉ2 − La1 ĉ2(31)
=
(Ia1 − Ia2

)
(g2 − g1)

+
(Ia1 − Ia2

)( d2

dk2
ĉ2 − d

dk
ĉ2

)
,
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with homogeneous boundary conditions and g1, g2 as in (15) and (16),
respectively. Since v solves the same equation as ĉ with a different
right-hand side, we can apply Theorem 1 to obtain an estimate with
some constant B

‖v‖L2([0,T∗],V ) ≤(32)

B

∥∥∥∥(Ia1 − Ia2

)
(g2 − g1) +

(Ia1 − Ia2

)( d2

dk2
ĉ2 − d

dk
ĉ2

)∥∥∥∥
L2([0,T∗],V ′)

.

and hence, we have to estimate the right hand side of (31) in the
norm of L2([0, T ∗], V ′).

Let u ∈ V , with the use of (24) we then obtain

∣∣(Ia1(g2 − g1) − Ia2(g2 − g1), u
)∣∣

≤(‖a1(., T )−a2(., T )‖L∞(R)+‖(a1(., T )−a2(., T )
)
k‖L2(R)

)‖g1‖L2(R)‖u‖V

≤B1

(‖a1(., T ) − a2(., T )‖L∞(R) + ‖(a1(., T )−a2(., T )
)
k
‖L2(R)

) ‖u‖V

where the last inequality follows from ‖g1‖L2(R) <∞. With ĉ2 in place
of g0 we find with the same arguments:

∣∣∣∣
((Ia1−Ia2

)( d2

dk2
ĉ2− d

dk
ĉ2

)
, u

)∣∣∣∣ ≤
B2

(‖a1(., T )−a2(., T )‖L∞(R)+‖
(
a1(., T )−a2(., T )

)
k‖L2(R)

)‖u‖H1‖ d
dk
ĉ2‖L2 .

Now we let u depend on time as well and integrate over time to get∣∣∣∣∣
∫ T

0

(
(La2g0 − La1g0), u

)
dt

∣∣∣∣∣ ≤ B1‖(a1 − a2)‖X‖u‖L2([0,T∗],V )

and∣∣∣∣∣
∫ T

0

(
(La2 ĉ2−La1 ĉ2), u

)
dt

∣∣∣∣∣≤‖(a1−a2)‖X‖u‖L2([0,T∗],V )‖ĉ2‖L2([0,T∗],V ).

Because ‖ĉ2‖L2([0,T∗],V ) is bounded by (28) we get

‖ (La2g0 − La1g0) + (La2 ĉ2 − La1 ĉ2) ‖L2([0,T∗],V ′) ≤ B3‖(a1 − a2)‖X .
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Together with (32) this proves the Lipschitz continuity of G.

4.2 Frechet-differentiability. Now by similar means we can compute
the Frechet-derivative of G.

Proposition 3. G is Frechet-differentiable as a mapping from
X → L2([0, T ], V ) and the Frechet derivative G′(a) is given by

G′(a) : h→ v,

where v solves the equation

(33) vT + Lav = I
(
h

(
d2

dk2
ca − d

dk
ca

))
,

with homogenous boundary and initial conditions and

ca = ĉa + g0 = G(a) + g0 = F̃ (a).

Moreover, the Frechet derivative G′(a) is Lipschitz continuous.

(Note that the subscript a in ca, ĉa does not denote the derivative with
respect to a, but just indicates their dependence on a.)

Proof. We first have to show that (33) is well-defined, i.e. it has a
unique solution for any h ∈ X . Since v solves an equation similar to
ĉ, but with different right-hand side, we can apply Theorem 1 with the
right-hand side as in (33). To show the existence and uniqueness of a
weak solution we have to bound this term in the L2([0, T ∗], V ′)-norm.
However, this follows similarly as in the proof of Lipschitz-continuity
(Proposition 2) using (24), ca = g0 + ĉa and (28). Following the proof
in detail it can even be shown that

(34)
∥∥∥∥−I

(
h

(
d2

dk2
ca − d

dk
ca

))∥∥∥∥
L2([0,T∗],V ′)

≤ B0‖h‖X .

The next step is to show that the formal derivative G′(a) defined in
(33) is really the Frechet-derivative, i.e.

(35) ‖G(a+ h) −G(a) −G′(a)h‖L2([0,T∗],V ) = o(‖h‖X).
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For any a, a + h ∈ X let ĉa = G(a), ĉa+h = G(a + h) be the
corresponding solutions to (17) and v = G′(a)h defined in (33). The
difference u := ĉa+h − ĉa − v satisfies the equation

uT + Lau = I
(
h

(
d2

dk2
− d

dk

)
(ĉa+h − ĉa)

)
.

