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ON THE STABLE A N D UNSTABLE SUBSPACES 
OF A CRITICAL FUNCTIONAL 

DIFFERENTIAL EQUATION 

OLOF J. STAFFANS 

ABSTRACT. We study the asymptotic behavior of the lin
ear, infinite delay, autonomous system of functional differen
tial equations 

x'(ty+n*x(t) = o, t > o, 
^ x(t) = <j>(t), t<0. 

Here fi is an n-dimensional matrix-valued measure supported 
on [0, oo), finite with respect to a weight function, </> is a C n -
valued continuous function in a fading memory space, and x 
is a locally absolutely continuous function for * > 0, satisfying 
(*). We find conditions that ensure that the state space 
of (*) can be written as a direct sum of a stable subspace, 
characterized by the fact that solutions are small at infinity, 
a finite dimensional central subspace in which solutions are 
neither small nor large at infinity, and a finite dimensional 
exponentially unstable subspace consisting of exponentially 
growing solutions. This work is heavily based on earlier joint 
work [2] with Jordan and Wheeler, and it extends the main 
result in [3]. The basic difference is that here we do not allow 
an explicit forcing term on the right-hand side of the first of 
the two equations in (*), but instead we are able to relax the 
assumptions on the kernel. 

1. Introduction. We study the asymptotic behavior of the solutions 
of the linear, infinite delay, autonomous system of functional differential 
equations 

x'(t)+fi*x(t)=0i * € R + , 

x(t) = 0(t), teR~. 

Here R + = [0, oo), R~ = (—00,0], ß is an n by n matrix-valued measure 
supported on R+ which is finite with respect to a weight function, and 
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x and <j) are Cn-valued functions. The initial function </> belongs to 
a certain fading memory space compatible with the weighted measure 
space containing /i. As usual, ß * x denotes the convolution 

(li*x)(t)= / dfj,(s)x(t - s). 

We find conditions that ensure that the solution subspace of (1.1) 
can be decomposed into a direct sum of a stable subspace <S, which 
is characterized by the fact that the solutions in S are small at 
infinity; a finite dimensional central subspace C in which solutions do not 
decay, but also do not grow at exponential rates; and, finally, a finite 
dimensional unstable subspace U consisting of exponentially growing 
solutions. 

The question which we consider here has been studied earlier in a 
very similar setting in [3]. The basic difference is that the equation in 
[3] was a more general version of (1.1), namely, 

x'{t) + p*x(t) = f(t), t e R + , 

x(t) = </>(t), t E R~. 

Of course, one gets (1.1) from (1.2) by taking / = 0; hence the results 
of [3] can be applied to (1.1) as well as to (1.2). The result given in 
[3] is more or less optimal for (1.2), but, as we shall see below, it is 
possible to prove a somewhat sharper version for the special case (1.1) 
of (1.2). A more detailed comparison of our present result with the 
result in [3] is given in §5, but, roughly speaking, if the largest growth 
rate in the central subspace is of order £m, for some m > 0, then here 
we need /x to have a total of just a little more than m finite moments, 
whereas the requirement in [3] is just a little more than 2m + 1 finite 
moments. In addition we make a structural assumption on the central 
critical exponents. 

Throughout we expect the reader to have [2] and [3] at hand and 
make frequent references to these papers. 

2. The general setting. The basic setting that we use is essentially 
the same as the setting in [2], adapted to our equation (1.1). We let rj be 
an influence function on R dominated by a submultiplicative function 
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p on R. Some additional assumptions on 77 and p will be mentioned 
later, but let us remark at this point that the values of 77 on R~ will 
determine our state space of fading memory type and that the values 
of 77 on R+ will determine the rate of convergence to zero in the stable 
subspace. In addition, both the values of 77 on R~ and the values of 77 
on R + will affect the values of p on R + . For an example, see §5. 

We assume that p(t) E l o n R" , and that p € M(R+; C n X n ;p ) . We 
let B be one of the spaces Lp, 1 < p < 00, BUC or BCo and suppose 
that our initial function (\> belongs to # m + 1 ( R _ ; C n ; 77) for some m > 0 
(this extra smoothness assumption is not important; the discussion can 
be carried out in B instead). Let C be the operator 

(2.1) £0 = 0' + //*0 

and define 

Then the solution of (1.1) belongs locally to ß m + 1 if and only if the 
function g in (2.2) belongs to ß m (R ; C n ; 77) (that is, if and only if all 
those derivatives of the function C<j) that can be evaluated pointwise 
vanish at zero). Our state space V will be the space of all those initial 
functions </> G ß m + 1 (R~ ; Cn;77) for which the corresponding function 
g in (2.2) belongs to B m (R; C n ; 77), i.e., for which the solution of (1.1) 
belongs locally to # m + 1 . 

