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ABSTRACT. A two-stage (nested) iteration strategy, in 
which the outer iteration is analogous to a block Gauss-Seidel 
method and the inner iteration to a Jacobi method for each 
of these blocks, often are used in the numerical solution of 
discretized approximations to the neutron transport equation. 
This paper is concerned with the effect, within a continuous 
space model, of errors from finite termination of the inner 
iterations upon the overall convergence. The main result 
is that convergence occurs, to the solution of the original 
problem, in the limit that both the outer iteration index and 
the minimum over all outer indices and all groups ("blocks") 
jointly become large. Positivity properties (in the sense of 
cone preserving) are used extensively. 

1. In t roduct ion. A first step in computationally solving energy 
dependent linear (steady state) particle transport problems often is to 
introduce so-called outer (energy/group) source iteration. Conceptu
ally, each step within this iteration involves solution of a sequence of 
monoenergetic transport problems. It is widespread practice to solve 
these by inner (direction) source iteration. This paper is concerned 
with the effect of the (computationally necessary) finite termination 
of the inner iterations upon the convergence of the approximations 
produced by the outer iterations. It is self-contained regarding the 
technical aspects of these iterative processes, but the interested reader 
is referred to the monographs by Bell and Glasstone [1], Duderstadt 
and Martin [2], Lewis and Miller [3], and Marchuk and Lebedev [4] for 
further background in transport theory. 

Suppose that the underlying "exact" transport problem is subcriticai 
(satisfies assumption A.4 of the next section), and denote the corre
sponding angular flux (the vector of dependent variables) by ip = ip(x). 
If ij)(l) = ^?(*)(#) denotes the zth approximation from the outer source 
iteration, then it is relatively easy (see §11 for an example) to show that 

(1) V>= lim ip{i\ 
i—KX) 
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in some suitable sense. Similarly, if ip^^ denotes the jth. inner source 
iteration approximation to ip^l\ then one can readily show (see §111) 
that 

(2) ^W = lim ^ j \ 
j—KX> 

By combining (1) and (2), we have a presentation of the exact flux 
as an iterated limit, 

(3) ip= lim ( lim V ^ j . 

Such presentations are the classical theoretical basis for the inner/outer 
source iteration procedure. However, this iterated limit neglects pos
sible effects resulting from the fact that the inner iterations must be 
terminated at some finite value of j ; e.g., it is conceivable that the error 
from this finite termination at each i could be small, while the cumu
lative effect of these overall i up to some / could become quite large 
as / increases. The purpose of this paper is to address questions relat
ing to how finite termination of the inner iterations affects the overall 
behavior of the iterative approximation. The major result is Theorem 
5.10 which asserts (roughly) that the approximations converge to the 
exact angular flux as both the number of outer iterations and minimum 
number of inner iterations (over all groups and outer iterations) jointly 
approach infinity. 

For definiteness we carry out the present study in the context of 
the spatially continuous discrete-ordinate multigroup model of (linear) 
particle transport in plane-parallel geometry. It appears that the 
results and techniques would readily carry over to models incorporating 
continuous direction or energy. However, note that it seems to be 
a rather more delicate matter to analyze interactions between source 
iteration and spatial discretizations. Refer to Menon and Sahni [5] and 
Nelson [6] for some recent results in that regard, along with references 
to earlier related works. 

In §11 we set the notation and establish a precise version of (1). 
§111 similarly is devoted to obtaining a precise version of (2). §IV 
is devoted to establishing conditions under which the iterated limit in 
(3) can be replaced by the corresponding double limit. More complex 
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arguments are used in §V to prove the major result described above. 
The concluding §VI is devoted primarily to suggestions for further 
related studies. 

We conclude this introduction by briefly reviewing previous conver
gence results for two-stage linear iterative procedures. See Golub and 
Overton [7,8] and the fundamental paper of Nichols [9], along with 
further works cited in these references, for such results in a finite-
dimensional setting. Dupont [10] has obtained similar results for 
positive-definite operator equations and a specific two-stage iteration. 
None of these earlier works use the monotonicity properties (based on 
positivity in the sense of order-preserving) that are the cornerstone of 
the following results. 

2. Outer source iteration. For arbitrary fixed positive G and 
M, let G := {(g, m) : g = 1 , . . . , G, m = 1 , . . . ,M} . Then write 
the discrete-ordinate multigroup transport equation in plane-parallel 
geometry as the linear system of ordinary differential equations 

(4) / im —^- + (Tglßgm = (^)gm + Qgm, (#, ™) € Q, 

where iß = {ipgrn : (g,m) € Ç} and 

(5) (Kil>)gm{x) := J2 k 

{9',m')£Ç 

Here ipgrn is the angular flux for energy group g in the directions 
specified by direction cosine /xm, and the remaining symbols represent 
various given quantities in more or less standard notation. 

In the present work consider (4) and (5) subject only to boundary 
conditions representing known incident flux, 

ipgm(0) = ßgm,, for (g,m) G Ç and /xm > 0, 

ipgrn(a) = ßgm, for (g,m) e G and /xm < 0, 

where a is some positive number. However, it appears likely that 
the basic results can be extended to more general (linear) boundary 
conditions. 
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As regards the data for the two-point boundary-value problem (4) -
(6), we make the following assumptions: 

A . l . For each m = 1 , . . . , M, /xm G [-1,1] - {0} = [-1,0) U (0,1]. 