Again we can use the main estimate (28) to find that

‖u‖L2([0,T∗],V ) ≤ B1‖Ih(ĉa+h − ĉa)‖L2([0,T∗],V ′)

≤ B2‖h‖X‖(ĉa+h − ĉa)‖L2([0,T∗],V ) ≤ B3‖h‖2
X ,

which implies (35). The first inequality in the last line can be found by
following the proof of Proposition 2, while the second one stems from
the Lipschitz continuity of G.

Finally the Lipschitz continuity of the Frechet derivative can be
derived by observing that w = va − vã (va is the Frechet derivative
of the parameter to solution map G at point a) solves the following
PIDE:

wT + Law = (Lã − La) vã + I
(
h

(
d2

dk2
− d

dk

)
(ĉa − ĉã)

)
.

As in the proof of Proposition 2 and using the continuity of G′(a) (i.e.
the bound ‖vã‖L2([0,T∗],V ) ≤ C‖h‖X) the first term on the right hand
side can be estimated by

‖ (Lã − La) vã‖L2([0,T∗],V ′) ≤ B4‖a− ã‖X‖vã‖L2([0,T∗],V )

≤ B5‖h‖X‖a− ã‖X .

Similarly as in (34) together with the Lipschitz continuity of F̃ in
Proposition 2 (ĉa is Lipschitz in a) we obtain

∥∥∥∥I
(
h

(
d2

dk2
− d

dk

)
(ĉa − ĉã)

)∥∥∥∥
L2([0,T∗],V ′)

≤ B6‖h‖X‖ĉa − ĉã‖L2([0,T∗],V ) ≤ B6‖h‖X‖a− ã‖X
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Now applying the main estimate as in (28) we find

‖w‖L2([0,T ],V ) ≤ B‖a− ã‖X‖h‖X .

By definition of the operator norm this establishes Lipschitz continuity
of the Frechet-derivative.

4.3 The Adjoint Operator. For convergence rate results as well
as for the numerical implementation we also have to calculate the
adjoint of G′(a). The usual convergence theory for nonlinear Tikhonov
regularization [17] is formulated in Hilbert spaces, whereas up to now
we used the Banach space X (30) for the parameter space of the local
speed function. To apply the abovementioned regularization theory
as well as to find the adjoint operator G′(a) we have to use Hilbert
spaces. The previous results (Proposition 2, Proposition 3 in Section
4) still hold if X is replaced by a Hilbert space Hs with norm ‖.‖s

which is embedded into X , for later purposes we will also need that Hs

is compactly embedded, i.e. a bounded sequence in Hs has a strongly
convergent subsequence in X :

(36) ‖a‖X ≤ C1‖a‖s

∀ a ∈ Hs ∧ ‖an‖s ≤ C2 ⇒ ∃ nk : ank
convergent in X

Our notation indicates that we will use Sobolev spaces Hs of some
order s since for those embedding theorems are available and their com-
putation is well known (e.g. using finite elements or finite differences).

So we now treat G as an operator from Hs → Y with Y =
L2(R×[0, T ∗]) and Hs embedded into X as in (36). G′(a) is continuous
from Hs to Y , hence an adjoint operator G′(a)∗ exists, mapping from
Y → Hs. This linear operator is defined by the identity

(G′(a)h, φ)L2(R×[0,T∗]) = (h,G′(a)∗φ)Hs

for all h ∈ Hs and φ ∈ Y .

The computation of the adjoint is split into several steps: First we
have to consider the adjoint equation of (33). We start with arbitrary
φ in L2(R × [0, T ∗]) and consider a (weak) solution of

(37) −uT + L∗
au = φ, u(., T ∗) = 0
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where L∗
a is the formal adjoint differential operator to La

L∗
au = − ∂

∂k

((
r − η +

σ(k, T )2

2

)
u(k, T )

)
− ∂2

∂k2

(
σ(k, T )2

2
u(k, T )

)

−
(
∂2

∂k2
+

∂

∂k

)
(aI∗u).

I∗ is the adjoint integral operator of I in the L2-inner product. It is
well-known in the theory of integral equations (see e.g. [15, 26]), that
I∗ has the same form as I (a convolution operator) but with kernel
ψe(y − k) instead of ψe(k − y).

L∗
a is the formal adjoint to La, i.e. it follows by integration by parts

that
(Lav, u)L2 = (v,L∗

au)L2 ∀u, v ∈ V.

This immediately implies that the G
◦
arding inequality (22) and con-

tinuity (23) also hold for L∗
a. Thus, using a change of the time variable

s → T ∗ − T , (37) can be rewritten as a standard parabolic initial
value problem, for which the existence and uniqueness of a solution in
L2([0, T ∗], V ) holds.

