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AN INTEGRAL EQUATION METHOD 
FOR THE TIME-HARMONIC MAXWELL EQUATIONS 

WITH BOUNDARY CONDITIONS 
FOR THE NORMAL COMPONENTS 

V. GÜLZOW 

ABSTRACT. The reflection of electromagnetic waves at 
an anistropic medium leads to boundary conditions for the 
normal components. A new integral equation approach is 
developed for multiply connected domains. The existence of a 
solution is established by using the second part of Fredholm's 
alternative. 

Introduction. The mathematical description of the scattering of 
time-harmonic electromagnetic waves with frequency uo > 0 by an 
obstacle, say Z), surrounded by a homogeneous isotropic medium in 
R 3 leads to exterior boundary-value problems for the reduced Maxwell 
equations 

curl E - ikH = 0, curl H + ikE = 0 

for the electric field E and the magnetic field H. Here, the wave 
number k is given in terms of a;, the electric permittivity £, the magnetic 
permeability fi and the electric conductivity o by 

and the sign of k is chosen such that Imk > 0. The scattering of a 
given incoming electromagnetic wave El,F by a perfect conducting 
body gives rise to a boundary condition of the form 

(0.1) [i/,Ê] = 0 o n 9 D 

describing vanishing tangential components of the electric fields for the 
total wave E = Ei + ES,H = H* + Hs where Es, Hs are the scattered 
fields. 
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In addition to the classical boundary condition (0.1) Rumsey [12] 
suggested to consider a boundary condition of the form 

(0.2) (i/, E) = 0, (i/, H) = 0 on 3D 

for the normal components of both the electric and magnetic field. 
This problem may be considered as the limiting case of the scattering 
from a dielectric domain with both very large electric permittivity and 
magnetic permeability. 

The same type of boundary conditions occurs in the theory of force-
free fields, arising in plasmaphysics and astrophysics [6, 7, 8]. In 
contrast to the classical boundary condition (0.1), uniqueness for the 
boundary condition (0.2) depends on the connectedness of D. Unique
ness for a solution of Maxwell equations with boundary conditions (0.2) 
for simply connected domains D was established by Yee [14]. His re
sults were extended by Kress [5] for multiply connected domains by 
prescribing circulations for the electric and magnetic fields. Further 
Kress [5] proved existence of a solution by using an integral equation 
method for an auxiliary problem. 

In this paper we choose a more direct integral equation approach to 
establish existence results. Our method leads to integral equations of 
the first kind which have to be regularized in order to apply the classical 
Riesz-Fredholm theory. In the first part of the paper we describe our 
method for a simply connected domain in order to state the main ideas. 
In the second part we briefly discuss the extension of our ideas to the 
case of multiply connected domains. The reader interested in more 
details is referred to the author's thesis [2]. 

1. The boundary-value problems, uniqueness. Let D denote 
a simply connected bounded open domain in R s with boundary dD of 
class C2. We assume the complement R 3 \ J D to be connected. Then 
the boundary dD also is connected. By v we denote the unit normal 
to dD directed into the exterior of D. 

We consider the following 

Exterior boundary-value problem. Find two vector fields E, H G 
C 1 ( R 3 \ J D ) fi U(R3\Z)) satisfying the time-harmonic Maxwell's equa
tions 

(1.1) curl E - ikH = 0, curl H + ikE = 0 in R 3 \ D 
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the Silver-Mueller radiation condition 

(1.2) [H(X),£\-E(X) = o(±X \x\ —> oo, 

uniformly for all directions x\|x|, and the boundary conditions 

(1.3) (",£) = / , (v1H)=gondD 

where f,g E C°'a(dD) are given functions. 

REMARK 1.1. By Stokes' theorem, the conditions 

(1.4) f fds = 0 and / gds = 0 
JdD JdD 

are necessary for solvability. Therefore, in the subsequent analysis, we 
will assume these conditions to be fulfilled. 

The following uniqueness result was given by Yee [14] and Kress [5]. 

THEOREM 1.2. The exterior boundary-value problem has no more 
than one solution. 

