SPECTRAL APPROXIMATIONS FOR WIENER-HOPF OPERATORS

P.M. ANSELONE AND I.H. SLOAN

ABSTRACT. The main purpose of this paper is to compare spectral properties of a Wiener-Hopf operator

$$Kf(s) = \int_0^\infty \kappa(s-t)f(t)\,dt$$

and corresponding finite-section operators

$$K_eta f(s) = \int_0^eta \kappa(s-t) f(t) \, dt,$$

where $\kappa \in L^1(R)$ and f is bounded and continuous. Among other results, we show that any neighborhood of the spectrum of K contains the spectrum of K_β for β sufficiently large. However, the roles of K and K_β cannot be reversed. Examples are given with $\sigma(K)$ a disc and $\sigma(K_\beta) = \{0\}$ for all β . We also compare spectral properties of K_β and corresponding numerical-integral operators $K_{\beta n}$. The spectral properties of K_β and $K_{\beta n}$ match more completely than do the spectral properties of K and K_β .

1. Introduction. Let K be a Wiener-Hopf operator,

$$Kf(s) = \int_0^\infty \kappa(s-t)f(t)\,dt, \ s\in {f R}^+,$$

where $\kappa \in L^1(\mathbf{R})$ and $f \in X^+$, the space of bounded, continuous, complex-valued functions on \mathbf{R}^+ with the uniform norm $||f|| = \sup |f(t)|$. Corresponding finite-section operators K_β are given by

$$K_eta f(s) = \int_0^eta \kappa(s-t) f(t) \, dt, \;\; s \in \mathbf{R}^+, eta \in \mathbf{R}^+.$$

We shall compare spectral properties of K and K_{β} as $\beta \to \infty$. This continues a study of integral equations on the half line initiated in [3] Copyright ©1990 Rocky Mountain Mathematics Consortium and carried forward in [4] and [5]. For related work on Wiener-Hopf operators, see [2, 6, 8] and the references in the papers cited.

Let $\mathcal{B}(X^+)$ denote the space of bounded linear operators from X^+ to X^+ . Then $K, K_\beta \in \mathcal{B}(X^+)$ and

$$||K|| = ||\kappa||_1 = \int_{-\infty}^{\infty} |\kappa(u)| du,$$

 $||K_{\beta}|| = \sup_{s \in R^*} \int_{s-\beta}^s |\kappa(u)| du \le ||K||.$

To avoid trivialities, κ is not the zero function in $L^1(\mathbf{R})$. Then $K \neq O$ and $K_\beta \neq O$ for $\beta > 0$.

Our spectral notation is standard. The resolvent set for K is

$$\rho(K) = \{\lambda \in \mathbf{C} : (\lambda - K)^{-1} \in \mathcal{B}^+(X)\},\$$

where **C** is the complex plane and $\lambda - K = \lambda I - K$. The spectrum of K is

$$\sigma(K) = \text{complement of } \rho(K),$$

which includes any eigenvalues of K. The resolvent set is open. The spectrum is closed and bounded, hence compact. Moreover,

$$\begin{aligned} |\lambda| &\leq ||K||, & \forall \lambda \in \sigma(K), \\ |\lambda| &\leq ||K_{\beta}|| \leq ||K||, & \forall \lambda \in \sigma(K_{\beta}), \ \beta \in \mathbf{R}^+. \end{aligned}$$

The Wiener-Hopf operator K is not compact. However, the finitesection operators K_{β} are compact. This complicates the analysis, but makes it more interesting. Much is known about the spectrum of a Wiener-Hopf operator. Spectral properties of $\sigma(K)$ are summarized in §2 and illustrated there with examples. In particular, $\sigma(K)$ is an infinite connected set in **C**. On the other hand, since K_{β} is compact, $\sigma(K_{\beta})$ is a discrete set with zero as the only possible point of accumulation. Thus, the relationship between $\sigma(K)$ and $\sigma(K_{\beta})$ raises intriguing questions. They are explored in §3. Theorem 3.14 states that

> every neighborhood of $\sigma(K)$ contains $\sigma(K_{\beta})$ for β sufficiently large.

In the converse direction, one might imagine that $\sigma(K_{\beta})$ is asymptotically dense in $\sigma(K)$, i.e., for any $\varepsilon > 0$, the ε -neighborhood of $\sigma(K_{\beta})$ contains $\sigma(K)$ for β sufficiently large. But this is not generally true. For two examples in §4, $\sigma(K)$ is a disc and $\sigma(K_{\beta}) = \{0\}$. The most we can say in this direction (Theorem 3.11) is that

$$\lambda \in \sigma(K) \Rightarrow \lambda$$
 is an asymptotic eigenvalue of K_{β} as $\beta \to \infty$,

in the sense that there are asymptotic eigenfunctions $x_{\beta} \in X^+$ which satisfy

$$||x_{eta}|| = 1, \;\; ||\lambda x_{eta} - K_{eta} x_{eta}|| o 0 \;\; ext{as} \; eta o \infty.$$

The examples mentioned above are simple enough to enable us to demonstrate this property.

Another example in §4 suggests that $\sigma(K_{\beta})$ is asymptotically dense in $\sigma(K)$ as $\beta \to \infty$ if κ is real and even. This question will be investigated in a future paper.

In the final section of this paper we compare spectral properties of K_{β} and discrete approximations $K_{\beta n}$ defined by means of numerical integration. For example, the rectangular quadrature rule gives

$$K_{\beta n}f(s) = \frac{1}{n}\sum_{i=1}^{\beta n}\kappa\left(s-\frac{i}{n}\right)f\left(\frac{i}{n}\right), \quad s \in \mathbf{R}^+, \quad \beta \in \mathbf{R}^+, \quad n \in \mathbf{Z}^+.$$

Fix $\beta \in \mathbf{R}^+$. Under suitable hypotheses on the quadrature rule and the kernel function, $||K_{\beta n}f - K_{\beta}f|| \to 0$ as $n \to \infty$ for $f \in X^+$ and $\{K_{\beta n} : n \in \mathbf{Z}^+\}$ is collectively compact, i.e., $\{K_{\beta n}f : ||f|| \leq 1, n \in \mathbf{Z}^+\}$ is precompact. The theory in [1] relates spectral properties of K_{β} and $K_{\beta n}$ as $n \to \infty$. For each $\beta \in \mathbf{R}^+$,

> every neighborhood of $\sigma(K_{\beta})$ contains $\sigma(K_{\beta n})$ for n sufficiently large.

Moreover, $\sigma(K_{\beta n})$ is asymptotically dense in $\sigma(K_{\beta})$ as $n \to \infty$.

2. The spectrum of K. For later convenience we summarize some known spectral properties of the Wiener-Hopf operator K. Standard references are [9] and [10].

The spectrum of K is given by

$$\sigma(K) = \sigma_0(K) \cup \sigma^+(K) \cup \sigma^-(K),$$

where $\sigma_0(K), \sigma^+(K)$ and $\sigma^-(K)$ are disjoint sets defined in terms of the Fourier transform of κ :

$$\hat{\kappa}(p) = \int_{-\infty}^\infty \kappa(u) e^{ipu} du, \;\; p \in {f R}$$
 .

