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TO SINGULAR INTEGRAL EQUATIONS 

C.V.M. VAN DER MEE AND P.F. ZWEIFEL 

ABSTRACT. Singular integral equations with Cauchy type 
kernels are considered on a real interval. A generalization of 
the partial range orthogonality relations of neutron transport 
theory is used to generate solutions without the need of intro­
ducing the Hilbert transform, as in the standard treatment. 
This method has the advantage of clarifying the origin of the 
"endpoint conditions" in the solution of the Riemann-Hilbert 
problem, and, in addition, it simplifies the treatment of em­
bedded eigenvalues. 

1. Introduct ion. Singular integral equations of Cauchy type arise 
in a number of fields of physics and engineering; the general theory 
has been studied extensively and is described, for example, in books by 
Muskhelishvili [13], Gohberg and Krupnik [9] and Prößdorf [15] and 
a recent review paper by Estrada and Kanwal [8]. (A description of 
applications in transport theory has been given also, by Case [4].) 

In this paper, we consider the case that the range of integration is 
the bounded closed interval [—1,1]. The simplest such equation can be 
written 

(l) f(t) = A(t)\(t) + v f ^ ^ du, t e (-1,1). 
J-I V — t 

We assume that / , À and 77 are real-valued uniformly Holder continuous 
functions, although the extension to / G Lp[—1,1], 1 < p < oc, is 
straightforward. The methods we are going to describe can be adapted 
easily to more general Cauchy type equations, such as those described 
in Chapter 6 of [13] or in §4 of [8], but the general techniques are more 
easily understood in the simplest case which, anyway, covers many 
applications of physical interest. 

In addition to (1), we shall discuss the associated equation 

(1*) g(t) = B(t)X(t)+r,(t)V f *^\dv, t e (-1,1) . 
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Note that, under the transformations 

(2a) A(t) - B(t)/V(t), 

(2b) f{t) - g(t)/V(t), 

Equation (1) is replaced by (1*). Thus, there is no particular reason 
to discuss (1) and (1*) separately unless r](to) = 0 for some to G [—1,1] 
and g(to) T̂  0. A specific example of such an equation, arising in the 
theory of plasma oscillations, is discussed in §3. 

For the time being, we restrict our attention to (1). The classical 
method of solution, amply discussed in the previously cited references, 
proceeds through the Hilbert transform 

(3a) 

and the 

(3b) 

where 

(3c) 

(3d) 

N{z)=±r^mdI, 
2TTZ y_! v - z 

inversion formula 

A(t) = ±\N+(t)-N-$)\, 

N±(t) = Lim N(t±ie) 
e[0 

-^/"^"i-
Using (3d), Equation (1) is converted to an equation for N±. Defining 
further the functions A*1 by 

(4) A±(t) = X(t)±7rirj(t)1 

one is led to consider the Riemann-Hilbert problem 

A+(t) _ X+W 
w

 A-(«) x-(ty 
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where one requires X(z) to be analytic on C\[—1,1]. In terms of the 
solution X(z)i the Hilbert transform solution N(z) is constructed, and, 
ultimately, A(t) is found from (3b). 

One observes that the solution X(z) to (5) is not unique. Indeed, if 
Xo is any solution, then h(Z)XQ (Z) is also a solution for any analytic 
function h(z). Let us define Xo to be the fundamental solution 

(6a) X0(z)=expT{z), 

= - f 
1 ln(A+(i)/A-(t)) 

(6b) T{z) = — / —i ^ ^ dt. 

We observe that both XQ(Z) and Xo(z) l = exp{—r(z)} are analytic 
on C\[—1,1] and tend to 1 as \z\ —• oo. 

The following "endpoint conditions" have been introduced [4] as a 
method of removing the ambiguity on the function X, namely that, at 
the endpoints z = 1 and z = — 1, 

(EC1) Lim (±1 - z)X(z)-1 = 0 
2—>±1 

and, near z = ± 1 , 

(EC2) X(z) = 0(1). 

