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HOLDER ESTIMATES FOR THE CAUCHY 
INTEGRAL ON A LIPSCHITZ CONTOUR 

WILLIAM MCLEAN 

ABSTRACT. Some classical results of J. Plemelj and I. 
Privalov, concerning Holder continuity of the Cauchy integral, 
are generalised by relaxing the smoothness assumptions on the 
contour of integration. 

Introduction. In order to develop the theory of one-dimensional 
singular integral equations, it is first necessary to establish certain basic 
properties of the Cauchy integral. Chief among these are the Plemelj-
Sokhotski formulae, and estimates in Lp or Holder norms. Modern 
treatments of the theory can be found in the books of Gohberg and 
Krupnik [3], Prö<Bdorf [11] and Mikhlin and PröQ3dorf [9]; the standard 
classical text is of course Muskhelishvili [10]. These authors all assume 
that the contour of integration T is reasonably smooth - more precisely, 
r must consist of a finite number of non-intersecting Lyapunov curves, 
and must not possess any cusps. (A curve satisfies the Lyapunov 
condition if and only if it is locally the graph of a function with a 
Holder continuous derivative, see [7, Appendix A]). 

The aim of this paper is to show that the basic Holder estimates 
remain valid when T is assumed only to be a Lipschitz contour. It 
is then a relatively straight forward matter to generalise most of the 
remaining theory of one-dimensional singular integral equations with 
Holder continuous coefficients - the details have been worked out in [8]. 
Happily, the Holder estimates can be proved using only elementary 
methods, in stark contrast to the Lp theory for Lipschitz contours, 
which relies on the Coifman-Mclntosh-Meyer Theorem [1]. 

The paper is organized as follows. In §1, some properties of Lipschitz 
contours are discussed, along with the important idea of a nontangential 
limit. The fundamental result, that the Cauchy integral determines a 
bounded linear operator on spaces of Holder continuous functions, is 
proved in §2. Finally, in §3 we establish the Plemelj-Sokhotski formulae, 
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and show that the Cauchy integral is Holder continuous on the closures 
of the regions bounded by T. 

1. Lipschitz contours. For notational convenience, the field of 
complex numbers C will be freely identified with the vector space R2 . 
Thus, if y G C, then the real part of y is denoted by y\ = 3fa/, the 
imaginary part of y is denoted by y2 — 9t/, and we write y — y\ -\-iy2 — 
(2/1,2/2). 

Suppose r is a (closed) Jordan curve, then the complex plane decom­
poses into the disjoint union 

c = n+urufì_, 
where fi+ is a bounded, simply-connected open set, and Q- is an 
unbounded, connected open set. The components Q+ and f2_are 
uniquely determined by T, and their boundries and closures are given 

These topological facts are discussed in Hille [4, p. 34]. (The theory 
which follows could be generalised by allowing T to consist of several 
nonintersecting Jordan curves, as in [10, p. 86]; see also [9, pp. 43-44].) 

In the context of singular integral equations, a simple closed curve is 
usually called a contour, whereas a simple, open-ended curve is usually 
called an arc. Thus, if £}+ is a Lipschitz domain, then we say that 
r is a Lipschitz contour. The definition of a Lipschitz domain can 
be found in many texts on partial differential equations and function 
spaces, nevertheless, we repeat it here because the notation is needed 
later. 

For x € C and 6 G R, let Ax,e : C —> C be the affine transformation 
which first translates by —x, and then rotates by —0, i.e., 

Ax,o{y) = (y-x)e-ie, yeC. 
Given x G T and a > 0, the triple (a, 6,(j)) is said to be a Lipschitz 
representation of Y at x if (ß : [—a, a] —> [—a, a] is a Lipschitz function 
satisfying (f)(0) =0 and 

AXìe(T) fi (-a,a)2 = {(2/1,2/2) : -a < yx < a and y2 = <t>(yi)} 

Ax,o(to+) n (-aia)2 = {(2/1,2/2) : -a<y1 <a and <j>(y{) < y2 < a} 

AXie(Sl~) n (-a,a)2 = {(yi,y2) : -a < yx < a and - a < y2 < 0(j/i)}. 

file://-/-iy2
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In other words, AX^(T) n [—a, a]2 is the graph of the Lipschitz function 
(f). The contour T is said to be Lipschitz if a Lipschitz representation 
exists at every point of T. Note that a Lipschitz contour may have 
(infinitely many) corners, but may not possess cusps. 