We also want to consider the 

Interior boundary-value problem. Find two vector fields E,H E 
Cl{D) fi C(D) satisfying the time-harmonic Maxwell's equations 

(1.5) curl E - ikH = 0, curl H + ikE = 0 in D 

and the boundary conditions 

(1.6) {v,E) = f, {v,H)=g<mdD 

where f,g E C°'a(dD) are given functions. 
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Analogously to Theorem 1.2 we have 

THEOREM 1.3. 7/Imk > 0 then the interior boundary-value problem 
has no more than one solution. 

For k real, this is not generally the case; instead, as shown by Kress 
[5] we have 

THEOREM 1.4. There exists a countable set of positive wave numbers 
k, called interior eigenvalues, accumulating only at infinity for which 
the homogeneous interior boundary-value problem has nontrivial solu
tions. 

2. Existence for the interior boundary-value problem. We 
try to find a solution to the interior boundary-value problem in a simply 
connected domain in the form 

(2.1) 
£(:r)=curl / A(y)i/(y)$(x,y)ds(y) 

JdD 

+ curl curl / /i(y)i/(y)$(x,y)ds(y), x 6 D, 
JdD ÔD 

l , a with scalar densities À,// G C-(dD). Here 

I eik\x-y\ 

47T \x — y\ 

denotes the fundamental solution to the Helmholtz equation. 

In order to formulate an integral equation for the unknown densities 
we introduce the following integral operators S, K) Kf and T by 

(S<p)(x) = 2 / <p(y)*(x,y)ds{y), <p x G C(dD), x G ÖD, 
JdD 

(K<p)(x) = 2 / {p(y)^—^Xiy)ds{y), $ G C{ßD), x G OD, 
JdD ov{y) 

(Kfv)(x) = 2 / {p{y)-^-^x,y)d8{y\ tß G C(3L>), x G dD, 
JdD ovyx) 
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and 

( 7 » ( * ) = 2 — — / 4(y)1—-*(x,y)ds(y),il>€C1-a(dD), x e dD. 
ov{x) j d D ovyy) 

The operators S,K,K' are compact in C(dD) and C°'a(dD) for 
0 < a < 1. In addition S and K are compact in Cl'a(dD). The normal 
derivative of the double layer potential T : Cl-a(dD) -» C°'n(dD) is 
only continuous because of the strong singularity. For proofs of these 
statements we refer to Colton, Kress [1]. 

In addition, we define the operator P by 

(PA)(x) = 2(i/(x),curl y>
DKy)A(y)^(x,y)ds(y)j , 

A eLa (dD), x G ÖD. 

By Stokes' theorem, Müller [11], we derive 

curl / A(y)//(y)$(x,y)ds(y) 
JdD 

(2.2) = - / [\{y)g™àyÇ>{x,y),v{y))ds(y) 
JdD 

= - I [i/(2/),GradA(y)]*(a:,2/)ds(2/), x G R3\<9£>. 

Hence, passing to the limit x G ÖD, we obtain FA = — (i/, S[i/, Grad A]). 
In particular this implies that P : CUa(dD) -> CUa(dD) is con
tinuous. Furthermore, we define the operator Q by (QA)(x) := 
-(v(x),S{\v)(x)) and finally A : (Cl'a(dD))2 -> (C°^(<9£>))2 by 

(2.3) A : = 
-T-k2Q k2P 

P -T- k2Q 

THEOREM 2.1. The fields E defined by (2.1) and H := l\ifc curl E 
solve the interior boundary-value problem provided (A, /i)Te (Cl'a(dD))2 

satisfies the integral equation 

,2.4, A $ = , ( * « ) . 
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of the first kind. 

PROOF. Let (A,/i)T be a solution of (2.4) and define E by (2.1). 
Obviously E G C2{D) and H := l\zfc,curl E G C2(D) solve the 
Maxwell equations. Using the vector formula curl curl A = grad div A— 
AA we derive 
(2.5) 

curl curl / A(y)z/(y)$(x,y)ds(y) =k2 / \(y)v(y)<&(x,y)ds{y) 
JdD JdD 

-grad / ?^2Û\(y)ds(y). 
JdD du{y) 

From this, in particular, using Theorems 2.17 and 2.23 of Colton, Kress 
[1], we deduce that E,H G Cl{D) since A,/iG Cha{dD). 