First,

$$\sigma_0(K) = \{\hat{\kappa}(p) : p \in \mathbf{R}\} \cup \{0\}.$$

Since $\hat{\kappa}(p)$ is continuous and $\hat{\kappa}(p) \to 0$ as $p \to \pm \infty$, $\sigma_0(K)$ is a continuous curve in **C** which we may regard as beginning and ending at 0. For each $\lambda \notin \sigma_0(K)$, the *index* (or winding number) of λ is the integer defined by

$$\operatorname{ind}(\lambda) = -rac{1}{2\pi} \operatorname{arg}[\lambda - \hat{\kappa}(p)]\Big|_{p=-\infty}^{p=\infty}.$$

The sets $\sigma^+(K)$ and $\sigma^-(K)$ are defined by

$$\sigma^+(K) = \{\lambda \in \mathbf{C} : \operatorname{ind}(\lambda) > 0\},\$$

$$\sigma^-(K) = \{\lambda \in \mathbf{C} : \operatorname{ind}(\lambda) < 0\}.$$

Loosely speaking, $\sigma^+(K)$ and $\sigma^-(K)$ consist of the points in **C** encircled by $\hat{\kappa}(p)$ a nonzero number of times as p increases from $-\infty$ to ∞ .

There is another characterization of the three parts of $\sigma(K)$ that will be useful. Thus $\sigma_0(K), \sigma^+(K)$, and $\sigma^-(K)$ are the sets of eigenvalues (and zero for $\sigma_0(K)$) of the three integral operators

$$\mathcal{K}f(s) = \int_{-\infty}^{\infty} \kappa(s-t)f(t) dt, \ s \in \mathbf{R}, f \in X,$$

 $Kf(s) = \int_{0}^{\infty} \kappa(s-t)f(t) dt, \ s \in \mathbf{R}^{+}, f \in X^{+},$
 $K^{-}f(x) = \int_{-\infty}^{0} \kappa(s-t)f(t) dt, \ s \in \mathbf{R}^{-}, f \in X^{-},$

where X, X^+ , and X^- are the spaces of bounded continuous functions on \mathbf{R}, \mathbf{R}^+ and \mathbf{R}^- .

 $\mathbf{240}$

Denote the range and null space of $\lambda - K$ by $(\lambda - K)X^+$ and $\mathcal{N}(\lambda - K)$. The following classical results are due to Krein [10]. They will be used in our analysis. The first result, for $\lambda \in \sigma_0(K)$, will play a particularly important role.

LEMMA 2.1.

$$\begin{split} &(\lambda - K)X^{+} \neq X^{+}, & \forall \lambda \in \sigma_{0}(K), \\ &(\lambda - K)X^{+} = X^{+}, \quad \mathcal{N}(\lambda - K) \neq \{0\}, \quad \forall \lambda \in \sigma^{+}(K), \\ &(\lambda - K)X^{+} \neq X^{+}, \quad \mathcal{N}(\lambda - K) = \{0\}, \quad \forall \lambda \in \sigma^{-}(K), \end{split}$$

and

$$\dim \mathcal{N}(\lambda - K) = \operatorname{ind}(\lambda), \qquad \forall \lambda \in \sigma^+(K),$$

$$\operatorname{codim}(\lambda - K)X^+ = -\operatorname{ind}(\lambda), \qquad \forall \lambda \in \sigma^-(K).$$

Thus, $\lambda - K$ is a Fredholm operator with nonzero index equal to $ind(\lambda)$ if λ is in $\sigma^+(K)$ or $\sigma^-(K)$.

Next we illustrate spectral properties of K with simple examples. The same examples will reappear when we consider $\sigma(K_{\beta})$.

EXAMPLE 2.1. Let

$$\kappa(u) = \begin{cases} 0, & u < 0, \\ e^{-u}, & u > 0. \end{cases}$$

Then K is the Volterra operator

$$Kf(s) = \int_0^s e^{t-s} f(t) \, dt = e^{-s} \int_0^s e^t f(t) \, dt.$$

The Fourier transform of κ is

$$\hat{\kappa}(p) = rac{1}{1-ip}.$$

A routine calculation yields

$$\sigma_0(K) = \left\{ \lambda \in \mathbf{C} : \left| \lambda - \frac{1}{2} \right| = \frac{1}{2} \right\},\,$$

the circle with center 1/2 and radius 1/2. Then $ind(\lambda) = -1$ for λ inside the circle and $ind(\lambda) = 0$ for λ outside the circle. Therefore,

$$\sigma^+(K) = \emptyset, \ \sigma^-(K) = \left\{\lambda \in C : \left|\lambda - \frac{1}{2}\right| < \frac{1}{2}\right\}.$$

Another characterization of $\sigma^{-}(K)$ is

$$\sigma^{-}(K) = \left\{ \lambda \in \mathbf{C} : \operatorname{Re}\left(\frac{1}{\lambda} - 1\right) > 0 \right\}.$$

By Lemma 2.1, K has no nonzero eigenvalues. This is easy to verify directly. For $\lambda \neq 0$,

$$Kx = \lambda x \iff x'(s) = \left(\frac{1}{\lambda} - 1\right) x(s), \ x(0) = 0 \iff x \equiv 0.$$

(Instead we could have appealed to the proposition that Volterra operators have no nonzero eigenvalues.) Also, from Lemma 2.1, $(\lambda - K)X^+ \neq X^+$ for $\lambda \in \sigma^-(K)$. To demonstrate this, fix $y \in X^+$ and $\lambda \in \sigma^-(K)$. Then

$$(\lambda - K)x = y \quad \Leftrightarrow \quad x(s) = \frac{1}{\lambda}y(s) + \frac{1}{\lambda^2}\int_0^s e^{(\frac{1}{\lambda} - 1)(s-t)}y(t)\,dt.$$

This is valid with x continuous, but not necessarily bounded. Now x is bounded; hence $x \in X^+$ if and only if

$$\int_0^\infty e^{-(\frac{1}{\lambda}-1)t} y(t) \, dt = 0.$$

Thus, $(\lambda - K)X^+$ consists of the functions $y \in X^+$ which satisfy this condition, which shows that $(\lambda - K)X^+ \neq X^+$.

EXAMPLE 2.2. Let

$$\kappa(u)=egin{cases} e^u, & u<0,\ 0, & u>0. \end{cases}$$

Then

$$Kf(s) = \int_s^\infty e^{s-t} f(t) \, dt = e^s \int_s^\infty e^{-t} f(t) \, dt$$

 and

$$\hat{\kappa}(p) = rac{1}{1+ip}.$$

Once again, $\sigma_0(K)$ is the circle

$$\sigma_0(K) = \left\{ \lambda \in \mathbf{C} : \left| \lambda - \frac{1}{2} \right| = \frac{1}{2} \right\}.$$

But now $\hat{\kappa}(p)$ traverses the circle in the opposite direction. Hence,

$$\sigma^+(K) = \left\{ \lambda \in \mathbf{C} : \left| \lambda - \frac{1}{2} \right| < \frac{1}{2} \right\}, \ \sigma^-(K) = \emptyset.$$

From Lemma 2.1, if $\lambda \in \sigma^+(K)$ then λ is an eigenvalue of K and $(\lambda - K)X^+ = X^+$. It is easy to verify both of these facts directly. The details are omitted.