A.2. The ßgin are nonnegative constants, for (g,m) G G-

A.3. The Wg},{qgm} and {kgmg'm/} are nonnegative piecewise 
continuous functions on [0, a], for each (g,m) and (g^m') in Q. 

Let C denote the set of continuous real-valued functions, defined on 
[0,a]. Further, let VC be the set of real-valued functions defined on 
[0, a] that are continuous except for jump discontinuities at one of the 
finitely many discontinuities o~g,qgin

 o r kgmg'm'• 
Regard CÇ,VCG,CM 

and VCM as Banach spaces. The norm associated with CG is sup over 
all x G [0, a], m = 1 , . . . , M and g — 1 , . . . , G. The norm associated 
with the other spaces is the sup norm over all x G [0, a] and all 
ra=l,2,...,M. The following is a basic concept of our work. 

DEFINITION 2.1. By a solution of the two-point boundary-value 
problem (TPBVP) (4) - (6) is meant an element ip = {ipgm} of Cö such 
that the derivative of each ipgm exists on [0, a], again except possibly 
at finitely many points, and, further, the {ipgm} satisfy the boundary 
conditions (6). 

With this understanding of solution, we can formulate the following 
precise version of the subcriticality assumption: 

A.4. For any boundary fluxes {ßgin} and source function {çg m}, as 
in assumption A.2 and A.3, respectively, the TPBVP (4) - (6) has 
a unique solution, and further that solution is nonnegative. (To say 
that \j) — {ipgm} is nonnegative means that each ipgin assumes only 
nonnegative values.) 

Throughout the remainder of this work we suppose, without explicitly 
noting, that assumptions A . l - A.4 hold. We define S : VCQ —> CQ by 

(7) (Sf)gm(x)= / — e x p { / ag{s)ds\fgm{x')dx\ 
Jam. Mm ^ ßm, Jx' } 

where 
a _ f 0, fim > 0, 

m \ a, fjLm < 0. 



CONVERGENCE OF INNER/OUTER ITERATIONS 151 

In the ensuing we need the following easily proved result. 

PROPOSITION 2.2. An element ip = {^qm} ofCG is a solution of the 
TPBVP (4) - (6) if and only if it satisfies 

(8) ij) = S K ^ + S<7 + 6, 

where q := {qgin • (g, m) G G} G PC^ and b G CG has components 

(9) bgm = ßgrn exp < / (j(s) ds\. 
1 Mm Jam

 J 

REMARK 2.3. It should be clear from A.3 that K(CG) C VCg where 
K is as defined by (5). Hence SK : CG -> CG. 

With the preceding preliminary technical matters in hand, we turn 
now to a precise formulation of the outer source iteration. Toward that 
end let the operators L, D and U be defined by 

.9-1 M 

(Lf)gm : = z 2 z 2 kgmg'm'fg'rn', {9,™) G £, 

g' = l ra' = l 

M 

(D/).çm : = 2 J kgmgm'fgm', (flS ™>) € G, 

m' = l 

and 
G M 

(Vf) gm : = ^ 2 Y l kgmg'rn'fg'rn', (#, m) G <?. 

(9/=_g+l m ' = l 

As in Remark 2.3, it should be clear that each of L, D and U map 
into VCG. It further should be clear that 

(10) K = L + D + U. 

The outer source iteration is then formally defined by 

(11) (I - SD - SL)V>(i+1) = SU^ ( i ) + Sq + 6, 

(12) V(0) = 0, 
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where the parenthetical superscript is an iteration index and I is the 
identity operator on CG. The formality resides in the fact that we have 
not yet established invertibility of I — S(D + L). The following result 
is the first step toward remedying this situation. 

THEOREM 2.4. The operator (I — S K ) - 1 exists as a bounded linear 
operator on CG (into itself), and, further, 

oo 

(13) ( I - S K r ^ ^ S K ) " , 
n=0 

where the (Neumann) series on the right converges in the operator norm 
onCG. 

PROOF. Let ß and q satisfy A.2 and A.3 respectively, and let ij) be 
the corresponding solution of (4) - (6) (nonnegative and unique within 
CG) that exists by A.4. By Proposition 2.2 and adroit use of (8) we 
find 

N N 

£ ( S K ) " ( S 9 + b) < * = £ (SK)" (Sç + b) + (SK)"+V, 
n=0 n=0 

where henceforth order relations between elements of CG are to be 
interpreted componentwise. This implies that 

oo 

£[(SK)»(S9+ &)](*) 
n=0 

converges for each x in [0, a]. Similarly 

oo 

(14) £ [ ( S K ) " / ] ( z ) 
n=0 

converges to a finite-valued integrable function for each nonnegative 
/ in CG (and hence each / in CG) and all such x, as can be seen by 
bounding such / above by suitable Sq + b. 
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Next we claim the convergence of (14) is uniform in x G [0, a] for such 
nonnegative / in C, and for all / in C. In order to see this, let (14) be 
denoted F(x). The monotone convergence theorem gives 

oo 

(15) SKF(x) = ^ [ ( S K ) " + 1 / ] ( x ) = F(x) - f(x). 
n=0 

Here we have temporarily extended the respective definitions (5) and 
(7) of K and S to MG-tuples of finite-valued integrable functions, 
as essentially that is all that is a priori known of F. However, SK 
maps any such MG-tuple into an element of Cö, and so (15) itself 
shows F G C^. The desired uniform convergence then follows from 
monotonicity of (14) along with Dini's theorem. 