With integration by parts with respect to the time-variable we get
for any h ∈ H2 and u a solution to (37)

(G′(a)h, φ)L2(R×[0,T∗]) =
∫ T∗

0

∫
R

I
(
h

(
d2

dk2
ca − d

dk
ca

))
u dkdt

=
∫ T∗

0

∫
R

h(k, t)
(
d2

dk2
ca − d

dk
ca

)
I∗u dkdt

=: (h, G̃′(a)∗φ)Hs,Hs′ .

G̃′(a)∗ is now the adjoint using the dual pairing of Hs and Hs′. For
the adjoint in Hs we have to compose it with the Riesz isomorphism
Rs : Hs′ → Hs, which is a smoothing operator and for many simple
cases involves solving a partial differential equation (for instance if s = 1
the isomorphism involves solving the Poisson equation). Altogether we
get the adjoint G′(a)∗ by the mapping

(38) φ→ Rs ◦
[(

d2

dk2
ca − d

dk
ca

)
I∗u

]
,
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where u solves (37). This was the derivation of the adjoint for the case
that the observation operator O is the identity, i.e. when prices for
all log strikes and times are avaliable. If this is not the case, then the
adjoint is given in a similar way as in (38), but where u solves

−uT + L∗
au = O∗φ, u(T ∗, ·) = 0

instead of (37). The L2-adjoint O∗ of the observation operator is the
extension operator of φ by 0 to the whole space R × [0, T ∗].

The computation of the adjoint is important for at least two reasons.
Firstly, an efficient numerical method for computing a minimizer of
the Tikhonov functional requires the adjoint operator of the Frechet-
derivative. The essence of the so-called adjoint method (compare [14])
is that for computing a descent direction of the Tikhonov functional we
do not have to compute the full Frechet-derivative or its adjoint, but
only the application of this operator to a given element.

Secondly, the adjoint is also important in the theory of Tikhonov
regularization, because a sufficient condition for obtaining convergence
rates - the so-called source condition - is formulated via the adjoint
operator. The range of the adjoint determines in an essential way the
degree of ill-posedness of the problem. We will come back to this issue
in the next section in the discussion of the convergence rates result in
Theorem 4.

5. Regularization. We now turn to the regularization of the
inverse problem of identifying the local speed function. For the problem
described, there are at least two objectives to be achieved: At first we
want to calibrate the problem to data, i.e. the discrepancy between
the model and the data should be small. On the other hand, we want
to find a model which is robust, even if the data are noisy. For this
reason we phrased the problem as a parameter identification problem,
where we not only try to make the discrepancy small, but try to find a
local speed function - in a stable way - which reproduces the data well.
This shifts the focus of convergence in the data space to convergence
in the parameter space. If we consider the identification problem as
solving equation (12) (or equivalently (29)) in the space Hs such that
(36) holds, it follows immediately that the forward operator is compact
and hence by a well-known result [16] the problem is locally ill-posed in
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this space. As it is typical for ill-posed problems, a good fit to the data
does not necessarily imply that the computed parameters are close to
the ”real” parameters. For that reason we have to use regularization.
With this tool we can compute a parameter in a stable way even in the
presence of errors in the data. In addition, we then have a convergence
theory which basically tells us that for small data noise the computed
parameters will still be close to the real parameters. Moreover, it is
even possible to give bounds on the error between computed and real
parameters, which is the essence of the convergence rates result later.
We make use of the well-known regularization theory in Hilbert spaces,
which can be found in detail in [16].

To state the result, we need some definitions and assumptions. First
we assume that the data are attainable, i.e. there is a real speed
function a which creates the exact data y via (12). In practice, exact
data are usually not available, instead what can be observed are noisy
data yδ. The noise level δ is the distance between the exact and the
noisy data:

(39) ‖y − yδ‖Y ≤ δ,

where y is in the range of the forward operator F . Using Tikhonov
regularization we compute a regularized solution aα,δ from the noisy
data yδ by minimizing the Tikhonov functional in (13):

(40) aα,δ = argmina∈Hs

(‖F (a) − yδ‖2
Y + α‖a− a∗‖2

s

)
.

Here α > 0 is the so-called regularization parameter, and a∗ is an
initial guess. As norm ‖.‖Y we use the L2-norm on the observation
set Ωdat. By applying the theory of nonlinear Tikhonov regularization
[16, 17] we obtain the result that if the noise level δ goes to 0 and
the regularization parameter is chosen appropriately (see Theorem 3),
then the computed solution converges as well. Its limit is a so-called
a∗-minimum norm solution, which reproduces the exact data (i.e. (12)
holds) and has minimal distance to a∗ compared to all parameters
for which (12) holds. In mathematical terms, an a∗-minimum norm
solution (usually denoted by a†) is defined as

(41) a† := argmina

{‖a− a∗‖s

∣∣F (a) = y
}
.