Wiener-Hopf operators with real symmetric kernels $\kappa(s-t)$ are of considerable practical interest. Equivalently, $\kappa(u)$ is real and even. Then $\hat{\kappa}(p)$ is real, $\sigma_0(K)$ is a real interval, $\sigma^+(K) = \emptyset, \sigma^-(K) = \emptyset$, and $\sigma(K) = \sigma_0(K)$. The next example is a prototype.

EXAMPLE 2.3. The Picard kernel. Let

$$\kappa(u) = e^{-|u|}.$$

Then

$$Kf(s) = \int_0^\infty e^{-|s-t|} f(t) \, dt = e^{-s} \int_0^s e^t f(t) \, dt + e^s \int_s^\infty e^{-t} f(t) \, dt.$$

The Fourier transform of κ is

$$\hat{\kappa}(p) = rac{2}{1+p^2}.$$

Now

$$\sigma(K) = \sigma_0(K) = [0, 2], \ \sigma^+(K) = \emptyset, \ \sigma^-(K) = \emptyset.$$

Every $\lambda \in (0,2)$ is an eigenvalue of the operator K. In fact, the eigenvalue problem $Kx = \lambda x$ is equivalent to the initial value problem

$$x''(s) + \gamma^2 x(s) = 0, \ \ x'(0) = x(0), \ \ \gamma = \left(\frac{2}{\lambda} - 1\right)^{\frac{1}{2}},$$

which has the solution

$$x(s) = \gamma \cos \gamma s + \sin \gamma s.$$

3. Spectral comparisons for K and K_{β}. To recapitulate, K and K_{β} are defined for $f \in X^+$ by

(3.1)
$$Kf(s) = \int_0^\infty \kappa(s-t)f(t)\,dt, \ s \in \mathbf{R}^+,$$

(3.2)
$$K_{\beta}f(s) = \int_0^{\beta} \kappa(s-t)f(t) dt, \quad s \in \mathbf{R}^+, \beta \in \mathbf{R}^+,$$

where $\kappa \in L^1(\mathbf{R})$ and $||\kappa||_1 \neq 0$. In order to relate $\sigma(K)$ and $\sigma(K_\beta)$ we shall need a number of properties of K and K_β . Much of the following analysis is adapted, with extensions and refinements, from [3] and [5]. For this reason, most of the proofs are merely sketched.

From (3.1) and (3.2),

(3.3)
$$\{Kf: ||f|| \le 1\}$$
 is bounded and equicontinuous,

(3.4) $\{K_{\beta}f: ||f|| \leq 1, \beta \in \mathbf{R}^+\}$ is bounded and equicontinuous.

The equicontinuity is uniform on \mathbb{R}^+ . Since bounded, equicontinuous sets in X^+ are not generally precompact, it does not follow (and is not true) that K is compact or that $\{K_\beta : \beta \in \mathbb{R}^+\}$ is collectively compact.

Also, from (3.1) and (3.2),

(3.5)
$$(K-K_{\beta})f(s) = \int_{\beta}^{\infty} \kappa(s-t)f(t) dt = \int_{-\infty}^{s-\beta} \kappa(u)f(s-u)du.$$

By an easy argument, $||K_{\beta}f - Kf|| \neq 0$ as $\beta \to \infty$ for $f \equiv 1$. Thus, K_{β} does not converge strongly to K as $\beta \to \infty$.

Let $X_0^+ = \{f \in X^+ : f(t) \to 0 \text{ as } t \to \infty\}$. This is a closed subspace of X^+ . The inequality

$$|K_eta f(s)| \leq ||f|| \int_{s-eta}^s |\kappa(u)| du, \;\; f \in X^+,$$

implies that, for each $\beta \in \mathbf{R}^+$,

$$(3.6) K_{\beta}: X^+ \to X_0^+,$$

$$(3.7) K_{\beta}f(s) \to 0 \text{ as } s \to \infty, \text{ uniformly for } ||f|| \le 1, \ f \in X^+.$$

In view of (3.4) and (3.7), $\{K_{\beta}f : ||f|| \leq 1\}$ is bounded, equicontinuous, and equiconvergent to zero at infinity. Since such sets are precompact (see [3, 6]),

(3.8)
$$K_{\beta}$$
 is compact $\forall \beta \in \mathbf{R}^+$.

Now consider K and K_{β} restricted to X_0^+ . Then

$$(3.10) K_{\beta}: X_0^+ \to X_0^+.$$

The latter comes from (3.6). The result for K is a consequence of

$$Kf(s) = \left(\int_0^{lpha} + \int_{lpha}^{\infty}
ight)\kappa(s-t)f(t)\,dt,$$

 $Kf(s)| \le ||f||\int_{s-lpha}^s |\kappa(u)|du + ||f||_{[lpha,\infty)}||\kappa||_1,$

where $||f||_{[\alpha,\infty)} = \sup_{[\alpha,\infty)} |f(t)|$. From (3.5),

$$|(K-K_{\beta})f(s)| \leq ||f||_{[\beta,\infty)}||\kappa||_1,$$

(3.11)
$$||K_{\beta}f - Kf|| \to 0 \text{ as } \beta \to \infty \quad \forall f \in X_0^+.$$

Thus, K_{β} converges strongly to K on X_0^+ , but not on X^+ .

In what follows K and K_{β} are defined on X^+ except for a few results, clearly identified, which pertain specifically to X_0^+ .

Strict convergence, introduced in a more general context by Buck [7], plays a major role in our analysis (see also [3] and [6]). Strict convergence on X^+ is defined as follows. Let $x, x_{\beta} \in X^+$ for β sufficiently large. Then

$$x_{\beta} \xrightarrow{s} x$$
 as $\beta \to \infty$ if $\{x_{\beta}\}$ is bounded

and

 $x_{\beta}(t) \to x(t)$ as $\beta \to \infty$, uniformly on $[0, \alpha] \quad \forall \alpha \in \mathbf{R}^+$.

Let $||f||_{[0,\alpha]} = \max_{[0,\alpha]} |f(t)|$. Then the uniform convergence on $[0,\alpha]$ is equivalent to

$$||x_{\beta} - x||_{[0,\alpha]} \to 0 \text{ as } \beta \to \infty \quad \forall \alpha \in \mathbf{R}^+.$$

Let \mathbf{R}^* denote any unbounded subset of \mathbf{R}^+ , such as a sequence tending to infinity. Then $x_{\beta} \xrightarrow{s} x, \beta \in \mathbf{R}^*$, means that β is restricted to \mathbf{R}^* in the foregoing definition of strict convergence. Successive unbounded subsets of \mathbf{R}^+ occur. They are denoted by $\mathbf{R}^{**} \subset \mathbf{R}^{***} \subset$ \mathbf{R}^{**} , etc.

Strict convergence on the space X of bounded continuous functions on the real line **R** is defined in a similar manner:

$$x_{\beta} \xrightarrow{s} x$$
 as $\beta \to \infty$ with $x, x_{\beta} \in X$ if $\{x_{\beta}\}$ is bounded

and

$$x_{\beta}(t) \to x(t)$$
 as $\beta \to \infty$, uniformly on $[-\alpha, \alpha] \quad \forall \alpha \in \mathbf{R}^+$.