We now know that the right-hand side of (13) converges strongly 
in C^. That this pointwise limit is bounded follows from the princi
ple of uniform boundedness, and that it is (I — S K ) - 1 follows from 
computations similar to those leading to (15). Uniform (i.e., operator 
norm) convergence of (13) then follows from the fact that uniform and 
strong convergence of Neumann series are equivalent, which in turn is 
a consequence of the well-known fact (e.g., Theorem 3.10.1 of Hille and 
Phillips [11]) that uniform and strong analyticity are equivalent for 
operator-valued functions. D 

COROLLARY 2.5. Under the assumptions of Theorem 2.4, (I —SK) - 1 

is a positive operator in the sense that it maps nonnegative elements of 
C^ into such elements. 

PROOF. This follows from (13) and the fact that each of S,K are 
positive operators. D 

COROLLARY 2.6. The operator [I — S(D 4- L) ] _ 1 exists as a positive 
bounded linear operator on CQ into itself, and, further, 

oo 

(16) [ I - S f D + L r ' ^ l S f D + L)]", 
n=0 

where the Neumann series on the right-hand side of (16) converges 
uniformly (i.e., in the operator norm on C*). 
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PROOF. For each nonnegative / e CQ, 

oo 

£{[S(D + L)»/}(*) 
n=0 

converges, as can be seen by comparison with (14). The remainder of 
the proof essentially is identical to the latter two-thirds of the proof of 
Theorem 2.4. o 

Corollary 2.6 assures that the outer iteration process is well-posed, 
in the sense that all iterates exist. The following, which has been the 
ultimate aim of this section, insures that these iterates converge to the 
solution of the TPBVP (1) - (3). 

THEOREM 2.7. The {ip^}, as defined by (11) and (12), converge in 
CG to the solution of the TPBVP (4) - (6) as i ^ oo. 

PROOF. If %j) is the solution of (4) - (6), then a simple induction 
proof shows that 0 < rp^ < ^* + 1 ) < ip. Application of the monotone 
convergence theorem to (11) shows that rj) = S K ^ + Sq + 6, where tp 
is the pointwise limit of the ^ l \ But $ = i\) then follows from the 
subcriticality assumption (A.4) and Proposition 2.2. D 

In practice one often initiates the outer source iteration not by (12), 
but by some other tp^ thought to be a better approximation to ip. As 
far as convergence per se is concerned, the following result shows that 
the choice of I/J^ is immaterial. 

COROLLARY 2.8. The sequence {V>(i)}, as defined by (12), converges 
in CQ to the solution of the TPBVP (1) - (3) as i —• oo, for arbitrary 
<̂°> inCç. 

PROOF. If tp(°) = 0, then it is easy to compute 

71=0 
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where 
Q:=[I-S(D-hL)]"1SU. 

Therefore the conclusion of Theorem 2.7 can be reformulated as 

oo 

(17) V = £ Q n ( S « + 6). 

If the iteration begins with arbitrary ip(°\ then the corresponding ith 
iterate is readily computed as 

i-l 

i>{i) = ]TQn(S(z + ò) + QS/>(0). 
n=0 

But we have shown that (17) converges for arbitrary q and 6, subject 
to A.2 and A.3. By picking these sufficiently large so as to dominate 
V>(0), we conclude that Q ^ ( 0 ) -+ 0 (in CG) as i -> oo. It follows that 

oo 

lim V(i) = V Qn(Sq + b) = i/>. 
n=0 

This completes both the proof of Corollary 2.8 and §11. D 

3. Inner source iteration. In order to implement the outer source 
iteration scheme described in the preceding section, it is necessary to 
solve the linear system (11) of integral equations for each ^ * + 1 \ given 
ip(l\ The basic purpose of this section is to show that this can be 
accomplished by the so-called inner source iteration scheme. Prior to 
defining this scheme and developing its properties, further notation is 
required. 

For each g = 1 , . . . , G, define Pg : VCG -+ VCM by 

(18a) P J = {/ffm:m = l , . . . , M } , 

where / = {fg'm '• (g1\wi) £ £}• Similarly, for each m = 1, . . . ,M, 
define P m : VCM - • VC by 

(18b) mj — Jmi 
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where now / = {/m, : m' = 1 , . . . , M}. For / G VCG{VCM) we shall 
often denote Pgf and PmPgf{Pmf) respectively by fg and fgm(fm), 
with or without modifiers (e.g., primes) on the generic subscripts. We 
shall also denote the restriction of P g ( P m ) to CG(CM) by P g ( P m ) . For 
such g, g' = 1 , . . . , G with g' < g (respectively g' = #, g' > g) define 
the operator Lgg'{Dgg', Ugg>) mapping CM onto VCM by 

(Lgg'f)m{x)((Dggf(x))m,(Ugg>f(x))m) 

• / ^ Kgrng'm'\"E) Jg'rn'\%)' 

Further define S„ : VCM -* CM , for each # = 1 , . . . , G, by 

(S.9/)m = — / exp j / <7g(s)ds|/m(x')da;', 
l^m J a m fan J x' 

where / = {/m : m = 1 , . . . , M} G CM . 