If Xo{z) does not obey (EC1) and (EC2) one must in general choose, 
forX, 

X(z) = X0(z)(l-z)M(l + z)N 

for some integers M and N in order that it satisfies (EC1) and (EC2). 
(In fact, M + N is identical to the "index" K of the singular integral 
equation (1) as defined in [13].) Then 

(a) If K = 0, (1) has a unique solution, which is, of course, given by 
the standard formula 

(7) N{z) = — 1 — f1 v(t)X
KÌ?ì m dt 

V ì W 2<jriX0(z) y_! /v ' A+(*) t - z 

with A(t) recovered from N(z) via (3b). 
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(b) If K < 0, a solution exists only if f(t) obeys the — K conditions 

(8) f v(t)j$f(t)tldt = 0, 1 = 0,1,...,-K + 1, 

and this solution is unique and has the form (7). 

(c) If K > 0, a solution exists, but it is not unique. To be precise, 

<9> "<*> = d b (/', *« , )£ir^'"+p"-'(4 
where PK-\ is an arbitrary polynomial of degree < K — 1. 

In §2 we will discuss a method for solving (1) based on a generaliza­
tion of the orthogonality method introduced into transport theory by 
McCormick, Kuscer and Summerfield [10]. This method is a simple 
generalization of standard methods for computing Fourier coefficients 
by orthogonality and relies on the determination of a weight function 
and normalization integrals which allow one to write down the solution 
immediately. Like the Case method in transport theory [3], which was 
introduced because its close analogy to standard methods for solving 
partial differential equations made it easier to understand for physi­
cists and engineers, our method probably will not solve any problems 
not already amenable to classical methods. However, Case's method 
in transport theory led to a much deeper understanding of the mathe­
matical properties of transport solutions and to a flurry of activity in 
this field. Likewise, we think our method leads to some mathemati­
cal insight. In particular, the "endpoint conditions" which appear in a 
seemingly arbitrary way in [4], now enter in a most natural fashion. We 
also feel that our approach is pedagogically useful, in the same sense 
as Case's method, because of its close analogy to standard well-known 
techniques in mathematical physics. 

One condition imposed in [13] and [4] is that A* not vanish anywhere 
on the contour of integration, in our case assumed to be the interval 
[-1,1]. One of the motivations for our work is to obtain a solution for 
that situation (by an appropriate limiting procedure); this is discussed 
in §3. In §4 an example from astrophysics is presented. 
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2. The basic method. Let us write Equation (1) in the suggestive 
form 

(10a) f(t)= I A(i/)(pv(t)di/, 

with 

A") (10b) <Pv(t) = \(v)6(t-v)+P 
v-t 

Throughout, we shall assume that S^ have no zeros on [-1,1]. If we 
could find an orthogonality relation of the form 

(11) / W{t)<pv(t)<pV'{t)dt = C{y)6(y-v') 

for some weight function W and some normalization coefficient C(i/), 
(10a) could be solved immediately as 

(12a) A(u) = ^ / W{t)Mt)f{t) Ä, 

which is merely an abbreviation for 

(12b) A(u) = ^ ( v jlW{t)f±f(t)dt + W{v)\{v)f{u)). 

The fact that such an orthogonality relation exists and, indeed, the form 
of W is strongly suggested by the work of Kuscer et al. previously cited 
[10]: 

(13a) W ( ' ) = ^ * ) ^ ' 

(13b) C(t) = r,(t)X+(t)A-(t) = V(t)^m2 + *W1 
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Then, writing Ax{v) instead of A(v) to indicate its dependence on X, 
(12a) reduces to 
(12c) 

Actually, (11) is not well-defined as it stands, since it involves, for 
example, a product of two delta functions. It is possible to define 
it rigorously in the context of distribution theory by introducing the 
Schwartz space T>o[(—l,l)x(—1,1)], but this is not necessary. Rather, 
we shall take (12c) as the basic definition of orthogonality, accepting 
(11) as only heuristic, and prove 

PROPOSITION 1. Let XQ(Z) be the fundamental solution (6) of (5), 
andletX(z) = X0(z)(l-z)M(l + z)N obey (EC1) and (EC2) for some 
integers M and N, where K = M + N > 0. Then a solution to Equation 
(1) is given by Ax{v) in (12). 

PROOF. Substitute the putative solution (12a) into Equation (10a) 
to obtain 

(14) f(t) = J i -^Mt) j W(t')<pv{t')f{t') dt' du. 