IDENTIFICATION OF THE LOCAL SPEED FUNCTION 185

The notion of minimum norm solution is only relevant if the problem
(12) does not have a unique solution. If (12) is uniquely solvable,
the minimum norm solution is ’the’ solution to the problem. For the
definition of a† to make sense we have to assume that the set of solutions
to (12) with ‖a − a∗‖s < ∞ is not empty. The initial guess a∗ has to
be chosen such that this assumption is satisfied. If, for instance, the
exact parameter is a perturbation of a known constant a = a0 +h with
a0 ∈ R and h ∈ Hs, then a∗ is conveniently chosen as this constant a0.

Before stating the main results we have to include a continuity as-
sumption of the observation operator: We impose that O is continuous
from L2([0, T ∗], V ) → L2(Ωdat), where Ωdat are the set of points in
k, T -space where option prices are available, and

(42) ‖Of‖L2(Ωdat) ≤ B11‖f‖L2([0,T∗],V ).

This holds, for instance if Ωdat, has positive Lebesgue measure in (k, T )-
space.

At first, we have to prove that a minimizer of the Tikhonov functional
exists. This can be done with help of the analysis in Section 4. Since
there we showed several properties of G it is convenient to reformulate
the minimization problem (40) in an equivalent way using G. This
operator was obtained from the forward operator by subtracting the
known function g0 in (29); in a similar manner we can subtract it from
the data to get a problem involving G. More precisely, with the noisy
data ŷδ := yδ −Og0 and exact data ŷ = y −Og and the notation

(43) G̃ := OG,

(40) is equivalent to

(44) argmina∈Hs‖G̃(a) − ŷδ‖2
Y + α‖a− a∗‖2

s.

Moreover, (39) and (41) are equivalent to the corresponding definition
involving ŷ, ŷδ, OG(a) instead of y, yδ, F (a). We can now show that the
Tikhonov functional has a minimizer:

Theorem 2. Under the assumptions (18 - 20) on σ, ψe, S, and if
(36, 42) hold, and a minimum norm solution a† with (41) exists, then



186 S. KINDERMANN, P. MAYER, H. ALBRECHER, H. ENGL

for a fixed noiselevel δ, (cf. (39)), the functional (44) has a minimizer
aα,δ.

Proof. By [17] and using formulation (44) we only have to show
that the graph of G̃ is weakly sequentially closed. However, since Hs is
weakly sequentially closed and compactly embedded into X by (36),
a weakly convergent sequence in Hs converges strongly in X . By
Proposition 2 G is continuous from X to L2([0, T ∗], V ), hence, with
(42) G̃ is continuous from X to L2(Ωdat). In total G̃ is continuous and
compact from Hs to L2(Ωdat). From this it follows that the graph fo
G̃ is weakly sequentially closed.

We can now state the main result on stability of the regularization
and convergence.

Theorem 3. Let the assumptions (18,19, 20) on σ, ψe be satisfied,
(42) hold and δ be as in (39). If the norm ‖.‖s in (40) is chosen such
that s > 3/2, then the Tikhonov functional admits a global minimum
aα,δ. Moreover for fixed α this regularized solution depends stably on
the data yδ in the sense that if yδ is replaced by a sequence yk converging
to yδ as k → ∞, then the corresponding minimum aα,k in (40), has a
convergent subsequence with limit aα,δ.

The regularized solution aα,δ converges in the following sense: For a
sequence of data yδk

with noise levels δk → 0 and if αk is chosen such
that αk → 0 and δ2k/αk → 0, then the sequence of regularized solutions
aα,δk

corresponding to these data has a convergent subsequence, and the
limit of any convergent subsequence is an a∗-minimum norm solution
of (7). If the solution to (7) is unique then aα,δk

itself converges.

Proof. With the results of Section 4, (39) and (42), the result follows
from the well-known theorems in [16, 17].

Theorem 3 summarizes the main results for Tikhonov regularization:
Existence of a minimizer, stability of the regularized solution and
convergence if the noise-level goes to 0 and the regularization parameter
α is chosen as stated in the theorem. It is well-known in regularization
theory that for ill-posed problems in order to obtain convergence, α
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cannot be chosen freely, but has to depend on the noise level. This
choice of α is called a parameter choice rule.

The previous theorem establishes convergence of the regularized
solutions to a minimum norm solution as α → 0 and δ → 0. The next
question is, how fast this convergence takes place. It is known that
for ill-posed problems, without additional conditions, the convergence
speed can be arbitrarily slow. On the other hand, if the minimum
norm solution and the initial guess satisfy some abstract smoothness
condition (”source condition”), convergence rates can be derived.