The operators K and K_{β} on X^+ have the strict convergence properties with $f, f_{\beta} \in X^+$:

$$(3.13) f_{\beta} \stackrel{s}{\to} f \Rightarrow K f_{\beta} \stackrel{s}{\to} K f_{\beta},$$

(3.14)
$$f_{\beta} \xrightarrow{s} f \Rightarrow K_{\beta} f_{\beta} \xrightarrow{s} K f,$$

These follow in turn from the inequalities

$$||K_{eta}f-Kf||_{[0,lpha]}\leq ||f||\int_{-\infty}^{lpha-eta}|\kappa(u)|\,du,$$

 $||Kf_{\beta} - Kf||_{[0,\gamma]} \le ||f_{\beta} - f||_{[0,\alpha]} ||\kappa||_1 + (||f_{\beta}|| + ||f||) \int_{-\infty}^{\gamma - \alpha} |\kappa(u)| \, du,$ and, for $\beta > \alpha$,

$$||K_{eta}f_{eta} - Kf||_{[0,\gamma]} \le ||f_{eta} - f||_{[0,\alpha]}||\kappa||_1 + (||f_{eta}|| + ||f||) \int_{-\infty}^{\gamma - lpha} |\kappa(u)| du.$$

There is an analogue of the Arzela-Ascoli theorem for strict convergence:

LEMMA 3.1. Let $\{x_{\beta} \in X^{+} : \beta \in \mathbf{R}^{*}\}$ be bounded and equicontinuous. Then there exists $\mathbf{R}^{**} \subset \mathbf{R}^{*}$ and $x \in X^{+}$ such that $x_{\beta} \xrightarrow{s} x$ with $\beta \in \mathbf{R}^{**}$.

The proof is based on applications of the classical Arzela-Ascoli theorem to successively larger intervals, followed by a diagonal argument (see [3, 6]).

A variant of Lemma 3.1, proved in the same way, holds for the space X of bounded continuous functions on \mathbf{R} .

LEMMA 3.2. Assume $\{f_{\beta} : \beta \in \mathbf{R}^*\}$ is bounded. Then there exist $\mathbf{R}^{**} \subset \mathbf{R}^*$ and $g, h \in X^+$ such that

$$Kf_{\beta} \xrightarrow{s} g, \ K_{\beta}f_{\beta} \xrightarrow{s} h, \ \beta \in \mathbf{R}^{**}.$$

This follows from (3.3), (3.4) and Lemma 3.1. We shall make frequent use of Lemma 3.2.

Next we compare solutions of equations

$$(\lambda - K)x = y, \ (\lambda - K_{\beta})x_{\beta} = y_{\beta}, \ y_{\beta} \xrightarrow{s} y,$$

with λ fixed and $\lambda \neq 0$. Since K_{β} is compact, the Fredholm alternative gives

$$\lambda - K_{\beta}$$
 one-to-one $\Leftrightarrow (\lambda - K_{\beta})X^+ = X^+,$

in which case $(\lambda - K_{\beta})^{-1} \in \mathcal{B}(X^+)$. For $\lambda \neq 0$,

$$(\lambda-K_eta)x_eta=y_eta\,\,\Leftrightarrow\,\, x_eta=rac{1}{\lambda}(K_eta x_eta+y_eta).$$

Lemma 3.2 and (3.14) yield the following three lemmas, which are slight extensions of results in [3] for the case with $\lambda = 1$. Throughout, $\lambda \neq 0$ and \mathbf{R}^* is an arbitrary unbounded subset of \mathbf{R}^+ .

LEMMA 3.3. Assume $\{x_{\beta} : \beta \in \mathbf{R}^*\}$ bounded and

$$(\lambda - K_{\beta})x_{\beta} = y_{\beta}, \ y_{\beta} \xrightarrow{s} y, \ \beta \in \mathbf{R}^*.$$

Then there exist $\mathbf{R}^{**} \subset \mathbf{R}^*$ and $x \in X^+$ such that

$$x_{\beta} \xrightarrow{s} x, \ \beta \in \mathbf{R}^{**}, \ (\lambda - K)x = y.$$

If $\lambda - K$ is one-to-one, then x is unique and

$$x_{\beta} \xrightarrow{s} x, \ \beta \in \mathbf{R}^*.$$

LEMMA 3.4. Assume $\lambda \in \rho(K_{\beta})$ and there exists $(\lambda - K_{\beta})^{-1}$ bounded uniformly for $\beta \in \mathbb{R}^{*}$. Then $(\lambda - K)X^{+} = X^{+}$.

LEMMA 3.5. Assume $\lambda \in \rho(K_{\beta})$ and there exists $(\lambda - K_{\beta})^{-1}$ bounded uniformly for $\beta \in \mathbb{R}^*$. Assume also that $\lambda - K$ is one-to-one. Then $\lambda \in \rho(K)$. Let

$$(\lambda - K)x = y, \ (\lambda - K_{\beta})x_{\beta} = y_{\beta}, \ y_{\beta} \stackrel{s}{\rightarrow} y, \ \beta \in \mathbf{R}^*.$$

Then $x_{\beta} \xrightarrow{s} x, \beta \in \mathbf{R}^*$.

The next lemma is adapted from [3, Theorem 9.1]. See also [9, 10]. Again $\lambda \neq 0$.

LEMMA 3.6. Assume $(\lambda - K)X^+ = X^+$ and $Kx = \lambda x$ with $x \in X^+$. Then $x \in X_0^+$.

PROOF. Suppose that $x \notin X_0^+$. Then there exists \mathbf{R}^* and c such that

$$|x(\beta)| \ge c > 0 \quad \forall \beta \in \mathbf{R}^*.$$

Consider the translates $x(t + \beta)$ for $t \ge -\beta$ and $\beta \in \mathbb{R}^*$. Since $x = Kx/\lambda$, (3.3) and a variant of Lemma 3.1 yield $\mathbb{R}^{**} \subset \mathbb{R}^*$ and $h \in X$ such that

$$x(t+\beta) \xrightarrow{s} h(t)$$
 on $R, \ \beta \in \mathbf{R}^{**}.$

Then $|h(0)| \ge c > 0$, so that $h \ne 0$. From $Kx = \lambda x$,

$$\int_{-eta}^\infty \kappa(s-t) x(t+eta) \, dt = \lambda x(s+eta), \;\; s \geq -eta.$$

Let $\beta \to \infty$ through **R**^{**} to obtain

$$\int_{-\infty}^{\infty} \kappa(s-t)h(t) \, dt = \lambda h(s), \ \ s \in \mathbf{R} \, .$$

Thus, $\mathcal{K}h = \lambda h$, which implies that $\lambda \in \sigma_0(K)$. By Lemma 2.1, $(\lambda - K)X^+ \neq X^+$. This contradicts the hypothesis that $(\lambda - K)X^+ = X^+$. Therefore, $x \in X_0^+$. \Box

The following lemma pertains exclusively to X_0^+ . Recall that $K, K_\beta : X_0^+ \to X_0^+$ and $||K_\beta f - Kf|| \to 0$ as $\beta \to \infty$ for $f \in X_0^+$.

LEMMA 3.7. Restrict K and K_{β} to X_0^+ . Assume $(\lambda - K_{\beta})^{-1}$ exists and is bounded uniformly for $\beta \in \mathbf{R}^*$. Then $(\lambda - K)^{-1}$ exists and is bounded. (Nothing is inferred about $(\lambda - K)X_0^+$.)