With these matters of notation in hand, first note that the result of 
acting upon (11) by Pg can be written 

( 2 0 ) ( I M - S 9 D 9 9 ) ^ + 1 ) = S; 

.9-1 
('•) 

L g ' = l .9'=.9+1 

-f Sgqg + 69, 

where I A/ is the identity operator on CM. Now if the i/jg ' can be 
determined in the order of increasing values of g, that is g = 1 , . . . , G, 
then, at each fixed value of #, the right-hand side of (20) is known. 
Therefore, we momentarily focus attention upon systems of the form 

(21) ( I M - SgDgg)(p = A, 

where h G CM is known. If h = S9g9 H- 6g, then it should be clear 
that (21) is equivalent to the TPBVP consisting of the monoenergetic 
(discrete-ordinates) transport equation with source functions equal to 
the components of qg and boundary data equal to the components of 
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REMARK. Usually increasing values of the index g correspond to 
decreasing group energies; however, this condition plays no role in 
our convergence studies. It usually will play a role in the rate of 
convergence, and indeed it is a fact that the Ugg> often have small norm 
if increasing g does correspond to decreasing energy that suggests the 
outer iteration scheme. 

THEOREM 3.1. Each ( I M — SgT>gg)~
x exists as a bounded linear 

operator on CM into itself, and, further, 

oo 

(22) ( I M - S g D g 9 ) - 1 = ^ ( S 9 D 9 g r , 

where the Neumann series on the right converges in the operator norm 
on CM. Therefore, ( I M — SgT>gg)~

l is a positive operator on CM-

PROOF. Let h be an arbitrary given nonnegative element of CM . For 
such h, let h — Sgqg + bg, where qg and bg are selected so that h < h. 
Consider the outer iteration scheme (12) with source functions 

q , = lqs if g' = 9i 
9 \ 0 otherwise, 

boundary data /3g/m as defined by bg (in h) if g' = g, /?g>m = 0 otherwise, 
and initial approximation ^A°) = 0. By the results of the preceding 
section (applied to the system modified by setting Lgg> = Ugg> = 0), 
the system 

( I M - SgUgg)^ = K 

has a unique solution, say ipg , and, further, i/jg ' is nonnegative. By 
employing Dini's theorem as in the proof of Theorem 2.4, we conclude 
that the Neumann series 

oo 

£(s9D99r/* 
n=0 

converges in C. By majorization the Neumann series 

oo 

71=0 
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likewise converges for each fixed x G [0,a], and by again employing 
Dini's Theorem this convergence actually is uniform in CM. Again, as 
in the proof of Theorem 2.4, this strong convergence actually implies 
uniform convergence. That the limit actually is ( I M — SgT>gg)~

l simply 
is a matter of straightforward calculation, as that which yielded (15) 
above. D 

For each g = 1 , . . . , G let D 9 and D,7, both mapping CM into VCM, 
be defined respectively by 

^înDgJyŒ) — Kgingm \%)Jiny'E) 

and 
in 

*in*-JgJ\%) — / j & gingili' Jin''\pC). 
m' = l 
in'^m 

The inner source iteration for a system of the form (21) then is defined 
by 

(23) ( I M - S > 9 D ^ ' + 1 > - S g D ^ ( i ) + h. 

The following result establishes that this iteration process is well-
defined: 

THEOREM 3.2. Each ( I M - S 9 D 9 ) ~ \ for g = 1 , . . . , G, exists as a 
bounded linear operator, and, further, is given by 

oc 

(24) ( i M - w - ^ j f s A r . 

where the Neumann series on the right converges in the operator norm 
on CM; in particular each ( Im — S g D 9 ) _ 1 is a positive operator on CM. 

PROOF. This result follows immediately from Theorem 3.1, along 
with the fact that the Neumann series in (24) is termwise dominated 
by that in (22). D 

Our next result establishes that the sequence produced by an inner 
source iteration (23) converges to the solution of (21), for arbitrary 
starting values. 
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THEOREM 3.3. For each g = 1 , . . . ,G the {(f^}, as defined by (23) 
with arbitrary starting value <p(°) € CM , converge in CM to the solution 
of (21). 

PROOF. It suffices to establish the result for nonnegative h. If 
<p = ( I M - SgBgg)-

lh = E^Lo(SsD3<?)n/ l i s t h e solution of (21) and 
<p(°> = 0, then 0 = <£(0) < <p, which, with the result of Theorem 3.2, 
implies 

0 = y>(°) < tpM = ( I M - SgÙgy^SgÒgipW + fc] 

If we assume that 

< ( I M - SgÛgy^SgÎigtp + ft] = ^. 