From the analysis in the previous section, together with the theory
of nonlinear Tikhonov regularization [16, 17], we can conclude that the
basic assumptions for an application of Tikhonov regularization are
satisfied and that we get convergence and also convergence rates under
the following source condition:

Theorem 4. If in addition to the assumptions of Theorem 3 the
conditions

(45) ∃w ∈ Y : a† − a∗ =
(
G̃′(a†)

)∗
w

(46) γ‖w‖ < 1

hold, where γ is the Lipschitz constant of G′, and α is chosen as α ∼ δ
(as δ → 0), then the regularized solution converges to the minimum
norm solution with rate

‖aα,δ − a†‖ ≤ O(
√
δ).

Note that we can use the equivalent formulation of Tikhonov regu-
larization in (45) instead of (40), which is why we used G in (45). For
(40) the analogous condition would involve F ′(a†)∗ instead of G̃′(a†)∗.

We now give a detailed interpretation of the smallness condition (46)
and the source condition (45). The first one can be interpreted in a
way that our initial guess a∗ has to be sufficiently close to the exact
solution. The latter, however, is a stronger condition in the sense that
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we also have to know that the difference between initial guess and exact
solution have to be in the range of G̃′(a†)∗. Since this is a smoother
space than L2, this implies that the non-smooth part of a† has to be
known, in order to get convergence rates.

The necessity of a source condition for obtaining convergence rates is
a consequence of the ill-posedness of the problem. Note that equation
(45) is a nontrivial condition on a† − a∗ because the equation cannot
simply be solved for w by inverting G̃′(a†)∗; thus such a w may not
exist. The source condition is also very useful in interpreting the ill-
posedness of the problem. The difficulty of the problem can be classified
in degrees of ill-posedness according to the smoothing property of
G̃′(a†)∗, and hence how hard it is to fullfill condition (45). If the range
of G̃′(a†)∗ consists of n-times differentiable functions, then we have to
know the jumps in the nth derivative of the unknown parameter a†

in order to fulfill (45). Now the higher the degree of smoothness of
the range R(G̃′(a†)∗), the harder it is to satisfy the source condition.
This gives a measure of the ill-posedness of the problem: If R(G̃′(a†)∗)
is the Sobolev space Hn, then the problem is as ill-posed as n-times
differentiation.

We can take the source condition (45) and analyze the smoothing
properties of G̃′(a†)∗ in more detail, to identify those factors that
make the problem ill-posed and to compare the local-Lévy identification
problem with others such as the corresponding identification problem
for the Dupire model.

From the structure of the adjoint we can observe several parameters
influencing the ill-posedness. G̃′(a)∗ maps φ to u, the solution of the
adjoint equation with right-hand side O∗φ. Then the integral operator
I∗ is applied to u and finally I∗(u) is multiplied with

(
d2

dk2 ca − d
dkca

)
.

If we assume for simplicity, that we have data on the whole space, i.e.
O = Id, we can analyze the smoothing properties of G̃′(a†)∗ as follows:
The step from φ → u involves solving the adjoint equation, which is
only mildly smoothing. In fact there is almost a 1-1 correspondence
of u and φ: For any φ we have a solution u, and if ut, ux and uxx

are in L2, then a φ exists that satisfies the adjoint equation. Thus
solving the adjoint equation is smoothing in the sense that we gain
one time-derivative and two space-derivatives. This ill-posedness does
not depend very much on the choice of ψ and a. The main difficulty
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in satisfying the source condition comes from the integral operator
I and the multiplication with

(
d2

dk2 ca − d
dkca

)
. If ψe is a k-times

differentiable kernel function, then the corresponding integral operator
maps into a space of k-times differentiable functions. Hence in order to

satisfy a source condition, (a∗−a†)
(

d2

dk2 ca − d
dkca

)−1

has to be k-times
differentiable as well. In that case, we have to know the jumps in the
(k − 1)-th derivative of the solution to get convergence rates.

As a result we can state that the smoother the kernel function ψe,
the more ill-posed the problem is. Note that for the corresponding
identification problem of the volatility in the Dupire model, the adjoint
has a similar structure [14], where I is the identity operator, which is
not smoothing at all. In this case the range of the operator in (45) is
mainly determined by the smoothness of the solution u to the adjoint
equation (37). For the local Lévy model, additionally a smoothing
integral operator acts on u, which makes (45) a more difficult condition
than for the Dupire (or Black-Scholes) model. This shows that the
local Lévy model is (depending on ψe) much more ill-posed than the
corresponding Black-Scholes calibration model.

However, there is a second implication of the source condition, which
comes from the multiplication operator with multiplier

(
d2

dk2 ca − d
dkca

)
.

This quantity is proportional to the formal density of the asset price
at time t. To see this, observe that

(
d2

dk2 ca − d
dkca

)
= K2C

(a)
KK , where

C(a) denotes the European call prices with the local speed function a.
Note that CKK(K,T ) = fST (K) with fST denoting the density of ST .