Since we assume that p(t) = 1 for t < 0, we have l im^-oo t _ 1 logp(t) 
= 0, i.e., the number which was called a in [3] is zero. Define 
LJ = - limt-+oo t'1 log p(t). Then —00 < UJ < 0. If u < 0 then our 
present results will not differ in any essential way from those in [3], 
and, therefore, we assume in the sequel that UJ = 0. In other words, we 
have 

(2.3) lim l2wW = l i m Î 2 W W = o . 
t—• — OO t t—+OO t 

Thus, the maximal ideal space II of M ( R ; C n X n ; p ) is the imaginary 
axis; see [1, p. 752]. 

Let L be the formal Laplace transform of £, i.e., 

(2.4) L{z) = zl + ß{z), Wz > 0. 
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This function is sometimes called the characteristic function of (1.1). 
The equation 

(2.5) det[L{z)\ = 0, 91* > 0, 

is called the characteristic equation of (1.1), and its roots are called 
characteristic exponents. Let us call those characteristic exponents 
that belong to the imaginary axis central characteristic exponents, and 
those that belong to the open half plane 9iz > 0 unstable characteristic 
exponents. If there are no central characteristic exponents, then the 
result presented here becomes essentially the same as in [3]. Thus, let 
us suppose that there is at least one central characteristic exponent. 
(It follows from (2.6) below that the number of central characteristic 
exponents must be finite.) 

The construction of a central subspace in [3] was based on the 
assumption that, at each central characteristic exponent, the inverse 
of the characteristic function should have a singular part expansion 
with respect to a certain submultiplicative function ps (different from 
the function p above; we shall return to this function in §5). We recall 
from [3, Proposition 5.1] that this implies that L has a local Smith 
factorization at each central characteristic exponent. As in [3], we shall 
suppose that the total number of central exponents is finite. Thus, by 
[2, Theorem 3.2], L has a global Smith factorization with respect to 
ps. In this paper we do not a priori require L to have a singular part 
expansion, but instead we ask that 

(2.6) 
L has a global Smith factorization with respect 

to the submultiplicative function p. 

Observe, in particular, that the factorization is with respect to p, not 
with respect to ps. Fur a further discussion of this assumption, see §5. 

In the sequel it will be important that L has a global Smith factor
ization with respect to another submultiplicative function pai too: 

LEMMA 2.1. Define 

P«W - 1 „-at 
p(t), t > 0, 

* < 0 , 
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where a > 0. Then pa is submultiplicative, and L has a global Smith 
factorization with respect to pa. 

PROOF. That pa is submultiplicative follows from the facts that the 
product of two submultiplicative functions is submultiplicative , that p 
is submultiplicative , and that the function which is e~at for negative 
t and one for positive t is submultiplicative (recall that we assume 
p(t) = 1 for t < 0). 

To prove that L has a global Smith factorization we have to show that 
it has a right global factorization and a left global factorization. The 
proofs are completely similar, so, below, we only give the argument for 
the right global factorization . 

According to (2.6) and [2, §5], the function L has a right global Smith 
factorization of the type 

L(z) = (z + l)R(z)D(z)P{z), 9iz = 0, 

where R, D, and P are transforms of measures in M(R; C n X n ; p), P is 
a unimodular (determinant identically one) quasipolynomial (a poly
nomial in (z + 1)_ 1), D is a diagonal quasipolynomial, det[D] vanishes 
only at the central critical exponents, D tends to the identity matrix 
at infinity, and R~l is a transform of a measure in M ( R ; C n x n ; p ) . 
A direct inspection of D and P shows that these functions are trans
forms of measures in M(R+; Cn x n ; /o), i.e., transforms of measures in 
M ( R ; C n x n ; p ) that are supported on R+. We claim that the same 
statement is true for R (but not in general for fi-1). To see this, 
simply observe that the equation above implies that R has a bounded 
analytic extension to the half plane %Kz > 0, satisfying R(x) —> 0 as 
x —» +00 (along the real axis), and apply the standard argument used 
in the proof of the Paley-Wiener theorem. Thus, we conclude that, 
since R is the transform of a measure vanishing on (—oo,0), it can be 
regarded as a transform of a measure in M(R; C n x n ; pa) rather than 
as a transform of a measure in M(R; C n x n ; p). In other words, the fac
tors in the factorization above are locally analytic with respect to the 
submultiplicative function pa. When we pass from p to pai the corre
sponding maximal ideal space II expands from the original line %Kz = 0 
to the strip 0 < Viz < a, and to get a global right Smith factorization 
with respect to pa we have to factor out all those unstable characteris
tic exponents that belong to the strip 0 < %Kz < a from R, transferring 
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the factors to D and P. However, this can be done in exactly the same 
way as in the construction of the right global Smith factorization given 
in the proof of [2, Theorem 3.2], since we know that the factors are 
locally analytic with respect to pa and R is analytic at all the unsta
ble critical exponents; hence R has local Smith factorizations at these 
points. D 