PROOF. This is a standard argument. Recall that

$$||(\lambda - K_{\beta})^{-1}|| \le b \iff ||(\lambda - K_{\beta})f|| \ge \frac{1}{b} \text{ for } ||f|| = 1.$$

Let $\beta \to \infty$ with $\beta \in \mathbf{R}^*$ to show that $(\lambda - K)^{-1}$ exists and is bounded.

THEOREM 3.8. Assume there exists \mathbf{R}^* such that $\lambda \in \rho(K_\beta)$ and $(\lambda - K_\beta)^{-1}$ is bounded uniformly for $\beta \in \mathbf{R}^*$. Then $\lambda \in \rho(K)$.

PROOF. By Lemma 3.4, $(\lambda - K)X^+ = X^+$. Let $Kx = \lambda x$ with $x \in X^+$. By Lemma 3.6, $x \in X_0^+$. By Lemma 3.7, x = 0. Thus, $\lambda - K$ is one-to-one on X^+ , $(\lambda - K)^{-1} \in \mathcal{B}(X^+)$, and $\lambda \in \rho(K)$. \Box

Since the operators K_{β} are compact, Theorem 3.8 has an equivalent form:

THEOREM 3.9. Assume there exist \mathbf{R}^* and r such that

 $||(\lambda - K_{\beta})f|| \geq r > 0$ for ||f|| = 1, $\beta \in \mathbf{R}^*$.

Then $\lambda \in \rho(K)$.

The next theorem characterizes the spectrum of K in terms of properties of the operators K_{β} . It is adapted from [3, Theorem 10.1].

THEOREM 3.10. Assume there exist \mathbf{R}^* and $x_{\beta} \in X^+$ for $\beta \in \mathbf{R}^*$ such that

$$||x_{\beta}|| = 1, ||\lambda x_{\beta} - K_{\beta} x_{\beta}|| \to 0, \beta \in \mathbf{R}^*.$$

Then $\lambda \in \sigma(K)$.

PROOF. By Lemma 3.3 there exist $\mathbf{R}^{**} \subset \mathbf{R}^*$ and $x \in X^+$ such that

$$x_{\beta} \xrightarrow{s} x, \ \beta \in \mathbf{R}^{**}, \ (\lambda - K)x = 0.$$

If $x \neq 0$ then $\lambda \in \sigma(K)$ and we are done. Assume x = 0. Then

$$x_{\beta} \xrightarrow{s} 0, \ \beta \in \mathbf{R}^{**}.$$

Since $||x_{\beta}|| = 1$, there exist $t_{\beta} \in \mathbf{R}^+$ such that

$$|x_{\beta}(t_{\beta})| \ge rac{1}{2}, \ t_{\beta} \to \infty \ ext{ as } eta \to \infty, \ eta \in \mathbf{R}^{**}.$$

Consider the translates $x_{\beta}(t+t_{\beta})$ for $t \geq -t_{\beta}$. Since $||\lambda x_{\beta} - K_{\beta} x_{\beta}|| \to 0$, (3.4) and a variant of Lemma 3.1 yield $\mathbf{R}^{***} \subset \mathbf{R}^{**}$ and $h \in X$ such that

 $x_{\beta}(t+t_{\beta}) \xrightarrow{s} h(t)$ on \mathbf{R} , $\beta \in \mathbf{R}^{***}$.

Then $|h(0)| \ge 1/2$, so that $h \ne 0$. Now

$$K_eta x_eta(s+t_eta) = \int_{-t_eta}^{eta-t_eta} \kappa(s-t) x_eta(t+t_eta) \, dt, \;\; s \geq -t_eta$$

There exist $\alpha \in [-\infty, \infty]$ and $\mathbf{R}^{****} \subset \mathbf{R}^{***}$ such that

 $\beta - t_{\beta} \to \alpha \text{ as } \beta \to \infty, \ \beta \in \mathbf{R}^{****}.$

It follows that

$$K_{\beta}x_{\beta}(s+t_{\beta}) \to \int_{-\infty}^{\alpha} \kappa(s-t)h(t) dt \text{ as } \beta \to \infty, \ \beta \in \mathbf{R}^{****}.$$

Since $||\lambda x_{\beta} - K_{\beta} x_{\beta}|| \to 0$,

$$\int_{-\infty}^{lpha}\kappa(s-t)h(t)\,dt=\lambda h(s),\ \ s\in R$$

Since $h \neq 0, \alpha \neq -\infty$. If $\alpha = +\infty$ then $\mathcal{K}h = \lambda h$, so that $\lambda \in \sigma_0(K)$ and $\lambda \in \sigma(K)$. If $-\infty < \alpha < \infty$, let $g(s) = h(s + \alpha)$. Then $K^-g = \lambda g$ so that $\lambda \in \sigma^-(K)$ and $\lambda \in \sigma(K)$. Thus, in all cases, $\lambda \in \sigma(K)$. \Box

We combine Theorems 3.9 and 3.10 to obtain the first of our principal results.

THEOREM 3.11. $\lambda \in \sigma(K)$ if and only if λ is an approximate eigenvalue of K_{β} as $\beta \to \infty$, i.e., $\exists x_{\beta} \in X^+ \forall \beta \in \mathbf{R}^+$ such that

$$||x_{\beta}|| = 1, \ ||\lambda x_{\beta} - K_{\beta} x_{\beta}|| \to 0 \ \text{as} \ \beta \to \infty,$$

PROOF. The forward implication is the contrapositive of Theorem 3.9. The reverse implication is Theorem 3.10 with $\mathbf{R}^* = \mathbf{R}^+$. \Box

By Theorems 3.10 and 3.11, if there exist \mathbf{R}^* and $x_{\beta} \in X^+$ for $\beta \in \mathbf{R}^*$ with

$$||x_{\beta}|| = 1, ||\lambda x_{\beta} - K_{\beta} x_{\beta}|| \to 0 \text{ as } \beta \to \infty, \ \beta \in \mathbf{R}^*,$$

then there exist $x_{\beta} \in X^+$ for $\beta \in \mathbf{R}^+$ such that

$$||x_{\beta}|| = 1, \ ||\lambda x_{\beta} - K_{\beta} x_{\beta}|| \to 0 \ \text{ as } \beta \to \infty, \ \beta \in \mathbf{R}^+.$$

The next theorem relates points in $\rho(K)$ and $\rho(K_{\beta})$.

THEOREM 3.12. $\lambda \in \rho(K) \Leftrightarrow$ there exist $r(\lambda)$ and $\gamma(\lambda)$ in \mathbb{R}^+ such that

$$\lambda \in
ho(K_eta), \;\; ||(\lambda-K_eta)^{-1}|| \leq r(\lambda) \;\; orall eta \geq \gamma(\lambda).$$

In this case, the solutions of

$$(\lambda-K)x=y, \ \ (\lambda-K_eta)x_eta=y_eta, \ \ y_eta \stackrel{s}{
ightarrow} y, \ \ eta\geq\gamma(\lambda),$$

satisfy $x_{\beta} \xrightarrow{s} x$ as $\beta \to \infty$.