(25) 0 < <p(j) < ^ ( j + 1 ) < <p, 

then similarly we can establish that 0 < <p(J'+1) < y? '̂+2) < y>, which 
inductively establishes (25) for all j = 1,2,... . The proof that the 
(pti) converge to <p essentially is the same as that of Theorem 2.7, and 
the extension to arbitrary starting values is as in the proof of Corollary 
2.8. We omit the details. D 

The inner source iteration for the outer approximation (pg
l is 

defined by 

(26) ( I M - S 9Î> 9)V£+ 1 J + 1 ) = S9D,i#+1>>"> + fc<i+1), 

where 

(27) ^ + 1 ) : = S , [ £ L M ^ + 1 ) + J2 Vgg.1,<;)]+8gqg + bg 
g'=l g'=g+l 

and the starting value 

(28) V^+1 '0) := </£> 

is used. Note that (26) and (27) are equivalent to the uncoupled system 
of scalar initial-value problems comprised of 

Mm" 
ÖV;(;+i,;+i) 

ygm 

dx + ^ W ^ 1 " i + 1 ) = ^ ) , m=l , . . . ,M, 
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and the obvious initial value obtained from (6), where 
M 

— / ^ kgmgm' W V^m' WK J 
^gm 

-1 G 

T" Qgm +pm[^L99,^;+i)+ E u^.i 
g'=\ g'=g+l 

is known. Thus implementation of the inner iterations requires only the 
ability to solve a scalar initial-value problem. This almost invariably is 
done via some type of finite-difference method, although the imbedding 
of these initial-value problems within the source iteration imposes some 
additional requirement above those usually encountered in numerically 
solving initial-value problems by finite differences (cf. Nelson and Ze-
lazny [12], Nelson [13], and Keller and Nelson [14] for more detailed 
discussions of such matters). 

Let (̂*'J") G CG be defined by the inner iteration scheme (26), (27), 
with arbitrary starting values ipg € CM, where the outer iteration 
scheme (11) is initiated with arbitrary ip^ £ CQ. It follows from 
Corollary 2.8 and Theorem 3.3 that the solution (ip) of the TPBVP 
(4) - (6) is given by the iterated limit (3), where the limits are to 
be understood in the sense of the norm on C. We next explore the 
possibility of replacing this iterated limit by the more general double 
limit. 

4. Joint convergence results. A standard result of mathematical 
analysis is that existence of an iterated limit of a sequence (of real 
numbers) implies existence of the corresponding double limit (and thus 
equality of the two limits) if either the elements of the sequence are 
suitably monotone, or the convergence in the inner limit is uniform 
relative to the parameter in the outer limit. In this section we obtain 
results corresponding to this, for the double sequence defined by the 
inner/outer source iteration processes defined in the preceding two 
sections. The result using uniformity (Theorem 4.2) actually contains 
that involving monotonicity (Proposition 4.1); however, we choose to 
include the latter because its proof is somewhat simpler and because 
the form of this monotonicity, and the conditions insuring it,, may be 
of independent interest. 
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Begin by considering tp^^\ as defined in the final paragraph of the 
preceding section, but with the specific starting values 

(29a) V(0) = 0 

for the outer iteration and 

(29b) ^ ' 0 ) = 0 , i > l , g = l,...,G, 

for the inner iterations. As already noted in the proof of Theorem 2.7, 
^(0 < ^(O for i < i'. It follows that i <i' implies hg < hg

l \ where 
the latter are as in (27). But it is readily seen that 

i - i _ 

n=0 

From this representation, and positivity of ( I M - S ^ D ^ ) - 1 (cf. Theorem 
3.2) and SgD 9 , it follows that if (z, j) < (i',jf) in the product order (i.e., 
1 < i < i' and 0 < j < j ' ) , then ipg

iJ) < tp^'j'). It then follows that 

t/>(:= lim { lim ^jA) = s u p ^ \ 
V i—>oo I j—>oo J / j j 

and thence it is straightforward to complete the proof of 

PROPOSITION 4.1. If {ip^1^} is defined by the inner source iterations 
(26) and (27), with starting values given by (29b), and by the outer 
source iteration (11), with starting value (29a), then 

(30) lim 0 ^ ' } = iß, 
iJ—+oo 

where ip is the solution of the TPBVP (4) - (6), and further this limit 
is approached monotonically relative to the product order on pairs of 
iteration indices. 

This result is, insofar as the double limit (30) is concerned, subsumed 
in 
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THEOREM 4.2. Let {ip(1^} be defined by the outer source iteration 
(11), with arbitrary starting value ip^ G C, and the inner source 
iteration (26) and (27), with starting values ipg ' G CM such that there 
exists a real number a such that 

| | ^ ' 0 ) H M < ^ i < i , 0 = 1 , . . . , G . 

Ifip is the solution of the TPBVP (4) - (6), then the ip^j) tend to ip 
in the sense of the limit (30). 

PROOF. Given e > 0, we must show there exists J and J such that 
i > I and j > J imply 

max | # - ^ | | < £ . 

As we know that 

tß = lim i){i) (Corollary 2.8), 
i—*oo 

where 
V#> = lim tâ*) (Corollary 3.3), 

y J-+00 y 

we may choose J so that i > I implies 

(31) max | |V>-V ( i ) l l<e/2. 
i<g<G 

It is readily shown that 

oo 

^ ) _ ^ , i ) = ^ [ ( I M _ S 9 D 9 ) - i S g D g r ( l M - S A ) " 1 ^ 0 

(32) n = j 
- [ ( I M - S ^ ) - ^ ^ ] ^ « . 

