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ON A N EXTENSION OF THE TROTTER-KATO THEOREM 
FOR RESOLVENT FAMILIES OF OPERATORS 

C. LIZAMA 

ABSTRACT. We extend the well-known theorem on con
vergence and approximation of Co-semigroups due to Trotter 
and Kato to the context of resolvent families of operators. In 
particular, this result also extends those due to Goldstein [4] 
for cosine families and it is applied to the case of a class of 
Volterra equations which were considered by Priiss [11]. 

1. Introduction. Let X be a Banach space with norm || ||. Let 
A be an unbounded closed linear operator in X, with dense domain 
D(^ ) , and fc€L 1

1
o c (R + ) . 

A strongly continuous family {#(£),£ > 0} of bounded linear oper
ators in X is called a resolvent family (for equation (1.2) below) if it 
commutes with A and satisfies the resolvent equation 

(1.1) R(t)x = x + k(t-s)AR(s)xds, t > 0,x <E D(A). 
Jo 

We remark that a resolvent family is unique if it exists (cf. [3]). 

The notion of resolvent family is the natural extension of the con
cepts of a Co-semigroup for k(t) = 1 and of a cosine family for the 
case k(t) = t. 

The existence of a resolvent family allows one to solve the Volterra 
equation 

(1.2) u{t) = f(t)+ ! k{t-s)Au{s)ds, t e [0,T] =: J, / G C(J,X), 
Jo 

Equation (1.2) has been considered recently by many authors, since 
it has applications in different fields (see, for example, [3, 11 , 12]). 

The following generation theorem, due to Da Prato and Iannelli [2], 
is the extension for resolvent families of the well-known generation 
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theorems due to Hille-Yosida for Co-Semigroups and Sova for the case 
of cosine families. 

THEOREM 1.1. [11] Suppose A is a closed linear densely defined 
operator in the Banach space X and let k G L\oc (R+) satisfy 

poo 

/ \k{t)\e~wtdt < oo. 
Jo 

Then there exists a resolvent family R(t) such that 

(1.3) ||Ä(t)|| < Mew\ for allt>0 

and some constant M > Ì, if and only if 

(1.4) k(fi) ^ 0 and l/k{ß) G p(A), for all /i > w, 

and 

||[(M - ßk{ß)A)-in < {ß
M^)n+l for all ß>w, 

n e N o : = N u { 0 } , 

where k(p) denotes the Laplace transform of k(t) and [ ]^ denotes 
the n t h derivative. 

The main purpose of this paper is to extend to resolvent families 
the Trotter-Kato theorem on convergence and approximation of Co-
Semigroups and its analog for the case of cosine families due to 
Goldstein [4]. The proof of this theorem is based on ideas in [1; 
Chapter 3, §3], [4, 5, 6; Chapter 8, §1 and Chapter 9, §2], [7] and [9]. 

As a consequence, we obtain results of the same type as those in 
Priiss [11], but this time on convergence of two special classes of kernels 
k and operators A (§3). 

2. Approximation and convergence of resolvent families. 
Let k G Lloc(R+) and suppose that k(ß), the Laplace transform of 
&(£), exists and is defined for Re/z > w. 
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Let {Am,m e N 0 } be a sequence of closed linear operators on the 
Banach space X, with dense domains D(Am). Let {#m(£), t > 0} be 
resolvent families with respect to each Am. 

THEOREM 2.1. Suppose that the following condition on the kernel 
k(t) holds: 

(2.1) lim |fc(M)| = 0, 
ß—+00 

and assume that the resolvent families Rm(t) exist and satisfy the 
"condition of stability, " 

(2.2) \\Rm{t)\\ < Mewt forali t > 0, raeN0. 

Then the following statements are equivalent: 

(i) limrn^oot/x - ßk(fi)Am)-1x = (ß - fik(fi)AQ)~1X for all /i > 
w, x G X. 

(ii) limm_oo Rm(t)x = Ro(t)x for all x £ X, t > 0. Moreover, the 
convergence is uniform in t on every compact subset of R +. 

PROOF. (ii)=>(i). This is an immediate consequence of (2.2) by using 
the dominated convergence theorem (for the Bochner integral) and the 
identity 

/»OO 

(2.3) (/i- fik(ß)Am)~1x= e~ßtRm(t)xdt, Reß>w,xeX. 

Jo 

(Cf. Da Prato and Iannelli [2; formula 27, p. 213].) 

(i)=Kii). Let 
/C = {x = (£n)o° Ç X/ lim xn = x 0 }. 

n—»oo 

It is easy to see that K is a Banach space under the norm \x\ := 
Supn | |xn | | . 