PROOF. The implication from $\lambda \in \rho(K)$ is the contrapositive of Theorem 3.10. The reverse implication is Theorem 3.9 with $\mathbf{R}^* = [\gamma(\lambda), \infty)$. Finally, Lemma 3.5 gives $x_\beta \xrightarrow{s} x$ as $\beta \to \infty$. \Box

In order to indicate the significance of the uniform boundedness of the operators $(\lambda - K_{\beta})^{-1}$ in Theorem 3.12, we recall a few facts from elementary spectral theory. As mentioned before, $\sigma(K)$ and $\sigma(K_{\beta})$ are compact and

$$\begin{aligned} |\lambda| &\leq ||K|| & \forall \lambda \in \sigma(K), \\ |\lambda| &\leq ||K_{\beta}|| \leq ||K|| & \forall \lambda \in \sigma(K_{\beta}), \beta \in \mathbf{R}^{+}, \end{aligned}$$
$$|\lambda| &> ||K|| \Rightarrow \lambda \in \rho(K), \quad ||(\lambda - K)^{-1}|| \leq \frac{1}{|\lambda| - ||K||}, \\ |\lambda| &> ||K|| \Rightarrow \lambda \in \rho(K_{\beta}), \quad ||(\lambda - K_{\beta})^{-1}|| \leq \frac{1}{|\lambda| - ||K||}, \quad \forall \beta \in \mathbf{R}^{+}. \end{aligned}$$

So, $(\lambda - K)^{-1}$ and $(\lambda - K_{\beta})^{-1}$ are bounded uniformly for $|\lambda| > 2||K||$ and $\beta \in \mathbf{R}^+$.

The resolvent set $\rho(K)$ is open and

$$\lambda \in
ho(K), \hspace{0.2cm} |\mu-\lambda| < rac{1}{||(\lambda-K)^{-1}||}$$

implies

$$\mu \in
ho(K), \quad ||(\mu - K)^{-1}|| \le \frac{||(\lambda - K)^{-1}||}{1 - |\mu - \lambda| ||(\lambda - K)^{-1}||}.$$

Consequently

$$\lambda \in
ho(K), \ \ |\mu - \lambda| < rac{1}{2||(\lambda - K)^{-1}||}$$

implies

$$\mu \in \rho(K), ||(\mu - K)^{-1}|| < 2||(\lambda - K)^{-1}||.$$

This result and a standard compactness argument yield

 $(\mu - K)^{-1}$ bounded uniformly for $\mu \in \Lambda$, \forall closed sets $\Lambda \subset \rho(K)$.

(By the preceding remarks, it suffices to consider Λ closed and bounded, hence compact.) A similar compactness argument will give an analogous result for $(\mu - K_{\beta})^{-1}$ which is uniform for β sufficiently large. The following lemma will facilitate the proof. Replace K by K_{β} above to obtain

LEMMA 3.13. As in Theorem 3.12 assume

$$\lambda \in
ho(K_{eta}), \ ||(\lambda - K_{eta})^{-1}|| \leq r(\lambda), \ \forall eta \geq \gamma(\lambda).$$

(a) If
$$|\mu - \lambda| < 1/r(\lambda)$$
 then $\mu \in \rho(K_{\beta}) \ \forall \beta \geq \gamma(\lambda)$.

(b) If $|\mu - \lambda| < 1/2r(\lambda)$ then $\mu \in \rho(K_{\beta})$ and $||(\mu - K_{\beta})^{-1}|| < 2r(\lambda) \ \forall \beta \geq \gamma(\lambda)$.

Now we can augment Theorem 3.12. If $\lambda \in \rho(K)$, then $(\mu - K)^{-1}$ and $(\mu - K_{\beta})^{-1}$ exist and are bounded uniformly for all μ in a neighborhood

of λ and for all β sufficiently large. This is a local result in that it pertains to a fixed $\lambda \in \rho(K)$. The next theorem is a corresponding global result.

THEOREM 3.14. Let Λ be any closed subset of $\rho(K)$. Then there exists $\gamma \in \mathbf{R}^+$ such that $\Lambda \subset \rho(K_\beta)$ for $\beta \geq \gamma$ and $(\mu - K_\beta)^{-1}$ is bounded uniformly for $\mu \in \Lambda$ and $\beta \geq \gamma$.

PROOF. In view of the preceding remarks, we may assume that Λ is compact. Let $\lambda \in \Lambda$. Then $\lambda \in \rho(K)$ and, by Theorem 3.12,

$$\lambda \in
ho(K_{eta}), \quad ||(\lambda - K_{eta})^{-1}|| \leq r(\lambda), \quad \forall \beta \geq \gamma(\lambda).$$

Define open sets $S(\lambda)$ for $\lambda \in \Lambda$ by

$$S(\lambda) \coloneqq \Big\{ \mu \in \mathbf{C} \, : |\mu - \lambda| < rac{1}{2r(\lambda)} \Big\}.$$

Clearly, $\lambda \in S(\lambda)$. By Lemma 3.13(b),

$$\mu \in
ho(K_{eta}), \quad ||(\mu - K_{eta})^{-1}|| < 2r(\lambda) \quad \forall \mu \in S(\lambda), \quad \forall \beta \geq \gamma(\lambda).$$

Since $\{S(\lambda) : \lambda \in \Lambda\}$ is an open cover for Λ , there is a finite subcover:

 $\Lambda \subset \cup_{i=1}^n S(\lambda_i).$

Let $\gamma = \max \gamma(\lambda_i)$ and $r = 2 \max r(\lambda_i)$ for i = 1, ..., n. Then

$$\mu \in \Lambda \Rightarrow \mu \in S(\lambda_i)$$
 for some $i \Rightarrow$

$$||(\mu-K_{eta})^{-1}|| < 2r(\lambda_i) \leq r \ \ ext{for} \ \ eta \geq \gamma \geq \gamma(\lambda_i),$$

which completes the proof. \Box

Take complements in Theorem 3.14 to obtain a global comparison of the spectra of K and K_{β} :

THEOREM 3.15. Let $\sigma(K) \subset \Omega$ with Ω open. Then $\sigma(K_{\beta}) \subset \Omega$ for all β sufficiently large.

For $\varepsilon > 0$ let $\Omega_{\varepsilon}[\sigma(K)]$ denote the (open) ε -neighborhood of $\sigma(K)$. Since $\sigma(K)$ is compact, Theorem 3.15 is expressed equivalently by

$$\forall \varepsilon > 0 \; \exists \beta_{\varepsilon} \text{ such that } \sigma(K_{\beta}) \subset \Omega_{\varepsilon}[\sigma(K)] \; \; \forall \beta \geq \beta_{\varepsilon}.$$

The question arises whether the reciprocal property, with K and K_{β} interchanged, holds. We shall say that

 $\sigma(K_{\beta})$ is asymptotically dense in $\sigma(K)$ as $\beta \to \infty$

if

$$\forall \varepsilon > 0 \; \exists \beta_{\varepsilon} \text{ such that } \sigma(K) \subset \Omega_{\varepsilon}[\sigma(K_{\beta})] \; \; \forall \beta \geq \beta_{\varepsilon}.$$

If this is true, along with Theorem 3.15, then $\sigma(K_{\beta}) \to \sigma(K)$ as $\beta \to \infty$, in the sense of the Hausdorff semi-metric for the distance between two sets. However, as we shall see in §4, it is not generally true that $\sigma(K_{\beta})$ is asymptotically dense in $\sigma(K)$ as $\beta \to \infty$.