If this density is strictly positive for all t and K, then we can divide
by the density and the source condition is essentially a smoothness
condition determined by ψe. However, in degenerate cases (if σ = 0 for
instance) it may happen that the multiplier is 0 for some points (k, T ).
In this case the source condition implies that a† = a∗ in these regions.
Consequently we have to know the solution in this region (which is
evident, since in regions with density 0, the value of a has no influence
on the call price ca, and hence cannot be reconstructed from any data
there). The assumption σ > 0 used in this paper avoids this problem.
Nevertheless, the problem of zero density should kept in mind for the
study of more general problems (in particular, pure jump processes are
often considered to be appealing models).
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Furthermore the source condition gives a more precise quantitative
interpretation: Wherever the density is very small, the initial guess
has to be close to the exact solution in order to guarantee that

(a∗ − a†)
(

d2

dk2 ca − d
dkca

)−1

is in the range of I∗.

So we have identified at least two major influence factors for the ill-
posedness: a small value of the density function and the smoothness of
ψe.

Finally we note that if O is not the identity operator, i.e. the data are
given only on a subset of R× [0, T ∗] the problem is also more difficult,
since the right-hand side of the adjoint equation is only supported on
the set of observation values. As a consequence, we have less freedom
of choice for w in (45). This formally implies the natural result that
less data make the calibration problem more difficult.

6. Numerical Illustration. We now turn to the numerical com-
putations and results for the Tikhonov regularization of the identifica-
tion problem. To get a regularized solution we have to compute the
Tikhonov functional (13) and apply a minimization algorithm. The
main computational work in computing the forward operator F̃ in the
functional concerns the numerical solution of the integro-differential
equation (4). For this we have to discretize the domain R

+ × [0, T ∗]
and the governing PIDE (4) and the involved Hilbert space norms.

For the computation we replaced the unbounded domain R
+× [0, T ∗]

by a bounded one, [0,K0]×[0, T ∗], whereK0 was chosen to beK0 = 5S,
S being the current spot price.

The computational domain is then discretized uniformly into nK and
nT intervals for the K- and T -direction, respectively.

The derivatives with respect to K in (4) are replaced by finite
differences, and the integral is discretized by a midpoint rule. On the
interval [0,K0] we used the same Dirichlet boundary condition as in (6)
and the initial condition (5). The parameters in the equation σ0 and
a0 are discretized on the same uniform grid as the calls.

For the resulting discretized evolution equation of (4) we used a
Crank-Nicholson type scheme of the form
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(
1

ΔT
I − 1

2
A

)
Cn+1 =

(
1

ΔT
I +

1
2
A

)
Cn +BCn,

where Cn is the vector of discretized call prices at time step n, ΔT is the
time step size, the matrix A represents the discretized versions of the
terms in equation (4) involving zeroth, first and second derivatives,
while the matrix B comes from the discretization of the integral
operator. A standard Crank-Nicholson scheme would also involve the
matrix B on the left-hand side of the equation, but we choose this
modification for efficiency reasons: A is a sparse matrix coming from
the derivative terms, while B is a full matrix corresponding to the
integral operator. Hence, if B appears on the left hand side, each time
step would involve solving a linear equation for Cn+1 with a full matrix.
In our modification we only need to solve a sparse matrix equation,
which can be done more efficiently. Our modified iteration can be seen
as a mixture between a Crank-Nicholson scheme and an explicit Euler
scheme (for the terms involving the integral operator). Of course, an
implicit Euler scheme could be used as well and this would be more
stable, but again, a fully implicit scheme has the drawback that one
would have to invert a full system matrix due to the integral operator
term.

Assuming that the set of observation points Ωdat is discrete, the
observation operator O is computed by a piecewise linear interpolation
of the discretized solution to the observation points.

Since we replace the infinite domain R
+ by a finite one, we do not

have the problem that g0 is not in L2 in the discretized case and we do
not have to introduce the operator G̃ in (29). Thus we can minimize
the functional (13). We used the discretized L2-norm for the error term
F (a) − y. For the regularization norm ‖.‖s we have to keep in mind
that the embedding condition (36) has to hold. One possible choice
for a norm is the discretized version of the H2(R+ × [0, T ∗]), which
involves all second derivatives. For the numerical computations we
used a different one - the tensor product norm H1[0,K0] ⊗H1[0, T ∗]:

‖u‖2
H1[0,K0]⊗H1[0,T∗] =

∫ T∗

0

‖u(., T )‖2
H1([0,K0])

+
(
d

dT
‖u(., T )‖H1([0,K0])

)2

dT.
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Two reasons are responsible for this choice: First of all, this norm
is weaker than the H2-norm, as only mixed second order derivatives

∂2

∂K∂T u appear in the highest order terms, hence the exact solution does
not need to be in H2 but may have slightly less regularity. Secondly,
a discretization of the tensor product norm can be easily obtained
by taking the Kronecker product of the matrices corresponding to
a discretization of the one-dimensional H1-norm. The embedding
condition (36) for the tensor product norm follows immediately from
the one-dimensional Sobolev embedding theorem H1(I) → C(I) (I
being an interval).