Since (A,/x)T is a solution of (2.4), from the jump relations (By the 
indices + and — we distinguish limits obtained by approaching 3D 
from R 3 \ l ) and D respectively.), we get 

ik(y(x),H{x))- =(v{x),curl curl / A(y>(y)$(x,y)ds(y)) 
v JdD J 

(i/(x),fc2curl / //(y)i/(y)$(x,y)ds(y) = ikg(x), 
v JdD 

13D 

+ / 

/ÖD 

x G OD, and 

(v(x),E(x))-=(v(x),cml I A(y)i/(y)*(x,y)ds(y)) 
V JdD J 

+ \v{x),curl curl / //(y)i/(y)$(x,y)ds(y) J = f(x), 
V JdD ' 

x G 3D. Here we have used (2.5) and the transformation 

(i/(x), curl curl / A(y)i/(y)*(x,y)ds(y)) = -(TA)(x) - k2(QA)(x), 
v JdD ' 

xedD.u 

Similarly, to solve the exterior boundary-value problem, we choose 

E(x) =curl curl / A'(y)i/(y)$(x,y)ds(y) 
(2.6) J a D 

+ curl / //(y)i/(y)$(x,y)ds(y), 
JdD 
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x e R 3 \ D , with unknown scalar densities A',// € C1,a(dD). We define 
an operator A' : {Cl>a{dD)f -> (C°'a{dD))2 by 

(2.7) A':= 
-T - k2Q 

k2P 
P 

-T - k2Q 

THEOREM 2.2. The fields E defined by (2.6) and H := l\iA;,curl E 
solve the exterior boundary-value problem provided (A',/x')T G 
{C1,a{dD))2 satisfies the integral equation 

(2.8) 

of the first kind. 

O-O-
PROOF. This is analogous to the proof of Theorem 2.1. The radiation 

condition (1.2) for (2.6) follows from Chapter 4 in Knauff, Kress [3]. 

Both of the integral equation systems (2.4) and (2.8) are of the 
first kind. We shall establish existence of the solution by the Riesz-
Fredholm Theory for compact operators after equivalently regularizing 
both equations, see Michlin [10]. 

Choose a wave number k which is not an eigenvalue of the interior 
Dirichlet problem for the Laplace equation, that is, the Dirichlet 
problem Au + k2u = 0 in D with homogeneous boundary conditions 
ii = 0 on 3D admits only the trivial solution u = 0. Define the operator 
S : C°'a(öD) -> Cl'a(dD) as the operator S for this wave number 
k. Then S is bijective and thus the operator R : (C°'a(dD))2 —> 
(C^a(dD))2, defined by 

(2.9) 

is also bijective. D 

R:--
S 0 
0 S 

THEOREM 2.3. R is an equivalent right regularizer of A in (C0'' 
and an equivalent left regularizer of A' in {Cï,a(dD))2. 

(OD))2 

PROOF. Since Q and P are bounded and S is compact in C0,a(dD) 
and in C1 , a(öD), the products are compact in these spaces. So we only 
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have to take care of ST and TS. From Colton, Kress [1, p. 90], we see 
that 

TS = I + K'2 and ST =-I + K2, 

that is, S regularizes T from the right in C°'a(dD) and from the left 
in C1,a(dD). For the special wave number k, the regularizations are 
equivalent because of 

-TS = -TS +(f-T)S = I- k'2 + (f - T)S. 

By regularization from the right, the solution of the original equation 
(2.4) is given by 

Before we introduce an appropriate bilinear form, we consider the 
nullspaces N(A) and N(A') of the operators A and A'. u 

THEOREM 2.4. Let (A,/x)T e N(A) and define E by (2.1) in 
JH3\dD. Then E and H := l\ifc,curl E vanish in R 3 \ D and solve 
the homogeneous interior boundary-value problem in D. There holds 

(2.10) (£ - ) tan = Grad/x, ifc(tf_) t an = Grad A on 3D. 