But each {ipg}fli is convergent and thus bounded; (27) then shows 
there exists B such that H ^ H < B and | |(IM - SgÛg^h^W < #> 
both for i > 1 and G > g > 1. Further, Theorem 3.3 implies that 
?V[(IM - SpDp)_1S5D f f] < 1 for each g such that 1 < g < G, where 
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ra denotes spectral radius. It follows that there exists 7 satisfying 0 < 
7 < 1 and TV such that if n > N then ||[(IM - S ^ D ^ - ^ D ^ H I < 7 n . 
If j > N, then (32) yields the estimate 

00 -

n=j 

But the expression on the right-hand side of this equality is bounded 
above by e/2 if 

^ ^ ln[é(^)l/ ln7-
Therefore, if J is not less than either N or the right-hand side of (33), 
then i > I and j > J imply ||^4 — IP9\\M < £, for # = 1 , . . . , G. This 
completes both the proof of Theorem 4.2 and §IV. D 

5. Convergence with finite termination of inner iterations. 
The joint convergence result of the preceding section only partially takes 
into account termination of the inner source iterations at some finite 
point, in that it is based on data (i.e., hg) for the inner iterations 
at the zth outer iteration level that assume the inner iterations at 
the preceding outer iteration levels have been carried to completion 
(cf. Equation (27)). In this section we establish results (Theorems 5.7 
and 5.10) that remedy this defect; these results constitute the primary 
objective of the research reported here. 

We begin by assuming that the inner iterations are terminated at 
the same step, say j , for all groups and outer iteration levels. (This 
restriction will be relaxed below, but in fact it does correspond to a 
strategy that has been used in some production codes, e.g., DIF3D-T, 
cf. [15, p. 4-8]). Let the corresponding approximation to the angular 
flux for the gth energy group at outer iteration level i and inner iteration 
level j be denoted by ip- ' . These are defined by the corresponding 
modification of the inner iteration (26), (27), namely, 

(34) {lM-SgT>g)xl)lg =SgBgipj +hjg \ 

where 

(35) hfc" := S9 [ £ L ^ ; + 1 ) + f; V„+$\ + S9qg + bg 
lg' = l 0'=0+l 
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and the starting values 

(36) 
^39 ^39 ^39 

The corresponding "best" approximation to the angular flux, over all 

groups, at outer iteration index i is iß- G CG, as defined by 

(37) 9^3 ^39 ^39 

From (34) - (37) it is readily seen that ip- determines Ì/J- via 
the iterative process 

(38) ^ + 1 ) = A j ?f+B J (S Q + 6) + rf1). 

Here the linear operators Ay and By, both mapping C^ into itself, are 
defined inductively on g by 

(39) 

p9Ajf = £[(iM - SM-'S^YÌIM - S^D,)-^ 
3=0 

r . 9 -1 G 

and 

(40) 

i - i 

* W = EK 1 ^ - S,D9)
_1S9D9]> • (IM - SgD,)-1 

J = 0 

( .9-1 

«• o ' = l 

Lgg'Pg'Bjf + Pgf }• 

for / € Cç, and r i i + 1 ) e Cs is denned by 

(41) Pgf = [ ( IM - Sgt)g)-%Dg}^0). 
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The expectation is that i\)- will be a good approximation to ip^\ 
where the latter are defined by the outer source iteration process 
(11). Thus we need to know that Ay and B - respectively approximate 
Q := [ I - S ( D + I O l ^ S U and W := [ I - S(D + L)]"1 and that the r i ° 
are small. Now we begin a moderately lengthy sequence of technical 
details that are directed toward ultimately obtaining such results. 

It is useful to introduce the operator D and D, both mapping into 
itself, and respectively defined by 

P 9 D = ÒgPg, P g D := ÏSgPg, 

where the t)g and D 9 are as introduced in §3. The formulas given in 
the following proposition are easily established by direct computation 
and are useful tools in some of the calculations to follow. 

PROPOSITION 5.1. The following operator identities hold for g = 
1,...,G: 

9 - 1 

(42) P,L=EL.A. 
9' = 1 

(43) P9D = D9P9, P9D = D9P9, P9D = D9P9, 

(44) P 9 S - SgPg, 

(45) P 9 ( I - SD)" 1 = ( I M - SgÛg^Pg. 

LEMMA 5.2. 7 /W := [ I - S(D + L ) ] - \ then 

OO s OO \ l 

W = J2 { O 1 - SD)-1SÜP(I - SD)-XSL \ 

(46) i = o l i = ° 

|X;[(I-SD)-1SDF}(I-SD)-1 , 
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where the infinite series on the right all converge in the operator norm 
ofCG. 

PROOF. Suppose / = Wfe, where h e C*5 is nonnegative. Then 
/ also is nonnegative, by Corollary 2.6. Further, by comparison with 
the series in (16), the Neumann series X^^Lo(SD)n converges, hence 
to (I — S D ) - 1 , whence (I — S D ) - 1 also is positive. It follows that the 
partial sums 

n 

]T[(I - S D ^ S L p - SD)"1/* 
1=0 

are bounded above (by / ) . By the now familiar type of argument 
employed in the proof of Theorem 2.4, it follows that the corresponding 
series converges in Cö, and that its limit is / . This establishes 

oo 

(47) W - ^ { ( 1 - SD)"1SL}n(I - SD)" 1 , 

with convergence in the strong sense, and uniform convergence follows 
from the equivalence of strong and uniform analyticity. (Theorem 
3.10.1, Hille and Phillips [11].) But very similar arguments show that 

oo 

(I - SD)" 1 - ]T[(I - S D ^ S D p ' p - SD)" 1 , 
i=o 

and the desired equality (46) results from substituting this into (47). • 

PROPOSITION 5.3. If Aj , B j are as defined respectively by (39) and 
(40), then 

OO • j - l N I 

£ £ [ ( I - SD)-XSD]>(I - SD)- 1 SL \ 
1=0 ^j=0 ' 

j 

' { £ l(l - S D ) _ 1 S D ] J } ( I - SD) - 1 SU 

A J = 

(48) 
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and 

(49) 

BJ = E E l d - SD^SD^I - SD^SL 

•|^[(I-SD)-1SDKJ(I-SD)-1. 