We shall show that (14) reduces to the tautology f(t) = f(t). If we 
substitute the explicit form of (fuit), (10b), and C and W, (13) into 
(14), we obtain 

(15a) f(t) = J 1 + J 2 + J3 + ./4, 

where 
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(i5d) ^=vL^^^)i-tdt' 

n ^ ; v C "M (v f1 „(t'\x+W m dA dv 
(15e) J, = V ]_iX+{u)^{l/)(P J^itij-^^dt)—. 

In J4 we now use the Poincaré-Bertrand formula [13] to reverse the 
order of the principal value integrals, obtaining 

(16a) J^J'^ ***<? 
A+(t)A-(t) 

with 
(16b) 

Combining the residual term 7r2r/2/A+A~ with J\ and recalling that 
A+À - = À2 4- n2r]2, (15a) reduces to 

(17) J2 + J3 + J i = 0, 

which, of course, must still be verified to complete our proof. 

If we now use a partial fraction decomposition in (16b) as well as the 
identity (which follows from (4) and (5)) 

H8Ì "M * ( 1 l—\ 
K ' X+{u)A-{u) 2wi\X-(v) X+(i/)/' 

we find 

* (v /_, (X^M - 3FM ) (db - rb ) "") i^i-
Equation (17) then reduces to 

(20a) J2 + J3 + J>4 = vf_i ^ ) f^ /CO g ( ^:f ( t ) ^> 
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where 

(20b) X+(t)A-(t) ' 2*i J^X+MA-Mu-t 

\{t) 1 _ f1 ( 1 1 \ di/ 
-±v[1(— —) — 

2TTÌ y_i Vjf+(i/) X-{v))v-\ 
X+{t)A-(t) 2ni J_x \X+{v) X-{v)Jv-t 

If we now use (cf. (4) and (5)) 

X+(t)A-(t) 2\X+(t) X-(t)JJ 

we obtain 
(20c) 

( j ~ 2VX+(£) + * - ( * ) / " 2TTZ y . ! lx+( i / ) ~ X-{v))v- t 

Then a sufficient condition for Proposition 1 is that H(t) is a constant 
independent of t. 

Now consider the integral 

(2i) Q W ^ Ä ^^^_L--^_ = _ 1 _ . 

If the contour of integration is deformed to exclude the branch cut 
[—1,1], then a simple application of Cauchy's theorem (noting that 
X(z)~1 is analytic on C\[—1,1]) and the Plemelj formulas give 

(22) Q(t) = H(t) 

modulo contributions for the endpoints ± 1 . These contributions vanish, 
however, because of (EC1). Since X(z)~l — 0(z~K) at infinity, we get 
that H(t) is a constant, which proves the proposition. D 

PROPOSITION 2. Let X(z) be as in Proposition 1, and let PK(z) be a 
polynomial of degree < K—1 such that PK(z)/X(z) vanishes as \z\ —> oo. 
Then 

(23) P«{U) 

X + ( I / ) A - ( I / ) 

is a solution of the homogeneous (1). 
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REMARK. (EC1) is crucial to the proof of Proposition 1, but (EC2) 
did not enter. In fact, let us choose two nonnegative integers n\ and 
ri2 and define 

(24) X*{z)=(l-z*i{(ì+z)»>' n i + n 2 = ^' ?<?<*• 
Then Xp(z) must still obey (EC1) but, for p > 0, will not obey (EC2). 
Then it is easy to show, by mimicking the proof of Proposition 1, 
that Axp(z) is also a solution of (1) for every p. That is, (1) has K 
independent solutions. It is not difficult to verify, using Proposition 2 
below, that the difference of any two such solutions is a solution of the 
homogeneous equation, (1) (i.e., set f(t) = 0). 

PROOF. The proof is completely analogous to Proposition 1. That is, 
(23) is substituted into (1) and the steps leading to (20) are repeated. 
One finds that 

Q(t) = H(t)=Um±[ ^1^=0 

by the hypotheses of the present proposition, which completes the 
proof. D 

We next consider the case in which the index K is negative. If we go 
through the proof of Proposition 1, we see that (21) no longer holds, 
because X(z)~l is unbounded at infinity; there is no hope of proving 
that H (t) is a constant. However, we can take advantage of the fact that 
H(z) = constant is only a sufficient condition. A necessary condition 
[cf. (7) and (20a)] is that 

P5) P^^floSM!*.. 
We will illustrate this situation with an example and then prove the 
general result. 