Henceforth, it is always assumed that T is a Lipschitz contour, and 
that r has a positive (i.e., counterclockwise) orientation. Thus, the 
winding number of T about any point of SÌ+ is +1 , whereas the winding 
number of T about any point of ft- is 0. 

The derivative of a Lipschitz function exists almost everywhere, and 
belongs to L ^ , therefore T is rectifiable. For points x and y lying on 
r , let \x,y\ denote the minimum of the lengths of the two sub-arcs of T 
having x and y as their end points. Thus, if 7 : R —> C is any periodic 
arc-length parametrization of T, i.e., if 

r = {7(5) : 0 < s < L}, 7(5 + L) = 7(s), 

where L is the length of T, then 

|x, y\ = min{|s — t\ : s, t G R with x = 7(5) and y = j(t)}. 

It is not difficult to verify that the function |-, -| is metric on T; this 
metric induces the usual topology, because there exists a constant Co 
such that 

(1.1) \x-y\<\x,y\<c0\x-y\ for all x,yeT. 

Indeed, the left hand inequality follows at once from the definition of 
arc-length as the supremum of the lengths of polygonal interpolants. 
The right hand inequality is called the chord-arc condition, and can 
be proved using the compactness of T, together with the fact that the 
derivative of a Lipschitz function is bounded. The inequalities (1.1) are 
crucial for the theory developed in the sequel. 

For x G T and 0 < m < 1, the nontangential approach regions 
A/+(x,m) and N-{x,m) are defined by 

Af±(x,m) = {z e Q± : dist (z,T) > m\z - x|}, 

where dist (z, T) — mî{\z — y\ : y G T} is the distance between z and 
T; cf. Kenig [6, p. 177]. Figure 1 is a sketch, produced with the aid of 
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computer graphics, depicting the nontangential approach regions to a 
point on the boundary of a polygon. 

Put 
m±(x) = sup{m : 0 < m < 1 and x G N±(x, m)}, 

then it is not difficult to prove that there exists a number mo satisfying 

m±(x) > mo > 0 for all x G I\ 

FIGURE 1. Nontangential approach regions with m = 1/2. 

If 0 < m < m±(x)ì then it makes sense to send z —• x with 
z G J\f±(x,m). Thus, given a function F : C \ r —> C, we let 

(1.2) F±(x;m)= lim F(z), x G T,0 < m < m±(x) 
zeSS±(x,m) 

whenever these limits exist. Notice that 

A/±(x,m2) Ç A/±(x,mi) for 0 < mi < m2 < 1, 
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so F±(x;mi) = F±(x,iri2) whenever F±(x;mi) exists. Thus, if 
F±(x,m) exists for all m sufficiently small, then there exist unique 
nontangential limits 

F±(x) = F±(x;ra), x G T,0 < m < m±(x). 

Of course, if the ordinary limits 

F±(x;0) = lim F(z), x G I \ 
zen± 

exist, then F±(x) = F±(:c;0), however it is necessary to allow for the 
possibility that in (1.2) the convergence is not uniform in m. 

For 0 < a < 1, denote by A a ( r ) the space of complex-valued 
functions defined on T which are Holder continuous with exponent a, 
i.e., the function / : T —• C belongs to A a ( r ) if and only if the value 
of the seminorm 

[/].= sup ^ i M 

is finite. Notice that 

\f(x)-f(y)\<[f]a\x-y\a, x,y€T, 

and that Ax(r) consists of the Lipschitz continuous functions on T. 
In the usual way, we make A a ( r ) into a (non-separable, non-reflexive) 
Banach space by defining the norm 

+ [/]«, 

where || • ||oo is the norm in L0 0(r) . 