Define the operator A on K by 

V(A) = {xe!C/xne D{An) for all n € N0} 
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and 

Ax = y = (2/n)o° € /C <=> x eT>(A) and ^4n#n = Vn for all rc G N 0 . 

It is clear that A is a closed linear operator in /C. Now, let 
x = (^n)o° £ £ and /x > ?/J be fixed. Then 

||(/i - iik(ii)Am)~lxm - (/x - ^fc(/i)^o)_1^o|| 

(2-4) <||(/x - ^ ( / x ) ^ ) - 1 ! ! \\xm - xoll 

H- IK/x - / x f c ^ ) ^ ) " 1 ^ - (/x - //fc(/i)Ao)_1xo||. 

On the other hand, from (2.2) and Theorem 1.1, 

(2.5) ||[(/i - /ifcO*)^»)-1]^!! < M J )
!

n + 1 for a l l u m e No. 

Therefore, wë show by using (ii) and (2.5) in (2.4) that the operator 
/i — /j,k(fi)A has an inverse in /C defined by 

(2.6) (/x - ^ ( M ) ^ ) - 1 * = ((/x - / x ^ / x ) ^ ) - 1 ^ ) ^ , 

for all /x > w, x € /C. 

Now, in order to apply Theorem 1.1 to the operator A defined in 
/C, we require to prove that T> {A ) is dense in K. This can be done by 
the argument given in Goldstein [4] (we omit details) and using the 
fact that (2.1) implies 
(2.7) 

(/ — k(/j,)Ao) 1XQ — xo converges to 0 as /x —» oo, for all XQ G X. 

In fact, from the identity 

{I-k{ß)AQ)-lz-z = h{p)(I-k(ii)AQ)-1Aoz, for all z G D{AQ), 

and, by using (2.5), we obtain 

(2.8) ||(7 - k{p)Ao)-lz - z\\ < ^ ^ P o z l l , for all z e D(A0). 
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Now, (2.1) shows that on the left side (2.8) converges to 0 as ji —• oo 
for all z G D(Ao). Finally, by using the fact that Ao is densely defined, 
we obtain (2.7). 

Therefore, there exists a resolvent family, 7£(£), defined in /C and 
such that (1.3) holds. 

Now it follows, from (2.3) and the uniqueness theorem for Laplace 
transforms, that 

(2.9) Il(t)x = (Rm(t)xm)^ for all* > 0, x G K. 

Let x G X be fixed and choose xm —• x. Then 
(2.10) 

\\Rm(t)x - Ro(t)x\\ < \\Rm{t)\\ \\X - Xm\\ + \\Rm(t)xm - Äo(*)x||. 

Applying (2.2) and (2.9) in (2.10), obtains (ii). 

Finally, in order to see that the convergence is uniform in t on every 
compact subset of R + , it is sufficient to observe that, for all XQ G X 
and 0 < 5, t < r, with r fixed, 

\\Rm(s)x0 - Ro(s)x0\\ 

(2 Hi - \\Rm(s)x0 - Äm(*)xo|| + \\Rm(t)x0 - Ro(t)x0\\ 

+ \\Ro(t)x0-Ro(s)x0\\ 

< 2\H {s)x - Il (t)x\ + \\Rm(t)x0 - Äo(*)aro||, 

where x = (xn)o° G /C is defined as Xfi — XQ for all n G N o. 

Now, using (ii) and the fact that TZ(t) }s strongly continuous in 
/C (see also Goldstein [5]) we obtain from (2.11) the assertion of the 
theorem. D 

REMARK 2.2. The equivalences (i) and (ii) for resolvent families 
can be obtained by making use of a general result on convergence (cf. 
Lizama [9, Theorem 1.2]). However, it is more suitable to use a direct 
proof in order to obtain the condition (2.1). 

REMARK 2.3. A variant of Theorem 2.1 is valid for operators acting 
on different spaces as follows: Let XQ be a Banach space, and let 
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{Xn}n%\ be a sequence of Banach spaces that approximate XQ in the 
sense that, for each n, there exists a bounded linear operator Pn that 
maps Xo into Xn and linin^oo | |Pnx| |xn = ||#||x0 for all x G Xo-
These conditions imply that supn | |P n | | < +°°-

We will say that limn^oo xn = x,xn G Xn,x G Xo if and only if 
limn 

—>oo 11-FViX — ̂ n| |xn — 0 (see also Kurtz [8]). Then, if An is a closed 
linear operator densely defined on Xn, Rn(t) is a resolvent family (for 
An) acting on Xni and, moreover, (/i — /jik(fi)An)~