Suppose XQ(Z) rsj (l - z) near z — 1 and Xo(z) ~ 1 near z = —1. 
Then X(z) = X0(z)/(1 - z) and K = - 1 . Define 

Xx(z) = X0(z)—j 
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for some c G C \ [ - l , 1]. Now Xx(z) also obeys (ECl), (EC2) as well as 
(5) and Xi(z)"1 = 0(1) at infinity. Since X\{z)~l has a pole at z = c, 
we have, following the proof of Proposition 1 and using X\ (z) instead 
of X(z), that (21) is replaced by 

<2I'> «>=ÏR + ̂ i = ™' 
Then 

H{t') - H(t) = £ z i J _ - i - ( f - t), 
Ao(c ) C — IC — V 

and (25) reduces to 

i.e., the solution is given by AxY(v) but subject to the constraint (26). 
At first sight the solution seems to depend on the choice of the arbitrary 
point c, but this is illusory. It is easy to show (using (26)) that 

„ , x A(i/) , , x 1 ^ f1 , vX+(t) „ x dt 

which is manifestly independent of c. 

PROPOSITION 3. Let X(z) be as in Proposition 1 with K < 0. Then a 
solution (1) is given by Ax(v), (12), if and only if the — K constraints 

(27) pjv(t)^^f(t)tldt = 0, / = 0,1, • • • , - « + ! , 

are satisfied. 

PROOF. Define X(z) = E E i ( * ~ ci)x(z) w h e r e t h e ci € C \ [ - l , l ] 
are all distinct. Note that X(z) still obeys (5). We shall proceed as in 
the proof of Proposition 1, i.e., we examine under what conditions the 
equation 

/(*) = / Ax(v)<pu(t)dv 
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is a tautology. We eventually arrive at the following expression for 
H(t): 

and hence 

Then the sufficient condition, (25), becomes 

which will clearly be satisfied if (27) holds. This shows that the solution 
is given by A^(v). It still remains to be proved that A^{v) = Ax{v). 
The first term of Ax is independent of X [cf. (12c)], so we need only 
consider the second term, call it A2, 
(28) 

By repeated partial fraction decomposition, one shows 

(fie-«» » r ^ - f î n ^ n ^ + fîrb-;^? 
\=1 'VI l = l j = l

U CJ k^l Ck n=l CnV l 

Inserting this result into (28), the first terms all vanish by virtue of 
(27). Only the term 

*\t-CnV-t 
n = l 

survives, and this inserted into (28) gives A2 x(v)- This completes the 
proof. D 
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Let us restate our results as 

THEOREM 1. Let XQ(Z) be the fundamental solution of (5) and let 
X(z) = X0(z){l-z)M(l + z)N obey (EC1) and (EC2) for some integers 
M and N,M + N = K. 

(a) If K = 0, the unique solution to (1) is given by Ax{v) in (12). 

(b) If K > 0, the general solution to (1) is given by 

4rM +
 P - W 

X + ( I / ) A - ( I / ) ' 

where Ax(v) is given by (12) and PK(v) is an arbitrary polynomial of 
degree < K — 1. 

(c) If K <0, the solution is given by Ax{v) if and only if the —n + 1 
constraints 

v J v(tyi^f(t)tidt = o, i=o, i -#c+1, 

are satisfied. 

A+(t)' 

REMARK. We have now reproduced all of the classical results and, 
in addition, clarified the origin of the endpoint conditions (EC1) and 
(EC2), as was our goal. 

In the event that the range of integration in (1) is R, there are no 
endpoint conditions involved and, since XQ(Z) —» 1 as \z\ —» oo, it 
would seem the solution always exists. However, the integral defining 
Xo, (6b) may diverge. 