PROOF. By Theorem 2.1, the fields E and H solve the homogeneous 
interior boundary-value problem in D. From (2.2) we have 

(2.11) 
E(x) = - ( [1/(3,), GT*A\{y)]*{x,y)d8{y) 

JdD 

- c u r l / [i/(y), Grad/x(y)]$(x,y)ds(y) 
JdT> JdT> 

and 

ff(z) = - - U u r l / [i/(y), GradA(y)]*(x,y)ds(y) 
™ JdB 

+ ik [i/(y), Giadn(y)]$(x,y)ds(y). 
JdD 

Hence from the jump relations for single-layer potentials, see Theorem 
2.24 in Colton, Kress [1], we see that E and H solve the homogeneous 
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exterior boundary-value problem. Therefore, by the uniqueness Theo
rem 1.2 we see that E — H = 0 in R 3 \ D . Now (2.10) is a consequence 
of the jump-relations, i.e., 

\v, \v, £"]]_ = —Grad/x and ik[v, [v,H]]- — —Grad À on dD. 

COROLLARY 2.5. Let k be an eigenvalue of the interior boundary-
value problem with multiplicity m^. Then, for the dimension of N(A), 
there holds 

d imiV(^) < 77ifc + 2. 

PROOF. Let (Ài,//i),...,(Amfc+i,/zmfc+i) G N(A) and let Eu..., 
Emk+i be the corresponding fields given by (2.1). Then there exists 
numbers a\,... amfc+i G C such that 

mfc + l 

3 = 1 

vanishes in D. Hence for A := YlT=i~ aj^j anc^ ß :~ Y1T=\ ajlJjj w e 

have Grad A = Grad/i = 0, that is, A — const and /x = const on dD. 
Therefore it follows that 

Now the statement follows from the observation that the elements on 
the right at the last equation belong to N(A). ü 

The nullspace of A! is described by 

THEOREM 2.6. 

i) Let E,H be a solution to the homogeneous interior boundary-value 
problem. Then there exist unique scalar functions A',// G Cx'a(dD) 
with fdD X'ds = JdD i±'ds = 0 such that 

(2.12) ikHt8Ln = Grad// , £ t a n = Grad A'on 3D 
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and ( , ) solve the homogeneous integral equation (2.8). 

ii) ( L, I G span ^ ( o ) ' ( i ) f so^ves ^e homogeneous integral equation 

(2.8). " 

P R O O F . 

i). Let (E,H) be a solution to the homogeneous interior boundary-
value problem. Then 

C u r l E t a n = - D i v h E t a n ] = ( ^ c u r l E ) = ° 

and 
Curl H t a n = - D i v [v, H t a n ] = (u, curl H) = 0. 

From this, since dD is simply connected, we observe that the tangential 
fields i^tan a n d # t a n a r e circulation free. Therefore there exists 
scalar functions À ' , / / G Cl'a(dD), normalized by J.)DXfds — 0 and 
JdD n'ds — 0, such that 

Grad A' = £tan> G r a d / / = ikH^n on dD. 

From the Stratton-Chue representation theorem, see Colton, Kress [1], 
Theorem 4.1, we now derive 

- £ ( * ) = curl / [Ky) ,E(y)]$(x ,y)ds(y) 
JdD 

- — c u r l curl / [ i /(y),H(y)]$(x,y)ds(y) 
tK JdD 

= curl / [i/(y), GradA'(y)]*(x,y)ds(y) 

+ — curl curl / [i/(y), Grad / / (y ) ]$ (x ,y )ds (y ) 
^ JdD 

= - c u r l curl / z/(y)A'(y)$(x,y)ds(y) 
JdD 

- c u r l / i / (y)/ i ' (y)$(x,y)ds(y), x G D . 
JdD 

The jump relations and the homogeneous boundary conditions for E 
and H now imply that 
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Part ii) is easily seen from (2.11). D 

As a consequence of Theorem 2.6 we have 

COROLLARY 2.7. 

dim N(A') >m f c + 2. 