3. The unstable and central subspaces. Our treatment of the 
unstable subspace is identical to the one in [3, §3]. Thus, we have 

DEFINITION 3.1. A function <j> e V belongs to the unstable subspace 
U if C(f)(t) = 0 for t e R - , and <j>(t) = 0(e~l£*l) as t - • -oo for some 
£ > 0 . 

The construction of the central subspace C relies on the assumption 
(2.6). If we choose a so large that all the characteristic exponents lie 
in the strip 0 < *Rz < a and define 

T}a{t) = [Pa(-t)}~\ t G R , 

where pa is the function defined in Lemma 2.1, then rja is dominated 
by pa and the solution x of (1.1) belongs to # m + 1 ( R ; C n ; r?a), see, e.g., 
[3, §3]. We can use [2, Theorem 5.1] and Lemma 2.1 to conclude that 
the null-space of £, regarded as an operator from ß m + 1 ( R ; Cn;rja) 
into ß m (R ; Cn;77a), consists of functions that are certain sums of 
exponential polynomials, the exponents of which correspond to the 
characteristic exponents of (1.1) and the coefficients being determined 
by the right Jordan chains of L at each characteristic exponent. The 
unstable characteristic exponents generate the unstable subspace, and 
the central characteristic exponents generate the central subspace. 

DEFINITION 3.2. A function (j> e T> belongs to the central subspace 
C if C(f)(t) = 0 for t G R~, and the solution x(<j>) of (1.1) satisfies 
x((j))(t) = 0 ( | t | m ) as \t\ —• oo for some finite m. 

It follows from the construction above that the null-space of C in 
ß m + 1 ( R - ; C n ; ri) is the sum C 0U. 

The maximal growth rate of a function 0 G C at — oo is determined by 
two things. First of all, it depends on the maximal length of the central 
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Jordan chains of L. As it was seen in [2, §5], if the maximal partial 
multiplicity of L at a central characteristic exponent ÌWQ is &, then the 
largest of the characteristic solutions generated by this characteristic 
exponent is proportional to tk-l

e
lUJot a^ p j u s a n j m i n u s infinity. Of 

course, the corresponding initial function <f> G C has the same growth 
rate at —oc. However, we have a second requirement to fulfill, namely 
the requirement (j) G X>, which puts an additional size restriction on <j> 
at — oo. If 7] is too large at — oo, then this second requirement might 
reduce the size of C from its maximal theoretical size. In the sequel we 
shall assume that this does not happen, but that 

The function 11—> tk~x belongs to ß(R~; C; 77), 

(3.1) where k is the largest of the partial multiplicities 

of L at the central characteristic exponents. 

The same assumption occurs in [3] in the form of [3, formula (6.9)]. 
Thus, our central subspace coincides with the central subspace in [3]. 

4. The stable subspace. So far nothing really new has emerged 
compared to [3]. In particular, all that has been said above could easily 
be adapted to the more general equation (1.2). The situation becomes 
different when we begin to discuss the stable subspace. 

Our definition of a stable subspace is the same as in [3] : 

DEFINITION 4.1. A function <j> e V belongs to the stable subspace S 
if the solution x((/>) of (1.1) satisfies x((/>)(t) —* 0 as t —> 00. 

Clearly, the intersection of any two of the spaces <S, C and U is the 
zero function. However, at this point it is far from clear that T> can 
be written as the sum of «S, C and li. This is true if and only if every 
solution x of (1.1) can be decomposed into a sum of an exponential 
polynomial p, satisfying Cp = 0, and a remainder which tends to zero 
at infinity. The rest of this paper will be devoted to the construction of 
such a decomposition. It differs substantially from the corresponding 
construction in [3], and it is based on the description of the range of 
the operator £, described in [2, §6]. 