The same situation may occur if the range of integration is semi-
infinite, for example, [0, oo), in which case the endpoint condition must 
be satisfied at 0 and the convergence of the integral in (6b) must be 
guaranteed at infinity. Such a situation has been encountered in some 
recent work involving electron transport [14]. In this case 

Lim In -—— = 7T, 
t-oo A-(t) 
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with 

Since 

for z « 0, where 

X0(z) ~ z-°W' 

•W-il-^" 2 A-(t) 

(i.e., 0(£) = argA+(t)), the endpoint condition is apparently satisfied 
at z = 0, but the integral does not exist. We renormalize Xo(t) by 

with 
0(t) = 6{t) - TT. 

Therefore, Xß(2) still obeys (5), but 

XR(z) ~ 2 

for z « 0. The problem is reduced to the one discussed in Theorem 1. 

The same divergence of the integral defining XQ(Z), if it occurs for 
the case in which the range of the integral is R, may be amenable 
to renormalization. If not, a solution does not exist, except, perhaps, 
in the special case that A±(z) are actually the boundary values of an 
analytic function A(2), in which case one may choose X(z) = A(z). 

3. A singular example. In dealing with (1) for real-valued A and 
r/, the vanishing of A± on [-1,1] need not cause major difficulties if one 
is willing to permit singular behavior of the solution A(t) and does not 
require the vanishing of / . In this case, difficulties arise. 

To understand this, make the transformation (2), to reduce (1*) to 
(1), solve for A by orthogonality and insert the result back into (1) for 
verification. We obtain 

(2y) *w- A + ( l / ) A _ ( l / ) + x+(,,)A-(j/)7>y A+(«)i/-r'' 
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(30a) 

(30b) ff(i) = *ff , , + p / ' ^ / ^ , , - J - di/. 
v ; w X+(*)A-(*) i ^ X + M A - M i / - * 
Equations (30) should be compared with (20) for the case in which a 
solution of (1) rather than (1*) is sought. 

Assume now that 77(1/0) = A(z/o) = 0 for some i/o G [—1,1]. Then 
A±(i/o) = 0, but /(i/o) / 0- Now, if -X"(i/) is non-vanishing on [-1,1], 
then the integral in (29) does not converge. On the other hand, if 
we choose X(VQ) = 0 (for example, by taking X(z) = (~^-)Xo(z) 
for some c G C\[—1,1]), then the integral in (30b) does not converge. 
Thus the problem, as stated, has no solution. 

An example of such a situation occurs in the study of plasma os­
cillations through the linearized Vlasov equation [1]. In this case, as 
is often the case in transport theory (cf. [5, Chapter 4]), it happens 
that the functions A±(t) are actually the boundary values of an ana­
lytic function, A(z), called the "plasma dispersion function." In such a 
case, it is not necessary to introduce the Riemann-Hilbert problem (5); 
putting it another way, one chooses the solution X(z) = A(z). Also, 
for the Vlasov equation the interval of integration becomes R. 

In order to obtain a solution, an obvious idea is to move the zero of A 
off the axis, to solve the resulting equation, and then take the limit as 
the zero returns to the axis. It turns out that this procedure yields a 
reasonable solution if one is careful to retain the relevant properties of 
A(z). For the Vlasov equation, A*is a real function of 2, and, further, 
A(z) —• 0 as \z\ tends to infinity (cf. [5, §10.3]). To retain both of these 
properties when the zero moves off the axis, we make the replacements 

(31a) A(t)W'7/0)y 

and 

(3ib) v(t)^v(ty {t-u0)
2 
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so that A and 77 are redefined and non-vanishing (at the end of the 
calculation we must take the limit as e [ 0). (Note that (31) violates 
the assumed continuity of A and 77; because P^ are the boundary values 
of A(2) and hence we do not need to construct the X-function, the 
continuity assumption is not needed). The plasma dispersion function 
then changes to 

(32a) A(*) - A!(2) = A(*)-^~ ^ +£ 

(z - ^o)2 

or 

(32b) * = £Zf*i( 1 + L_Y 
Ai(z) A(z) 2\z-uoJtie z-v^-ie) 

Returning to (30b) for H(t) and replacing X+(t) by A+(£), we find, 
using the method followed in the proof of Proposition 3, that 

H(t) = ^ ( iE _ {1 l \ 
U 2 \A-(vQ-ie)i/-ie-t A+(i/0 + ie) v + is - tJ' 