2. The operator S. For any u G ̂ i ( r ) , the Cauchy integral of u is 
the function $u : C \ r —• C defined by 

(2.1) *«(*) = à / r 

u(y) 

rV- z 
dy, z £ T; 

obviously, $u is holomorphic on 0+ and on l ì_. In order to study 
the nontangential limits $±u = ($u)±, it is first necessary to make 
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sense of the integral in (2.1) in the case when z is a point lying on the 
contour T. This is usually done by introducing the Cauchy principal 
value integral 

/ ^Ldy = iim / 4vLdVi x e r, 
Jry-x h^o+Jr\Th(x) y-x 

where T/l(x) = {y G T : \y, x\ < h} is the sub-arc of T centered at x 
and having length 2h. 

Let u G Lp(T) where 1 < p < oo, and define 

Svvu(x) = — —^-dy, xeT. 
m Jry-x 

It can be shown [5, pp. 55, 108] that Spvu(x) and $±u(x) exist for 
almost every x G T, and that the Plemelj-Sokhotski formulae hold, i.e., 

$±u= -(±I + Spv)u. 

Furthermore, as mentioned in the Introduction, 

LP(T)^LP(T), l < p < o o , 

is a bounded linear operator. 

The Plemelj-Privalov Theorem states that if the contour T is smooth, 
then Spy : Aa(T) -+ Aa(T) for 0 < a < 1. This is no longer 
true, however, if T is permitted to have corners. Indeed, suppose for 
simplicity that T is piecewise smooth (e.g., a polygon) and let u(x) 
denote the jump in the tangent angle at the point x G T. The 'interior 
angle' at x is then TT — u(x), and the 'exterior angle' is 7r + u(x); 
obviously, ÜÜ(X) = 0 except when x is a corner point. Using the Cauchy 
Integral Theorem, it is not difficult to verify that 

Spvl(x) = l - ^ , x G T , 

which shows that Spvl is discontinuous at each corner point of T. 

The way out of this difficulty is to introduce the 'singular integral' 

m Jr y-x ™ JY y~x 
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and to define a new operator 

Su(x) = - f ^ d y , xer. 
m JT y-x 

Observe that, in contrast to Spvl, the function 51 = 1 is continuous. 
Also, 5 = SpV when T is smooth, since 

(2.2) Su(x) = -^-u(x) + Spvu(x), x € I \ 
7T 

Notice however that (2.2) cannot serve as a definition of 5, because 
ÜÜ(X) does not make sense for a general Lipschitz contour. 

We will now prove that 

S:Aa(T)-+Aa(T), 0 < a < l . 

is a bounded linear operator. In all of the estimates in this paper, 
the generic constant c is a positive number depending only on the 
contour T; any dependence on Holder exponents, functions, etc., is 
shown explicitly. The arc-length measure is denoted by \dy\, so that 

I [ f{y)dy\< [\f(y)\\dy\ 

for every function / G £i(T). 

LEMMA 2.1. For allx eT and h> 0, 

/ | j , - x | ° - i | d y | < - l L , o < a < l , 
hh{x) OL 

/ \y-X\^\dy\<^L—i 0 < a < l , 
JT\rh(x) l ~ a 

\L 
dy 

<c. 
Ir\rh(x)y~xl 

PROOF. The chord-arc condition (1.1) implies 

/ \y - x\a-l\dy\ < c f \y,x\a-x\dy\ 
Jrh{x) Jvh{x) 

rh 
< c / s^ds = ca'1^ 

Jo 
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for 0 < a < 1, and 

/ i 'idyl < J 
Jh 

\y,xr2\dy\ 
) 

-2ds = c(l-a)-1ha-1 

for 0 < a < 1. 

If 0 < ft < L /2 , where L is the length of I \ then 

dy 

\L 
rL/2 

< C s 1ds = c\og(-r), 

so, for the third inequality, it suffices to consider ft sufficiently small. 
(If ft > L/2, then T \ r / l (x ) = 0 and there is nothing to prove.) Let x\ 
be the two points on T satisfying I X_L , X | = ft, with xh_ preceding x, and 
x+ following x, as r is traversed in the counterclockwise sense near x. 

The compactness of T implies there is a fixed a > 0 such that , for 
every x E T, there exists a Lipschitz representation (a, 0, (j>) of F at x. 
Fix x, then since 

dy f dy I jg__, 
JT\Th(x)y-X J A, 9[r\rfc(x)] 2 / - ° ' 

we may assume x — 0 and 0 — 0, and thereby simplify the notation. 