4. Examples. We consider again the examples of §2 in order to illustrate our principal results. In the first two examples, with non-symmetric kernels, $\sigma(K_{\beta})$ is not asymptotically dense in $\sigma(K)$ as $\beta \to \infty$. The third example, for the Picard kernel, suggests that $\sigma(K_{\beta})$ is asymptotically dense in $\sigma(K)$ as $\beta \to \infty$ if κ is real and even. This topic will be pursued in a subsequent paper.

EXAMPLE 4.1. As in Example 2.1 let

$$\kappa(u) = \begin{cases} 0, & u < 0, \\ e^{-u}, & u > 0. \end{cases}$$

Recall that

$$\sigma_0(K) = \left\{ \lambda : \left| \lambda - \frac{1}{2} \right| = \frac{1}{2} \right\}, \quad \sigma^+(K) = \emptyset,$$

$$\sigma^-(K) = \left\{ \lambda : \left| \lambda - \frac{1}{2} \right| < \frac{1}{2} \right\} = \left\{ \lambda : \operatorname{Re}\left(\frac{1}{\lambda} - 1\right) > 0 \right\},$$

$$\sigma(K) = \sigma_0(K) \cup \sigma^-(K) = \left\{ \lambda : \left| \lambda - \frac{1}{2} \right| \le \frac{1}{2} \right\}.$$

Now consider K_{β} . Since K_{β} is compact, $\sigma(K_{\beta})$ can consist only of eigenvalues and 0. For $\lambda \neq 0$, $K_{\beta}x = \lambda x$ if and only if

$$\int_0^s e^{t-s} x(t) \, dt = \lambda x(s), \quad 0 \le s \le \beta,$$
$$x(s) = \frac{1}{\lambda} \int_0^\beta e^{t-s} x(t) \, dt, \quad \beta \le s < \infty.$$

Consider the first of these equations. By the arguments in Example 2.1, x(t) = 0 for $0 \le t \le \beta$. Then the second equation implies that $x \equiv 0$. Thus, K_{β} has no nonzero eigenvalues and $\sigma(K_{\beta}) = \{0\}$, whereas $\sigma(K)$ is the disc with center 1/2 and radius 1/2. This is consistent with Theorem 3.15. We also see that $\sigma(K_{\beta})$ is not asymptotically dense in $\sigma(K)$ as $\beta \to \infty$.

By Theorem 3.11, each $\lambda \in \sigma(K)$ is an asymptotic eigenvalue of K_{β} as $\beta \to \infty$, i.e., there exist $x_{\beta} \in X^+$ such that

$$||x_{\beta}|| = 1, \ ||\lambda x_{\beta} - K_{\beta} x_{\beta}|| \to 0 \ \text{as} \ \beta \to \infty.$$

We exhibit such asymptotic eigenfunctions x_{β} . First let $\lambda \in \sigma^{-}(K)$. Define

$$x_eta(s) = egin{cases} e^{(rac{1}{\lambda}-1)(s-eta)}, & 0 \leq s \leq eta, \ e^{eta-s}, & eta \leq s < \infty. \end{cases}$$

Since $x_{\beta}(\beta) = 1$ and $\operatorname{Re}(1/\lambda - 1) > 0$ for $\lambda \in \sigma^{-}(K)$, $||x_{\beta}|| = 1$. Direct calculations yield

$$\lambda x_{\beta}(s) - K_{\beta} x_{\beta}(s) = \lambda e^{-(\frac{1}{\lambda} - 1)\beta - s}$$
$$||\lambda x_{\beta} - K_{\beta} x_{\beta}|| = |\lambda| e^{-\operatorname{Re}(\frac{1}{\lambda} - 1)\beta} \to 0 \text{ as } \beta \to \infty$$

Thus, each $\lambda \in \sigma^{-}(K)$ is an asymptotic eigenvalue of K_{β} as $\beta \to \infty$. Now let $\lambda \in \sigma_{0}(K)$. Choose $\lambda_{n} \in \sigma^{-}(K)$ such that $\lambda_{n} \to \lambda$ as $n \to \infty$. Then asymptotic eigenfunctions x_{β} of K_{β} corresponding to λ can be chosen from among the asymptotic eigenfunctions of K_{β} corresponding to $\lambda_{n}, n = 1, 2, \ldots$.

EXAMPLE 4.2. As in Example 2.2, let

$$\kappa(u)=egin{cases} e^u, & u<0\ 0, & u>0. \end{cases}$$

In this case,

$$\sigma_0(K) = \left\{ \lambda : \left| \lambda - \frac{1}{2} \right| = \frac{1}{2} \right\}, \quad \sigma^-(K) = \emptyset,$$

$$\sigma^+(K) = \left\{ \lambda : \left| \lambda - \frac{1}{2} \right| < \frac{1}{2} \right\} = \left\{ \lambda : \operatorname{Re}\left(\frac{1}{\lambda} - 1\right) > 0 \right\},$$

$$\sigma(K) = \sigma_0(K) \cup \sigma^+(K) = \left\{ \lambda : \left| \lambda - \frac{1}{2} \right| \le \frac{1}{2} \right\}.$$

Consider K_{β} . For $\lambda \neq 0$, $K_{\beta}x = \lambda x_i$ if and only if

$$\int_{s}^{\beta} e^{s-t} x(t) dt = \lambda x(s), \quad 0 \le s \le \beta,$$
$$x(s) = 0, \quad \beta \le s \le \infty.$$

$$\omega(v)$$
 of $p \ge v$ (see

In the first equation let $y(t) = x(\beta - t)$ to obtain

$$\int_0^s e^{t-s}y(t)\,dt = \lambda y(s), \ \ 0 \le s \le \beta.$$

As in Example 4.1, $y \equiv 0$. Hence, $x \equiv 0$ and $\sigma(K_{\beta}) = \{0\}$, whereas $\sigma(K)$ is a disc. So $\sigma(K_{\beta})$ is not asymptotically dense in $\sigma(K)$ as $\beta \to \infty$.

Let $\lambda \in \sigma^+(K)$. From Example 2.2, λ is an eigenvalue of K with the eigenfunction

$$x(s) = e^{-(\frac{1}{\lambda} - 1)s}.$$

Since x(0) = 1 and $\operatorname{Re}(1/\lambda - 1) > 0$, ||x|| = 1. A simple calculation yields

$$\lambda x(s) - K_eta x(s) = egin{cases} \lambda e^{-rac{1}{\lambda}eta + s}, & 0 \leq s \leq eta, \ \lambda e^{-(rac{1}{\lambda} - 1)s}, & eta \leq s < \infty. \end{cases}$$

It follows that

$$||\lambda x - K_{\beta}x|| = |\lambda|e^{-\operatorname{Re}(\frac{1}{\lambda}-1)\beta} \to 0 \text{ as } \beta \to \infty.$$

Therefore, λ is an asymptotic eigenvalue of K_{β} as $\beta \to \infty$.