1xn converges to 
(fi — fik({i)Ao)~lXQ as xn —• xo, then Rn(t)xn converges to Ro(t)xo as 
xn ^> XQ. The proof is very similar to that of Theorem 2.1. We take 

/C = {x = {xn)^/xn G Xn and lim xn = x0} 
n—-»oo 

and define \x\ := Sup n | |x n | |X n . 
Following Davies [1] and Kato [6], we can obtain our main result on 

convergence of resolvent families: 

THEOREM 2.4. Assume that the conditions (2.1) and (2.2) in Theo
rem 2.1 hold. Suppose, moreover, that 

(2.12) lim (/x - ßk(ß)Am)~1x =: L(fi)x 
m—+oc 

exists for all ß> w, x G X, and that the condition 

(2.13) lim ßL(ß)x = x 

holds for all x G X. Then there exists a closed linear and densely 
defined operator A in X and a resolvent family R(t) such that 

(i) l/k(ß) G p(A) and L(fi)x = (ß~fik(fi)A)~1x for all ji > wi x G 
X. 

(ii) liniro-.oo Rm(t)x = R(t)x for all t > 0, x G X. Moreover, the 
convergence is uniform in t on every compact subset of R +. 

PROOF. Let /z, À > w be fixed. We have the identity 

(2 14) ( V * ( / x ) ~ Am)~l - {l'k{X) - A m r l 

= (l/fc(A) - l/fc(M))(l/fc(A) - ^ - ' ( l / f c M - Am)-\ 
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Therefore, making m —» oo in (2.14) and using (2.12) obtains 

(2.15) /xfc(/x)£(/i) - Afc(A)L(A)-= (k(p) - k(X))\fiL(X)L(fi). 

This shows that L(fi) commutes with L(A) and, moreover, that 
Ker L(fi) = KerL(A) and RangL(/x) = RangL(A), for all /x, A > w. 

Define D := RangL(//) and N := KerL(/x). Then, it follows from 
(2.13) that, for all xeX, 

x — lim yn, where yn — nL(n)x G RangL(n) = D 
n-+oc 

and, if L(fj)x = 0 for all /x > w, that 

a: = lim /jiL(ß)x = 0. 

This shows that D is dense in X and iV = {0}. 

Define 

(2.16) Ax = (l/nk(fjL))(p - L(ß)-l)x for all x e D, // > w. 

Then it follows that A is a closed linear and densely defined operator 
in X. Moreover, from (2.16), it is clear that (i) holds. 

Now define 

(2.17) Hm{n) = (ß~ »khi)Am)"1, a(fi) = l/fc(/i), 6(/x) = a(/x)//x. 

It follows by induction that 
(2-18) 

Hm(M)(»>x = X ) E (n)(-l) i%)(n-fc)Ci(/x)(Mfc(M))fc+1ffm(/x)fcx, 

where 
<*(/,) =(a(M)') ( fc) - j a ( M ) ( a ( M r ^ ^ / l ! + • • • 

+ ( - i y - 1 j a ( ^ - 1 ( a ( / i ) ) ( f c ) . 
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Observe that l imm^0 0 Hm(fi)kx = L(/i)kx for all k G N , x e X. 
Therefore, we obtain from (2.16) and (2.18) that 

(2.19) lim Hm(fi)(n)x = L(fi)^x for all fi > w, x e X, n <E N 0 . 
m—+oc 

Hence, by making use of (2.5), from (2.19), 

\\«j* - pkMA)-1)^ < {fl
M^n+1, n e No, ß > w. 

Therefore, we can apply Theorem 1.1 and obtain a resolvent family 
R(t), such that (1.3) holds. Finally, applying Theorem 2.1 yields that 
(ii) holds, and the proof is complete. D 

REMARK 2.5. The condition (2.12) holds, for example, when 
limM_00(7 — fc(/x)^4m)_1 = / uniformly in m (see Kato [5; Chapter 
9, Theorem 2.17]) or when the range of L(fi) is dense in X (see Davies 
[1, Theorem 2.6]). 

3. Applications to the study of hyperbolic Volterra equa
tions. In [11] J. Prüss studies aspects on existence, positivity, reg
ularity and compactness, as well as integrability of the resolvent for 
(1.2) for two special classes of kernels k and operators A. These classes 
are: 

(I) A is the generator of a Co-semigroup T(t) in X; k(t) > 0 is 
nonincreasing and log k(t) is convex; 

(II) A is the generator of a cosine family C(t) in X; k(t) = ko + koct + 
J0ki(s)ds, where fco,^ > 0, k\(t) > 0 is nonincreasing, logk\(t) 
convex, and lim^^oo &i (£) = 0-

For equivalent conditions, see also Prüss [11, p. 326-327 and p. 336-
337]. 