For 0 < ft < a, there is a rectifiable arc 11^ beginning at xh_, finishing 
at x+, and lying wholly within Q + fl [—a,a]2. The point x 
outside the (closed) Jordan curve 11^ u r \ F / l ( x ) , therefore 

dy ( f dy_ 
x 

0 lies 

L + / dv 
Jnhy-' 

0. 
/ r \ r k (*) y - x 

Choose the branch of the logarithm so tha t 

-7I-/2 < aig(y - x) < 37T/2 for all y € Uh, 

then 

L dy 

nhy~x 

< 

[\og(y - x)]X
ylx 

log |x+ - x\ - l og | a£ - x\ 

+ I a rg(x^ - x)\ + | a rg(a£ - x)\ 
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This completes the proof because the chord-arc condition implies that 
the ratio \x\ - x\/\xh_ - x\ is bounded away from 0 and oo, uniformly 
in x. D 

THEOREM 2.2. 7/0 < a < 1, then 

\\Su\\(a) ^ c ( - + f 3 ^ ) ' M | ( a ) 

for all u G Aa(T). 

PROOF. Define the function 

1>(x) = - / 
1 f u(y) - u(x) 

dy, xeT, 
ir y-x 

then Su = u + -0, so it suffices to estimate H l̂ !(<*)• Firstly, 

CM« Mx)\<- I[uUy - x\«-l\dy\ < 
a 

therefore ||0||oo < ca 1[u]a. To estimate [0]a , let x,z G T and put 
h = \x,z\. Then 

iri 

where 

Jr2h(x)^ y~x y~z > 

i2 = f u{z)-u{x)dy 

Jr\r2h(x) y-x 

h= I Hy) - u(z)]{ — — }dy. 

Jr\r2h(x) l v ~ x y - z ) 

li y £ T2h(x), then \y, z\ < \y,x\ + \x,z\ < 3h, so y G r^hiz) and hence 

|/i| < Ma{ I \y- xr'ìdyì + [ \y- ^ r ^ l } 
a 
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Next, 

I2\ = \u(z)-u(x)\\ [ Jt-\<c[u]a\x-z\°m 

'r\r2h(x) 

If y e r \r2/ì(x), then \y,z\ > \y,x\ — \x,z\ > 2h — h — h and so 
\y — x\ < \y,x\ < \y,z\+h < 2\y,z\ < c\y — z\. Hence, the integrand of 
Is can be estimated as follows: 

K^)-^)]{^-;-b}|<H> \y-z\"\z-x\ 
y-x y- zi\ - m c* \y - x\\y - z\ 

c[u]ah c[u]ah 
\y - x\\y - z]1-« - \y-x\2-«' 

Therefore, 

\h\ < c[u]ah f \y- x\a~2\dy\ < ^ h a , 
Jr\r2h(*) \-a 

and so, combining the estimates for I\, I2 and ^3, we find 

Mx) - *{z)\ < c(- + —?—) [u]a\x - z\a, 
\a I — a/ 

noting that the chord-arc condition implies h < c\x — z\. D 

3. The Plemelj-Sokhotski formulae. The Cauchy Integral 
Theorem implies 

*1W \o, if zen-, 
therefore, if u € A a ( r ) and x € T, then 

<«> -M-ÌS^.**'" lit 
where 

T / 1 /* u(y) — u(x) , ^ r . _ 

2-Ki Jr y - z 
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Hence, to find the nontangential limits $±u(x), it suffices to determine 
the limiting values of ^u(z, x) as z —• x with z G Af±(x, m). In fact, 

(3.2) lim ìtu(z,x) = *w(x,x) = ~[Su(x) - u(x)], x G T, 
zGA/'-j:(x,Tn.) 

as the second part of the following lemma shows. 

LEMMA 3.1. Suppose 0 < a < 1 and 0 < m < 1. i / u G A a ( r ) and 
x G I \ £/ien 

(3.3) \*u(z,x) - 9u(w,x)\ <c-^(- + -r^—)[u]a\z - w\a 

raz Va 1 — a / 

and 

(3.4) |tfu(*,x) - Vu{x,x)\ < c-(- + —^—IM«!* - * r , 
m\a 1 — a / 

/or a// z, w G N+{x,m) UA/L(a;,m). 