EXAMPLE 4.3. The Picard kernel. As in Example 2.3 let

$$\kappa(u) = e^{-|u|}.$$

In this case,

$$\sigma(K) = \sigma_0(K) = [0, 2].$$

Let $\lambda \in (0, 2)$. Then $K_{\beta}x = \lambda x$ if and only if

$$\int_0^\beta e^{-|s-t|} x(t) \, dt = \lambda x(s), \quad 0 \le s \le \beta,$$
$$x(s) = \frac{1}{\lambda} \int_0^\beta e^{-s+t} x(t) \, dt, \quad \beta \le s < \infty.$$

The first equation is equivalent to the two-point boundary value problem

$$egin{aligned} x''(s) + \gamma^2 x(s) &= 0, \ \ 0 \leq s \leq eta, \ \ \gamma &= \left(rac{2}{\lambda} - 1
ight)^rac{1}{2}, \ x'(0) &= x(0), \ \ x'(eta) &= -x(eta). \end{aligned}$$

By elementary arguments, this problem has the nontrivial solution

$$x(s) = \gamma \cos \gamma s + \sin \gamma s$$

if and only if γ is a positive root of the transcendental equation

$$aneta\gamma=rac{2\gamma}{\gamma^2-1}.$$

By graphical or other means, there is at least one solution γ in almost every interval of length π/β . The corresponding numbers

$$\lambda = \frac{2}{\gamma^2 + 1}$$

are eigenvalues of K_{β} . Therefore, $\sigma(K_{\beta})$ is asymptotically dense in $\sigma(K) = [0, 2]$ as $\beta \to \infty$.

By Theorem 3.11, every $\lambda \in (0, 2)$ is an asymptotic eigenvalue of K_{β} as $\beta \to \infty$. It is easy to verify this. Fix $\lambda \in (0, 2)$. From the preceding results, there exist $\lambda_{\beta} \in \sigma(K_{\beta})$ for $\beta \in \mathbf{R}^+$ such that $\lambda_{\beta} \to \lambda$ as

 $\beta \to \infty$. Let x_{β} be a corresponding normalized eigenfunction of K_{β} . Then

$$egin{aligned} &\lambda x_eta - K_eta x_eta &= (\lambda - \lambda_eta) x_eta, \ &||\lambda x_eta - K_eta x_eta|| = |\lambda - \lambda_eta| o 0 \ \ ext{as} \ eta o \infty. \end{aligned}$$

Thus, λ is an asymptotic eigenvalue of K_{β} as $\beta \to \infty$.

5. Spectral comparisons for K_{β} and $K_{\beta n}$. Approximations $K_{\beta n}$ for K_{β} will be defined by means of numerical integration. The procedure is merely sketched. For further details, see [5].

A quadrature rule, such as a standard repeated or composite rule, is defined formally on $[0, \infty)$ and then restricted to finite intervals $[0, \beta]$. We assume that

(5.1)
$$\sum_{0}^{\beta} {}^{*}\omega_{ni}f(t_{ni}) \to \int_{0}^{\beta} f(t) dt \text{ as } n \to \infty \quad \forall f \in C[0,\beta], \beta \in \mathbf{R}^{+},$$

where $\omega_{ni} > 0, 0 \le t_{n1} < t_{n2} < \cdots$ and the sum on *i* is over the terms with $0 \le t_{ni} \le \beta$. The star in (5.1) means that if $t_{ni} = \beta$ for some t_{ni} and β then ω_{ni} may have to be multiplied by some factor in order to recover the correct repeated or composite rule on $[0, \beta]$. The factor is 1/2 for the trapezoidal rule.

The operators K_{β} and $K_{\beta n}$ are defined on X^+ by

(5.2)
$$K_{\beta}f(s) = \int_0^{\beta} \kappa(s-t)f(t) dt, \quad \beta \in \mathbf{R}^+,$$

(5.3)
$$K_{\beta n}f(s) = \sum_{0}^{\beta} \omega_{ni}\kappa(s-t_{ni})f(t_{ni}), \quad \beta \in \mathbf{R}^{+}, n \in \mathbf{Z}^{+}.$$

Restrictions must be imposed on the kernel function κ in order to facilitate numerical integration. Assume that

(5.4)
$$\kappa \in \mathrm{L}^1(\mathbf{R}),$$

(5.5) κ is bounded and uniformly continuous on **R**.

It follows from (5.4) and (5.5) that

(5.6)
$$\kappa(u) \to 0 \text{ as } u \to \pm \infty.$$

The following kernel functions satisfy (5.4)-(5.6).

EXAMPLE 5.1. (Picard kernel). $\kappa(u) = e^{-|u|}$.

EXAMPLE 5.2. $\kappa(u) = 1/(1+u^2)$.

EXAMPLE 5.3. $\kappa(u) = \sin u / (1 + u^2)$.

Under the foregoing hypotheses on the quadrature formula and the kernel function, it is shown in [5] that the operators K_{β} and $K_{\beta n}$ satisfy

THEOREM 5.1. For each $\beta \in \mathbf{R}^+$,

(5.7)	K_{β}	is	compact,

- (5.8) $\{K_{\beta n} : n \in \mathbf{Z}^+\}$ is collectively compact,
- (5.9) $||K_{\beta n}f K_{\beta}f|| \to 0 \text{ as } n \to \infty \quad \forall f \in X^+.$

The spectral approximation theory in [1], particularly Theorems 4.8 and 4.16, applies to the operators K_{β} and $K_{\beta n}$. We obtain

THEOREM 5.2. Fix $\beta \in \mathbf{R}^+$. Then

(a) for each open set $\Omega \supset \sigma(K_{\beta})$ there exists $n(\beta, \Omega)$ such that $\Omega \supset \sigma(K_{\beta n})$ for $n \ge n(\beta, \Omega)$;

(b) $\sigma(K_{\beta n})$ is asymptotically dense in $\sigma(K_{\beta})$ as $n \to \infty$.

Under more restrictive conditions on the quadrature formula and the kernel function κ , which are given in [5], it is possible to derive stronger relationships between $\sigma(K_{\beta})$ and $\sigma(K_{\beta n})$ that are uniform in β .

Acknowledgement. This work was carried out while P.M. Anselone was a Visiting Professor at the University of New South Wales under the auspices of the Australian Research Council Program grant, "Numerical analysis for integrals, integral equations, and boundary value problems."

REFERENCES

1. P.M. Anselone, Collectively compact operator approximation theory and applications to integral equations, Prentice-Hall, Englewood Cliffs, N.J., 1971.

2. _____ and C.T.H. Baker, Error bounds for integral equations on the half line, J. Integral Eq. Appl. 1 (1988), 321-342.

3. P.M. Anselone and I.H. Sloan, Integral equations on the half line, J. Integral Equations **9** [supp.] (1985), 3-23.

4. ——— and ———, Numerical solutions of integral equations on the half line. I, The compact case, Numer. Math. **51** (1987), 599-614.

5. ——— and ———, Numerical solutions of integral equations on the half line. II. The Wiener-Hopf case, J. Integral Eq. Appl. 2 (1988), 203-225.

6. K.E. Atkinson, The numerical solution of integral equations on the half-line, SIAM J. Numer. Anal. 6 (1969), 375-397.

7. R.C. Buck, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95-104.

8. F. de Hoog and I.H. Sloan, The finite-section approximation for integral equations on the half-line, J. Austral. Math. Soc. Ser. B 28 (1987), 415-434.

9. I.C. Gohberg and I.A. Feldman, Convolution Equations and Projection Methods for their Solution, Amer. Math. Soc., Providence, R.I., 1974.

10. M.G. Krein, Integral equations on a half-line with kernel depending upon the difference of the arguments, Amer. Math Soc. Transl. 22 (1963), 163-288.

DEPARTMENT OF MATHEMATICS, OREGON STATE UNIVERSITY, CORVALLIS, OR 97331

School of Mathematics, University of New South Wales, Sydney, NSW 2033, Australia