With the described discretization we can numerically compute the
Tikhonov functional (13) for a given discretized speed function a. The
minimization of this functional was done by a Gauss-Newton method.
In each step, this involves the computation of the Frechet-derivative
of F and its adjoint, as well as solving a linear equation for the
update anew − aold (cf. Section 4). The numerical computation of
the corresponding equations was done in the same way as for the call
price equation (4) and in a consistent way such that the discretization
of the derivative equals the derivative of the discretized operator. The
linear equation in the Gauss-Newton step was solved by a CG-method.
For that only matrix-vector operations are used so we do not have
to compute the full derivative matrix, but directional derivatives are
sufficient, which helps reducing the computational effort.

In order to verify the predicted convergence rates we performed some
numerical results using simulated data. At first, we consider the rates
in Theorem 4, i.e., the case when a source condition (45) holds. For
this we specified the exact solution

a†(K,T ) = exp(−2(K − 1)2) sin(K)(1 + 0.2T ),

computed the forward operator F (a†) and added some random noise to
this to get data with noise level δ. For this simulation the setup of the
problem parameters was as follows: We used a 50 × 50 discretization
for the domain [0,K0] × [0, T ∗] with T ∗ = 1.

The volatility σ and η were chosen to be constant 1, the interest rate
was r = 0.05. As observation set we used the discretization points in
the interval [0.6, 4] × [0.1, 1]. The double exponential tail for the Lévy
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FIGURE 1: Error versus noise level with source condition.

measure was chosen as in [6]

(47) ψe(z) =

⎧⎪⎪⎨
⎪⎪⎩
β exp(−(G+ 1)|z|)

G2 +G
z < 0

exp(−(M − 1)z)
M2 −M

z ≥ 0
(β,G,M) =

(
1
2
, 1, 2

)
,

which corresponds to the Kou model (see [23, 24] for details on this
model). Since in this case a† is known we constructed the initial guess
a∗ such that (45) holds. With the a priori regularization parameter
choice α = δ we computed the error ‖aα,δ − a†‖ for different choices of
δ. The result is shown in Figure 1.

The predicted order of convergence rate ‖aα,δ−a†‖ ∼ √
δ is indicated

by the straight line in the picture. It can be seen that the computed
convergence rate follows the theoretically predicted one.

Knowing the exact solution for this simulated example allowed an
initial guess for which the source condition is satisfied. In practical
applications such an initial guess might not be available and a source
condition of type (45) might not hold. It is possible that a weaker source
condition is fullfilled (e.g. of Hölder or logarithmic type [22]), in which
case weaker convergence rates can be proven. In many applications the
type of source condition and the rates thus depend on the smoothness
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of the exact solution a†. In the next example we tested how convergence
rates depend on the smoothness of the exact solution.

Note that now the source condition is not known, so the parameter
choice α ∼ δ cannot be used here (it might not give the optimal rate).
We therefore rely on an a posteriori parameter choice rule [16], which
has the advantage that the exact dependence of α on the noise level
does not have to be known, but the regularization parameter is defined
implicitly. For the computations we used the discrepancy principle,
which can be described as follows: First, a geometrically decaying
sequence of regularization parameters αk is generated. For each αk

the corresponding Tikhonov regularized solution is computed and the
first parameter for which the residuum is of order of the noise level is
chosen as regularization parameter:

α := max{αk : ‖F (aαk,δ) − yδ‖ ≤ τδ},

where τ > 1 is a fixed parameter. A convergence proof of this rule for
nonlinear Tikhonov regularization can be found in [25, 33, 37].

In Figure 2 we show the error ‖aα,δ − a†‖ over the noise level δ for
two different solutions a†: The first one is a smooth Gaussian function,

a†1(K,T ) = exp
(
− (K − 2.5)2

2

)
exp

(
− (T − 0.5)2

0.1

)

while the second one is chosen as the tensor product of two piece-wise
constant functions

a†2(K,T ) = pwconst1(K)pwconst2(T ),

where pwconst1(K) is nonzero in the interval [1, 4], and constant 1
in the interval [2, 3] with continuous linear interpolation in between.
pwconst2(T ) is of similar shape, nonzero in [0.2, 0.8] and constant 1
in [0.4, 0.6]. Both functions a†1 and a†2 have a similar support but
the first one is smooth while the second one is not even continu-
ously differentiable (although it is in the tensor product Hilbert space
H1[0,K0]⊗H1[0, T ∗]). The dashed line in Figure 2 corresponds to the
error for the non-smooth solution a†2 and the solid line to the smooth
one a†1. It can be seen that the convergence in the non-smooth case
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FIGURE 2: Rates of smooth and FIGURE 3: Rates of different kernels.

non-smooth speed functions.

is slower than for the smooth case. This indicates that amongst other
factors the smoothness of the solution influences the convergence rate.