PROOF. Put /i = |z - w|, and write 

1 /• [w(2/) - iz(x)](z-w) 
^ix(2:,a:) — tyu(w,x) = — : / 

27TZ J r 
(3i5) ' ' 2iri Jr (y-z)(y-w) 

dy 

2m 

where 

Z~W(h + h\ 

h = = f u(y)-u(x) r u(y)-u(x) 

Jrh(x) (y - z)(y - w) ' 2 Jr\rh(x) (y - z)(y - w) 

Assuming z G .A/+(x,ra) Uj\f-(xim) and y G T, we have 

12/ — 21 > dist (z, r ) > m|x — z|, 

and so 
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Similarly, the inequality 

I 1 + m - 1 

\y-w\ \y-x\ 

holds for w G A/+(x,ra) U A/"-(x,m) and y G T. Without loss of 
generality, we may assume |x — z\ > \x — w\, then 

\z — w\ < \z — x\ + |x — w\ < 2\x — z\. 

Hence, l / |x — z\ <2/\z — w\, from which it follows that 

Jrh(x) m\x-z\ \y-x\ 

<2i±^/ |,-,M*I 
m\z-w\ JTh{x) 

c[u]a ha 

and 

| / 2 | < / Ma\y'x\a(^^)2\dy\ 
Mr h (x ) v \y-x\ J 

i i ( / - l \ 2 

u]a\y-x\a( ^ ' 
/r\rh(x) 

Mrfc( 

< 
C N a , a - l 

~~ ra2(l — a) 

Inserting these bounds in (3.5), we arrive at (3.3). 

To prove (3.4), put h = \z — x\ and write 

Vu(z,x) - *w(x,x) = V ^ ( J i + J2)' 
Z7TZ 

where 

f u(y) — u(x) , T /* ~v~, ~v~. , 
7i = / i \( V^ h = / ( \< \dy-

Jrh(x) {y - z){y - x) Jr\rh(x) (V ~ z){y - x) 

_ u(y) - u(x) An T _ f u(y) -u{x) 

rh(x) ( 

This time, 

i 7 l i ^ / [«UV - xl"-1
 UttA ^ c[u]a h« < [ M-'rvi^i< 

Jrh(x) m\x-z\ 
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and 

\h\ < I [u]a(l + m-l)\y - xr2\dy\ < * M * h"'1, 
Jr\rh(x) rn(l - a) 

from which the result follows immediately. D 

THEOREM 3.2. Let u G Aa(T), where 0 < a < 1. The Plemeij-
Sokhotski formulae 

<$>±u= ]-(S±I)u 

hold, and the inequality 

(3.6) |$«(z) - *±«(a:)| < c(- + - J — ) | | U | | ( Q ) | Z - x\a 

\a 1 — a/ 

is valid for z G £ì± and x G I \ 

PROOF. The Plemelj-Sokhotski formulae follow at once from (3.1) 
and (3.2). 

To prove (3.6), let z G Ct± and choose y G T such that \z — y\ = 
dist (z,T), then 

-[u(y) + *u(y,y)], z G ft+ 
z G fî_ 

$u(z)-$±u(y) = < T
yy

 N V / L, V ) ± \y> \yu{z,y)-yu(y,y), 

= ^u{z,y) -^u(y,y). 

Since z G N±(y,m) for every m < 1, it follows from (3.4) that 

(3.7) |*«(*) - *±«(î,)| < c ( - + - J—)[«] Q | z - y\a, 

\a 1 — a. ) 

while Theorem 2.2 implies 

|*±«(») - *±«(s)l < ^(|5«(y) - 5«(a;)| + |u(y) - u(x)|) 
(3.8) 2 

< c(— -h —^—-)lK||(ct)|2/ — ^|a-
Va 1 — a/ 
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Notice \z—y\ = d i s t a r ) < \z—x\ and \y—x\ < \y—z\-\-\z—x\ < 2\z—x\, 
so (3.7) and (3.8) together imply the result. D 

At this point, it is convenient to extend $±u to Sl± in the obvious 
way: by setting &±u = $u on Ç}±. The final theorem for this section 
asserts that the function <fr±u is Holder continuous on Çl±, whenever 
u is Holder continuous on T. This fact is, of course, well known if T 
is smooth, and the reader may like to compare our proof with that 
in Muskhelishvili [10, pp. 53-55]; the latter relies on the maximum 
modulus principle. 