PROOF. By use of (42) - (45), equation (38) is seen to be simply the 
(group-) componentwise form of the equality 

J-i _ 
A- - ]T[(I - S D ^ S D ^ I - SD)- 1 S(LA- + U). 

i=o 

Equation (48), follows by solving this for Aj , as the series in (48) 
converges by comparison with that in (46). Equation (49) may be 
similarly obtained. D 

If A and B are linear operators having as their common domain 
some linear space endowed with a cone and ranges contained in another 
(possibly the same) linear space so endowed, then we write A > B if 
A — B is a positive operator in the sense of mapping the cone in the 
domain space into the cone of the range space. 

THEOREM 5.4. Suppose B j is as defined by (40). Then 

(50) B j < W := [I - S(D + L)]"1 

for all natural numbers j , and, further, 

(51) Jim B j = W, 
j-*oo 

where the convergence is relative to the operator norm on C9. 

PROOF. The inequality (50) follows by termwise comparison of (46) 
and (40). As for (51), let e > 0 be given, and choose a natural number 
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TV such that the tail of the series in (47) is not greater than e/3. By 
comparison, the corresponding tail of (45) is similarly bounded. If j 
then is picked sufficiently large so that each term from / = 0 to / = N 
in (40) is within e/3N of the corresponding term in (46), then B j is 
seen to be within e of W. D 

LEMMA 5.5. Suppose the starting values {ip- ' } comprise a bounded 

subset ofCM, uniformly in g = 1 , . . . , G and all natural numbers i and 

j . Then the sequences <ip- > , as defined by (34) - (36) and these 

starting values for the inner iterations, are bounded in C^, uniformly 
in all sufficiently large j . 

PROOF. From (38) we find 

(52) ^i i+1) = ±(Aj)>lB7(Sq + b) + r^~% 
1=0 

where the r-v are given by (41). From Theorem 5.4 and (48), (49), we 
know that A j —• Q = W S U as j —• oo. As it follows from Theorem 
2.7 that 7v(Q) < 1, there exists a natural number n and a satisfying 
0 < a < 1 such that | |Qn | | < an. Therefore, ||A?|| < an for all 
sufficiently large j , this same n, and a possibly different a satisfying 
the same conditions. From (52) then compute, for large j , 

oo n —1 

IÎ Ji+1)H ^ E I E A j | | • l|A2||*(B||Sg + 6|| +a) 

p=0 1=0 

<N(J^)(B\\s<l+b\\+<*)-

Here N is an upper bound, over all j , for 
n - l 

II VA^-II 1 1 ^ ill' 
1=0 

B is a similar upper bound for | |Bj| | , and a is an upper bound for 

r i , over all natural numbers i and j . These respective bounds exist, 
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because A3-, —> Q, By —> W (both by virtue of Theorem 5.4), and 
( IM — S g D) _ 1 S g D 9 has spectral radius less than unity (Theorem 3.3) 
and starting values uniformly bounded. D 

REMARK 5.6. A somewhat shorter proof of Lemma 5.5 could be based 
upon the inequality (50); see the proof of Corollary 5.9 below for an 
illustration of this approach. However, we prefer also to illustrate the 
more direct approach used above in the proof of Lemma 5.5, as it might 
be useful in settings such that monotonicity arguments are unavailable. 

THEOREM 5.7. Suppose the starting values {ip- ' } are bounded in 

the sense of Lemma 5.5. Then the {i/>- } , as defined by (34) - (36) and 
these starting values for the inner iterations along with an arbitrary 
starting value in C^ for the outer iteration, approximate the exact 
angular flux ip, as defined by (4) through (6), in the following sense: 
Given any e > 0, there exist natural numbers IQ and JQ such that if 

i > IQ and j > JQ, then \\ip- —ip\\ <£ (where the norm is that ofCQ). 

PROOF. Let uV := tpj — ^ , where the iß^ are the approximate 
3 J 

angular fluxes as defined by the outer source iteration. By virtue of 
Corollary 2.8, it suffices to show that 

lim u{-i] = 0, 
i—*oo J 

uniformly in all sufficiently large j . From (11) and (38) we find 

(i+i) ^ (i) . (i+i) 
u- = Qu- + w± , 

3 3 3 

where 

wf+1) = (Aj - Q $ f + (Bj - W)(S« + b) + rf+1) 

and the ri* ' are defined by (41). It follows that 
3 

Yjct'w^+l-i') + c?+lv!f). 
t '=0 

file:////ip-
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Now Q has spectral radius less than one (Corollary 2.8), and the 

are bounded in both j and i (Theorem 5.4, Lemma 5.5, Theorem 3.3 
and uniform boundedness of the starting values for the inner iterations), 
whence there exists IQ such that 