In a similar experiment we tested how convergence rates depend
on the smoothness of the double exponential kernel. As indicated in
the discussion in Section 5, a source condition of type (45) is more
difficult to fulfill for a given solution if the double exponential kernel is
smoother. Thus, it is to be expected that if a solution a† is kept fixed
but the identification problem is computed using different kernels, the
convergence rate for the case of smooth kernels should be slower. We
choose three different kernels: The first one was as in the previous
cases the one-times weakly differentiable kernel (47), the second one
was a smooth Gaussian centered at 0 with variance σ =

√
5, the third

one was a narrow Gaussian with variance σ ∼ 0.15. Although the last
kernel is smooth, in a numerical sense it approximates a Dirac-Delta
distribution and hence can be considered a highly non-smooth kernel
for the discretized problem. The results are shown in Figure 3: The
dashed line corresponds to the smooth Gaussian, the dashed-dotted line
to the delta-like kernel and the solid line to (47). The results confirm
the prediction (see discussion at the end of Section 5) that the rates are
faster for non-smooth kernels - the delta-like kernel yields the fastest
rates, while the Gaussian with large variance result in the slowest ones.

It should be mentioned that other factors determine the convergence
rates as well, for instance we observed that it is harder to identify
features of the speed function which are located close to the boundary
K0, where the call price has little variation. This is also not surprising
in view of the discussion of the source condition in Section 5.



196 S. KINDERMANN, P. MAYER, H. ALBRECHER, H. ENGL

Finally we tested the calibration procedure on real data. For that
purpose we used the data given in [2] as well as the calibrated Merton
jump model of that paper. The jumps in that model are log-normally
distributed, i.e. ν(dx, dt) = φ(x)dxdt with φ denoting the density
function of the normal distribution with mean μ and variance γ2.
The given data in [2] are bid and ask prices of European calls having
maturities form 0.08 to 10 years and strikes between 0.5 and 2 (with
S0 = 1). For the solution to the PIDEs we used the scheme outlined
in the beginning of this section and a 401 × 201 discretization. As
”observed price” we used the arithmetic average between bid and ask
price. For the initial guess for the local speed function we employed
the constant jump intensity of the fitted model of [2], which is equal to
0.089. The remaining fitted parameters are: σ = 0.1765, μ = −0.8898,
γ = 0.4505, r = 0.059 and η = 0.0114. While Andersen and Andreasen
in [2] fitted the local volatility leaving the jump process unchanged over
time by optimizing the least-squares problem with the constraint for
the model prices to fall into the bid-ask spread, we calibrate the local
speed function, which only affects the jump term of the process, by the
developed regularization procedure. The bid-ask spread is interpreted
as the noise level δ and set to the root of the average squared difference
between the midpoints of the bid and ask prices and the bid prices,
which resulted in δ = 0.0022. The fitted local speed function is plotted
in Figure 4 in the relevant region, where data were available (the local
speed function was set to 0 elsewhere). The procedure terminated
after 2 main Gauss-Newton iterations and took 4 minutes on a 2.4
GHz Pentium 4 with 512 MB RAM.

It is quite obvious, that there is a sharp decrease in the local speed
function around time 1.5 and strike 1.5. This is due to the fact that
in this region the volatility σ = 0.1765 in the model suffices to imply
call prices as high as in the data, and hence no jump term is needed to
explain the option prices there. The root of the mean squared error of
the fit to the data was 0.0014, when the algorithm terminated, while it
was 0.0245 for the initial guess and hence the introduction of the local
speed function has considerably increased the fitting quality. Note that
the error is smaller than the noise level, which is in some sense the best
one can expect from a fitting procedure.



IDENTIFICATION OF THE LOCAL SPEED FUNCTION 197

FIGURE 4: Local speed function for the Merton jump-diffusion model of [2].

7. Conclusion and further research We have investigated a
procedure to robustly calibrate the local speed function of a given
Lévy model to available European option prices. It turned out that
the Tikhonov regularized problem is not only stably solvable, but one
can also prove convergence rates and verify them numerically. The
numerical results are quite satisfactory also in the real data case. The
fact that the numerically reconstructed local speed function is quite
small or even zero in some regions suggests further research on model
selection in general. Another interesting open problem is the case of
a pure jump model without diffusion component. From the viewpoint
of calibration this situation is more delicate in both investigating the
forward operator and the regularization. Finally, in the present paper
we investigated the calibration of the local speed function when both
the local volatility and the Lévy measure are known. The suitability
of a simultaneous calibration of volatility, speed function and Lévy
measure from market data will be investigated in a future study.
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