Let us recall the following two results from [2]: 
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DEFINITION 4.2. [2, Definition 6.1] The row vectors vo,vi , . . . ,v p , 
with VQ ^ 0, form a Jordan chain of / G Z?m(R; C n ; rj) of length p + 1 at 
a point iujQ if there exist scalar functions Fi, F 2 , . . . , Fp+i € ß(R; C; 77) 
satisfying 

( ^ - iuo) Fi = t/0/, ( — - iujo) Fj+x = Fj + Vjf, l<j<p. 

THEOREM 4.3. [2, Theorem 6.1] A function f G ß m (R ; C n ; 77) can be 
written in the form f = Cy, for some y G ß m + 1 ( R ; C n ; 77), if and only 
if for each central characteristic exponent iuo, every left Jordan chain 
of L is a Jordan chain of f at ÌUJQ . 

In the formulation above we have made use of (2.3) and (2.6). 

In the sequel we shall, in addition, need the concept of a Jordan chain 
of a function belonging to # m (R~; C n ;^ ) . The definition is the same 
as in Definition 4.2, with R replaced by R~ throughout. 

LEMMA 4.4. Let <f) G ß m + 1 (R" ;C n ; r ? ) . Then, for each central 
characteristic exponent iuo, every left Jordan chain of L is a Jordan 
chain of C(j) at iuü$. 

PROOF. Extend <f> to a function ip G ß m + 1 ( R ; Cn;7/) in an arbitrary 
way. Then, by Theorem 4.3, every left Jordan chain of L at iuo is a 
Jordan chain of Ciß. Since £ is causal, (Cijj)(t) = (C(p)(t) for t G R~; 
hence, every Jordan chain of ^ is a Jordan chain of 0. D 

LEMMA 4.5. Let <\> G £>, and define g by (2.2). Then there is a function 
y G ß m + 1 ( R ; C n ; r/) satisfying Cy = g. 

PROOF. By Theorem 4.3 and Lemma 4.4, in order to prove Lemma 
4.5 it suffices to show that every Jordan chain of C(j) G # m ( R - ; C n ; 77) 
of length p + 1 < k is a Jordan chain of g e ß m (R ; C n ; r/), where k is 
the number in (3.1). 

At this stage the possible non-uniqueness of the functions Fi , F2,..., F3 

in Definition 4.2 becomes important. Let us take a look at the sit-
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uation in ß m (R~; Cn;7/). Suppose that we have two different se
ries of functions Fìì F 2 , . . . , F p + i and G?i, G 2 , . . . , Gp+i correspond
ing to the same Jordan chain vo>^i,... ,up of / G ß m (R~; Cn;r/) 
at iu0, with length p + 1 < fc. Then Fi(t) - Gi(£) = eie*"0', 
where cx = Fi(0) - Gi(0); F2(t) - G2(t) = ( d t + c2)e^o t , where 
c2 = F2(0) - G2(0); etc. In particular, Fj(t) - Gj{t), 1 < j < p + 1, 
is of the form ]Cq=o cqjt

q~1elu;ot for some constants Cgj. Thus, recall
ing our assumption (3.1), we conclude that all these differences belong 
to 23m+1(R~; Cn;ry). Hence, if one wants to test the existence of the 
functions F\, F 2 , . . . , F p + i in Definition 4.2, it is permitted to prescribe 
the initial values Fi(0), F 2 (0) , . . . , Fp+i(0) in an arbitrary manner. In 
particular, it is possible to require F\(0) = F2(0) = • • • = Fp +i(0) = 0. 

Let us return to the function g in (2.2). Let vo,vi,-- . ,vP be a 
Jordan chain of C(j) G ß m (R~;C n ; r / ) of length p + 1 < k. Then 
there exist functions Fi, F 2 , . . . Fp4_i in # m + 1 (R~ ; C n ; 77) satisfying the 
differential equations in Definition 4.2 on R~, with / replaced by 
C(f). As we observed above, we may, without loss of generality, take 
Fx(0) = F2(0) = . . . = Fp+i(0) = 0. Define Fx{t) = F2(t) = . . . = 
Fp+i(£) = 0 for t > 0. Then the extended functions satisfy the required 
differential equations on R, with / replaced by #, and we conclude that 
vo, v\,..., vp is a Jordan chain of g G # m (R~; C n ; 77). D 

Before we can state our main theorem we need one more assumption, 
namely, 

(4.1) ß m + 1 ( R + ; C n ; rj) C £ C 0 ( R + ; C n ; 1), 

i.e., we assume that every y G ß m + 1 (R ; C n ; 77) tends to zero at +00. 