There are two terms for the contributions of the poles at VQ ±ie; the 
one involving X(oo) - 1 = A(oo) -1 (cf. (2)) is not present, because 
rj(t) tends exponentially to zero at infinity. Note that rj(t) is real and 
analytic [11]. Then, using the Plemelj formulas, 

m = -v(t) / ~ w(t')f(t')H{t,)
tl-_^{t) df 

reduces simply to the expression 

jit)=um ( r w y- ,* l , 
eio V J_OQ VQ~ ie -t' 2 A - (i/0 - ie) v^-ie-t 

_ r f(t') dt,l ie 1 \ 
J_xvo + ie-t' 2k+{va + ie)vo + ie + t) 

- < M A - | ' W ^ j-oovo-t' '> 2 v0 

X[A+] 
+-4w)(vL£n?dt'+-f^)y 
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This term, of course, must vanish if the original singular integral 
equation is to have a solution. In other words, (33) represents a 
constraint on the function /(£), similar to (26). 

It should be mentioned, however, that in transport theory, where sin­
gular integral equations arise as expansions of the datum f(t) in terms 
of the (singular) eigenfunctions yv{t), one takes a somewhat different 
point of view; solving the singular integral equation is considered to be 
a proof of the completeness of these eigenfunctions. The appearance of 
terms like those in (33) indicates that, in fact, the singular eigenfunc­
tions are not complete; they must be augmented by discrete terms in 
order to obtain a complete set. Taken in this context, (33) agrees with 
the discrete term in the eigenfunction expansion obtained in another 
way [1]. It is interesting to note that, even if /(^o) = 0, in general 
the original equation has no solution unless the following constraint is 
satisfied: 

7 V0 - t 
dt = 0. 

Further, if we think of the two "eigenvalues" UQ ± is moving towards 
the axis as some parameter, e.g., the electron density, is changed, 
they coalesce as a single root, not a double root. This agrees with 
calculations presented by Crawford and Hislop [7] who used an entirely 
different approach. 

4. An example from astrophysics. In the atmospheres of the 
outer planets magnetic fields cause ice crystals to be oriented in a 
preferential direction. For ice crystals which can be treated as thin 
infinite cylinders the equation of transfer of polarized radiation is 
decomposed into scalar equations of the form [12] 

where 

(35) A(i/) = 1 + vV I * °? dt 

and ^o(t) is a polynomial in £2, the so-called characteristic function, 
which is strictly positive on [-1,1]. Thus X(t) / 0 for t € [0,1]. The 
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solution A(u) = H(v)jv, where H{v) is a variant of Chandrasekhar's 
celebrated H-equation [6]. It should be noted that, although (34) does 
not formally satisfy the general assumptions of §2, the transformation 
A{v) —• A'{v) = A{v)/(l-v2)1/2 converts it to an equation which does 
satisfy these assumptions. 

We seek a positive solution of (34) using the methods of §2. We have 

rç(i/) = — 

and 

A±(„) = A ( „ ) : F * ^ 
v l - y 

The function XQ(Z) is given by (6) with 

1 [l argA+(t) 
(36a) T(z) = - / 

^ Jo t-z 
dt, 

where 

(36b) 0(t) = arg A+(£) - -arctan • nt^0^ 

Thus the argument runs monotonically from 0 to — 7r/2. Hence, 

X0(z)~zm/7r ~l near 2 = 0, 

X0(z) ~ (1 - z)9{1)/n - (1 - z)~1/2 near 2 = 1. 

Thus X0(z) obeys (ECl) but not (EC2). Then 

Xtiz) = (1 - z)X0(z) 

obeys both (ECl) and (EC2), so that the index K = 1. By virtue of 
Theorem 1 the general solution is given by 

A{t)= m 1 

A+(t)A-(t) t 

+ 
1 f1 X+(i/) dv c 

X+(t)A-(t) h m A + M v{t -u) + X+(t)A-(t) ' 
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where c is an arbitrary constant. The situation where one arbitrary 
constant appears in the solution of the linear //-equation is typical 
of linear transport theory. This solution will satisfy the nonlinear in­
equation ((27) of [11]) for only two values of c, only one of which leads 
to a positive solution [2]. 
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