J2 Q^4 i+1-°+Q i+i40) 

t ' = / 0 + l 

is bounded by e/2 if z > IQ. Again, by Theorem 5.4, Lemma 5.5, 
Theorem 3.3 and uniform boundedness of the starting values for the 
inner iterations, there exists Jo such that if j > Jo, then 

is bounded by e/2. ü 

Now extend the previous considerations of this section to the situation 
that the inner iterations are terminated at a step possibly depending 
on the particular energy group and outer iteration index. Specifically, 
let M and MG denote respectively the natural numbers and the first 
G natural numbers. Suppose that the inner iteration associated with 
the ith outer iteration index and group g is terminated after step 
j = J( i ,#), where J : M x MG —> M is a stopping sequence. Given 
such a stopping sequence, set 

(53) ra0(J) = min{J(z,g) :(i,g)eMx MG} 

and denote the jth inner approximation to the angular flux at group g 
and outer interation index i by ißjQ

3 . The corresponding modification 
of the inner iteration (26), (27) is 

(54) (IM - S,Ô,WS?1J+1) = S,Ü^+ 1 J ) + h%l\ 

where 

(55) fc.(;9
+1) := S 9 

9 - 1 

.9 / = i g' =.9+i 
+ S9<Ï9 + b9 
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and 

(56) v;g:=^.(;;7(t'9)). 

The corresponding "best" approximation to the angular flux at outer 
iteration index i is tßj G Cö , as defined by 

(57) P g ^ = ^ ; / ( i ' s ) ) . 

From (54) - (57) the relation between ^j and \pj ' can be written 
as the nonstationary iterative process 

(58) <#+1) = À ^ V ; ' + B</+1)(S« + b)+ r{j+1\ 

where Ä j , B j and Vj are defined respectively by (39) - (41), except 
with j replaced by J(i,g). As before, we need to establish that each 
A j and B j , respectively, approximate Q and W and that Vj ' —» 0, 
with large i and mo (J) . The crucial result for these is 

LEMMA 5.8. If J is a stopping sequence with mo = mo (J), then, for 
each natural number i, we have 

(59) B m o < B ^ < W, 

whence B j —• W in the operator norm of C^, uniformly in all natural 
numbers i, as mo (J) —• oo. 

PROOF. The first inequality in (59) follows by induction based upon a 
termwise comparison of (40) and the corresponding defining expression 
for B j . A similar comparison of the latter with the action of each P 9 

upon the readily established equality 

W = ]T[( I - S D ^ S D ^ I - S D ) " 1 ^ + SLW) 
jf=o 

similarly establishes the second inequality of (59). The asserted con
vergence follows directly from (59), which completes our outline of the 
proof of Lemma 5.8. D 
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COROLLARY 5.9. If the assumptions of Lemma 5.5 are satisfied, then 
the sequences {ftp }ÌZQ> as defined by (54) through (57) and the starting 
values for the inner iterations, are bounded uniformly in all stopping 
sequences J. 

PROOF. From (58) and Lemma 5.7 we have 

|^Si+1)l < Ql^.(;}| + W(Sç + 6) + lr.^1, 

where 

| ^ ; + 1 » | < ^ Q ^ [ W ( S g + ò) + | r ^ ' ) | ] . 
i' = l 

But Q has spectral radius less than unity, and the rj are uniformly 
bounded as in the proof of Lemma 5.5, which yields the desired result, o 

THEOREM 5.10. Suppose the starting values {ft}' } are bounded in 

the sense of Lemma 5.5. Then the {ftj } , as defined by (54) - (56) 
along with these starting values for the inner iterations and an arbitrary 
starting value in C^ for the outer iteration, approximate the exact 
angular flux, as determined by (4) - (6), in the following sense: Given 
any e > 0, there exist natural numbers IQ and MQ, such that if i > IQ 
and J is a stopping sequence with mo(J) > MQ, then \\ftj — i/)\\ < e 
(where the norm is that of CG). 

PROOF. Let u{]] := ftp - fti]- As in the proof of Theorem 5.6, it 
suffices to show that 

lim uf = 0, 
i—*oo ' 

uniformly in all stopping sequences having sufficiently large values of 
mo. From (11) and (58), we find 

where 

w y + 1 ) = ( A y + 1 ) _ Q ) ^ ) + (B _ _ w){Sq + b) + ry+ 1 ) > 

file:////ftj
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The remainder of the proof is essentially identical to that of Theorem 
5.7, except with Theorem 5.4 and Lemma 5.5 replaced, respectively, 
by Lemma 5.8 and Corollary 5.9. This completes both the proof of 
Theorem 5.10 and the technical portion of this paper. D 

6. Concluding remarks . Brickner, Hiromoto, and Wienke [16-
18] have reported computational experiments on a variety of parallel 
implementations of source iteration. The present work originated from 
the desire to analyze and better understand these parallel versions; in 
order to provide a basis for this, we found it necessary to further study 
the classical several implementation of source iteration. 

In practice most implementations of source iteration in computer 
codes permit the user to control the number or accuracy of the inner 
iterations, but not in a manner that depends upon the current accuracy 
in the outer iteration. (See [15, 19] for computational experiments on 
the combined effect of these iterations.) However, one expects that an 
optimal strategy would permit such dependence. We expect it to be 
possible to determine appropriate such strategies by further pursuing 
the type of analysis presented herein; Golub and Overton [8] recently 
presented such results in a finite-dimensional setting. 
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