Let X be a Banach space and {An}o° a sequence of linear closed 
operators in X with dense domains D(An). 

We consider the equations 

(3.1) un(t) = fn{t) + J k(t- s)Anun(s)dSi n € N 0 , t > 0, 
./o 



TROTTER-KATO THEOREM 277 

where fn e W^([0,T],X). 

THEOREM 3.1. Suppose that one of the following conditions holds: 

(i) Each An generates a Co-semigroup Tn(t) in X, k(t) satisfies 
condition (I) and \\Tn(t)\\ < Mxe

Wlt for allt>0, n G N 0 . 

(ii) Each An generates a strongly continuous cosine family Cn(t) 
in X,k(t) satisfies condition (II), and ||Cn(£)|| < A^e™2* for all 
£ >0, ne No-

Assume, moreover, that (3.2) limm^00(/x — Arn)~
lx = (/x — AQ)~XX 

for every x G X and all ß sufficiently large. Then 

(a) The equations (3.1) admit resolvent families Rn{t) in R + , for 
all n G N Q , and moreover, 

(3.3) llÄnWII < M3e
W3t for allt>0, ne N 0 . 

(b) limn^oo Rn(t)x = Ro(t)x for all t > 0, x G X. Moreover, the 
convergence is uniform in t on every compact subset of R +. 

PROOF. Under our hypothesis, the first assertion in (a) follows 
directly from Priiss [11], Theorem 5 and Theorem 6 respectively, and 
a review of the proofs in these theorems shows that (3.3) holds. 

On the other hand, from (I) (or (II)), it is shown that the condition 
(2.1) in Theorem 2.1 holds. In particular, it follows from this condition 
and (3.2) that 

lim (fi - fik(fi)Am)~lx = (l//ifc(/x)) lim (l/fc(/x) - Am)'1x 
m—KXD m—*oo 

= (fi- fik(fi)A0)~
1x 

for all x G X and ß sufficiently large. Consequently, by using Theorem 
2.1, we obtain that the assertion in (b) holds. D 

EXAMPLE 3.2. Suppose that the kernel k(t) satisfies condition (II) 
and let ß b e a linear bounded operator defined in X. 

We define the operators 

(3.4) Am = A + (l/m)B, raGN, 
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where A generates a strongly continuous cosine function C(t) in X 
which satisfies 

(3.5) ||C(*)|| <Mew\ t>0. 

It follows from Nagy [10] that, for every m G N , the operators in 
(3.4) generate strongly continuous cosine functions Cm(t) in X which, 
in turn, satisfy 

(3.6) \\Cm{t)\\ < Me ( w + ( 1 / m ) l | f î | | ) t < Me ( w + I | ß | l ) t , t > 0. 

On the other hand, by using (3.6), the identity 

(fi - Am)-1 - (// - .4)-1 = (l/m)B(fi - A)-\ii - Am)-\ 

for /i sufficiently large, and the generation theorem for cosine families 
(i.e., Theorem 1.1 with k(t) = t), we show that 

(fi — Arn)~
lx converges to (/x — A)~lx as m - ^ o o 

for all x G X and ß sufficiently large. 

Therefore, Theorem 3.1 shows that, for every n G N , the perturbed 
equations 
(3.7) 

Un(t) = fn(t) + / k(t- s)Aun(s)ds + (1/n) / k(t - s)Bun(s) ds, 
Jo Jo 

where fn G W^ÜO» T], X), admit resolvent families Rn(t) in R + such 
that 11Rn(t)\| <Mewt and 

(3.8) lim Rn(t)x = R(t)x, t > 0, x G X, 
n—>oo 

where the convergence is uniform in t on every compact subset of R + 
and R(t) is a resolvent family for 

(3.9) u(t) = f{t)+[k(t-s)Au{s)ds, t>0,ftWJ£([0,T\,X). 
Jo 
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In particular, it is well-known that the solutions of (3.7) are repre
sented by the variation of parameters formula 

(3.10) Un{t) = Rn{t)fn(0) + / Rn{t ~ s)&{s) ds, t > 0, 
Jo 

(3.11) u(t) = R(t)f(0)+ [ R{t-s)f'(s)ds, £ > 0 , 
Jo 

respectively. 

Therefore if, for example, (/n)^=i is a sequence of continuously 
differentiable functions in R + such that the sequence (/n(0)) in X 
converges and, moreover, the derivatives f'n converge uniformly to a 
function g, then 

lim un(t) = u(t), t > 0, 
n—»oo 

with uniform convergence in t on every compact subset of R +. D 
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