THEOREM 4.6. Assume (2.6), (3.1), and (4.1). ThenV = S®C®U. 

PROOF. We already know that the pairwise intersections of 5,C and 
U contain nothing but the zero function, and that C ® U is the null-
space of C in ß m + 1 (R~ ; C n ; 77). Thus, to prove the theorem, it suffices 
to show that every </> G V can be written as the sum of two components, 
one in 5 , and the other in the null-space of C. 

Let (j) G V. By Lemma 4.5, there is a function y G ßm+1(R<; Cn;r?) 
satisfying (Cy)(t) = (Cx)(t) for all t G R. Because of (4.1), y(t) - • 0 as 
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t —• oo. Hence, if we let ip be the initial function of y (the restriction 
of y to R~), then ip G S. Clearly the difference z = y — x satisfies 
(Cz)(t) = 0 for all t € R. o 

COROLLARY 4.7. A function (j) E V belongs to S if and only if the 
solution x((f>) of (1.1) satisfies x((/>) e ß m + 1 ( R + ; C n ; / / ) . 

To some extent the proof of Theorem 4.6 may be regarded as con
structive. In order to perform the decomposition above, it suffices to 
compute y. This function can be constructed from the sequences of 
functions Fj found in the proof of Lemma 4.5, as explained in the 
proof of [2, Theorem 6.1]. 

5. A comparison with [3]. For simplicity, let us take B = BUC, 
and let us take rj to be of the form 

for some nonnegative, real numbers g_ and g+. Clearly, (3.1) is true if 
and only if #_ > k — 1, and (4.1) holds if and only if #+ > 0. We may 
take p to be 

<5-2> > < " = { < ; + < » , ill*: 
provided we take p > q- + g+; cf. [3, Example 6.1]. Thus, our basic 
size assumption on p becomes 

(5.3) / (1 + t)k+£-1\p\(dt)< oc, 

for some e > 0. 

Our second main assumption on p is (2.6), which says that L should 
have a global Smith factorization with respect to p. By [1, Lemma 4.3] 
and [3, Theorem 5.1], this implies that p has a singular part expansion 
with respect to the submultiplicative function 

(5-4) PSW={1[ (l + t)s, teR+, 
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provided e — 1 > 6 > 0 (for 0 < e < l w e d o not necessarily have a 
singular part expansion). Thus, if the constant s in (5.3) satisfies the 
additional condition e > 1, then the assumption made in [3] that L 
has a singular part expansion with respect to ps is satisfied, with ps 

defined as above and 0 < 6 < e — 1. 

In addition to the assumptions on the existence of a singular part 
expansion at the central critical exponents, it was assumed in [3] (see 
[3, (6.8)-(6.10)]) that 

(5.5) p ( t ) > ( l + t)*+ 1 , t G R + , 

(5.6) ß f / C ( R - ; C n ; ^ ) c ß ( R - ; C n ; r / ) , 

(5.7) ß ( R + ; C n ; 7 y ) c L 1 ( R + ; C ^ ; p 5 ) , 

where (if we let ps be the function in (5.4)) 

<5-8> >*<*>={[ i -M)**-*, II*: 

(5.9) „(.,-{{:->-*• m:; 
Clearly, (5.5) is an immediate consequence of (5.2), with p > k — 1, and 
(5.6) is essentially the same as our (3.1). The most significant difference 
between our present assumptions and those in [3] is that (5.7) puts an 
additional restriction on /9, not present here. Clearly, if we still choose 
77 to be of the form (5.1), then, to satisfy (5.7), we have to take 

q+ > k + 6. 

This means that q- + #+ > 2k + 6 — 1. In other words, the results of 
[3] need /x to satisfy 

(5.10) / (l + t ) 2 f c + ^-Vl (^ )<(X) , 
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for some 7 > 0. Compare this to our (5.3). 

Earlier we pointed out that our assumption (2.6) nearly implies the 
assumption made in [3] concerning the existence of a singular part 
expansion at the central characteristic exponents. Conversely, in the 
example given above, (5.10) implies (2.6). To see this, choose e < 7, 
let p be given by (5.2) with p = k + e - 1, and use [1, Lemma 4.3(iii)] 
and [2, Theorem 3.1]. 
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