THEOREM 3.3. i / 0 < a < 1 andueAa(T), then 

(3.9) \*±u(z) - <S>±u(w)\ < c(- + —!—) \\u\\{a)\z - w\a 

\a 1 — a/ 

for all z,w G fl±. 

PROOF. If at least one of the points z and w lies on T, then (3.9) 
follows at once from Theorems 2.2 and 3.2. Thus, we may assume that 
both z and w belong to the open set Q±. 

Choose x, y G T such that \z—x\ = dist (z, T) and \w—y\ = dist (w, T), 
then the formula (3.1) implies 

$±u(z) — $±u(w) — tyu(z,x) — tyu(w,x) = tyu(z,y) — ^u(w,y). 

Therefore, by Lemma 3.1, 

\&±U(Z) - &±U(W)\ < C—(- + " )[u]a\z - W\a 

if w e A/±(x, m) or if z G N±{y, m). 

This leaves the case when w G Çl±\N±(x,m) and z G fi±\A/±(2/,ra), 
i.e., when 

\w — y\ = dist (w, r ) < mix — w\ 
(3.10) "~ 

|z — x\ — dist (z, r ) < m\y — z\. 
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By Theorems 2.2 and 3.2, 

\$±u(z) - $±u(w)\ < m\$±u(z) - $±u(x)\ + \$±u(x) - $±u(y)\ 

+ \$±u(y) -$±u(w)\ 

- c ( ^ + i—-)lMI(«)s 

\a 1 — a / 
where E = \z — x\a + \x — 2/|a + |?/ — w\a. Thus, to complete the proof, 
it suffices to show E < c\z — w\a for m < 1/4 (with c independent of 
m). 

The inequalities (3.10) imply 

\w — y\ < m\x — y\ + m\y — w\, \z — x\ < m\y — x\ + ^i|x — z|, 

therefore if m < 1, then 

i i m i i i i m . . 

\w-y\< \x - y\, \z-x\< \y - x\. 
1 — m 1 — m 

Next, 

i I I I I I I I I i 2 m 

|x — y| < |£ — 2| + |z — w| + |w — y| < |2 — w| + F — y|, 

so, for m < 1/3, 
i i 1 — m . . 
| a ; - y | - T ^ ^ | 2 - w | ' 

and finally 

B * { 1 + 2 ( i r s ) > - f 

*{1+'(r^)"Hrf£) 
for m < 1/4. D 

To conclude, we prove an important corollary of the above theorem, 
namely, the fact that S~l = S : Aa(T) -> A a ( r ) for 0 < a < 1. 

1 - m x , 
z - w < c z - it; 

THEOREM 3.4. lfu<E Aa(T) for some a>0, then S2u = u. 
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PROOF. By Theorem 3.3, the function $>+u is holomorphic on fl+ 
and (Holder) continuous on fi+ . Since ÇL+ is compact and Ü- — C\fi+ 
is connected, Mergelyan's Theorem [2, p. 97] implies that there exists a 
sequence of polynomials Pn with coefficients in C, such that Pn —> <l>+n 
uniformly on fì+. Obviously, each polynomial Pn is holomorphic on an 
open neighborhood of f} + , so 

Pn(z) = ± f ^ d y , zeQ+. 
2m JT y- z 

Sending n —> oo, we see $u(z) = $($+?/) (z) for all z £ f2+, and so the 
Plemelj-Sokhotski formulae imply 

1-(I + S)u=1-(I + S)1-(I + S)u. 

After some simple algebra, this gives the result. D 

In [8], there is an alternative (and longer) proof of Theorem 3.4, 
which does not use Mergylan's Theorem, but instead requires one to 
prove the Poincaré-Bertrand formula for a Lipschitz contour. 
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