We now introduce the nondegenerate bilinear form (•, •) : (C1,a(dD))2 x 
(C^a{dD))2^Cby 

(2.13) ((X)(X'f))=[ (\\' + w')d8, 
\ \ß/ \fi / i j d D 

i.e., (C°>a(dD))2 x (C°'a(dD))2 is a dual system with respect to (2.13). 
By interchanging the integration, we derive 

THEOREM 2.8. A is the adjoint operator to A' with respect to (2.13). 

In this sense, the interior and exterior boundary-value problems 
are adjoint. Since A and A' can be equivalently regularized, from 
Fredholm's alternative, we derive that the dimensions of the null spaces 
of A and A1 are the same. 

LEMMA 2.9. 

dim N(A) = mk + 2, dim N(A') = mk + 2. 

PROOF. By Corollary 2.5 and 2.7, and, since A and A! are adjoint, 
we have 

mk + 2 > dim N(A) = dim N(A') >mk + 2. 

D 

Theorem 2.4 and 2.6 define two mappings j and j ' from the space 
ME := {(E,H)\(E,H) is an interior eigen solution} into (Cl>a(dD))2. 
For abbreviation we set W := j(ME) and W \— j'(ME) and are now 
in the position to state our first main result of this chapter. 
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THEOREM 2.10. The interior boundary-value problem, in a simply 
connected domain is solvable if and only if 

<"«> c)O=0ta<)e*,°~»{(!M;)}-
PROOF. Necessity. In the following, let E be a solution of the in-

homogeneous, F of the homogeneous interior boundary-value problem. 
As shown in the proof of Theorem 2.6, there exist À',// G Cl'a(dD) 
with 

^tan ~ Grad A', (curl F)^ a n = Grad//' on dD. 

By the second Green's Theorem we find 

/ ikg\l -f- fu'ds — I (i/, curl E)A' + T-Z(V, curl curl E)//ds 
JdD JdD k2 

= / DW{[v,E]\'}-\'Div[v,E\ds 
JdD 

— / Div {[i/, curl E]//} - //'Div [i/, curl E]ds 
k JdD 

= / (i/,£,GradA') - — (i/, Grad / / , curl E)ds 
JdD k 

= / (i/, E,F)- — (i/, curl F, curl E)ds 

= —r / (z/, Ü?, curl curl F) - (i/, curl F, curl E)ds 

= 0. 

Sufficiency: Let (2.12) be fulfilled. Bye the Riesz-Fredholm theory, 
the condition is sufficient for the solvability of the system of integral 
equations (2.4). D 

REMARK 2.11. We can also formulate a similar theorem for the 
exterior boundary-value problem. The condition is only sufficient but 
not necessary for solvability, since the exterior boundary-value problem 
has no eigenvalues. 

dD 

+ 

In order to fill this gap we add some appropriate volume potentials 
to the ansatz (2.5). Let rrik be the multiplicity of the eigenvalue k and 
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let Ei,i — l , . . . ,mfe, be a basis of the corresponding eigensolutions. 
Define 

(2.15) Fi(x):= I Ël(y)^(x1y)dy, i G R 3 , i = l , . . , % 
JD 

Since Et G C°'a(D) these potentials Fi are of the class C ^ R 3 ) , in 
particular, (V,F?:) G C°*a(dD). By Gauss' Theorem, using curl Ej G 
C°-a(D), we get 

curlFi(x) = - / W(y),Ëi{y)]*(xiy)ds{y) 
JdD 

- / curlEi(y)$(x,y)dy, x G R 3 \D , i = l , . . . , m k . 
JD 

Therefore (i/,curlFj) G C°'a(ôD). 

We now try to solve the exterior boundary-value problem in the form 

E(x) =curl curl / A'(y)i/(y)$(x,y)ds(y) 
JOD 

+ curl / / /(yMy)$(x,y)ds(y) 
JdD 

+ ^2alFl{x); xeR3\D 

Analogously to Theorem 2.2 we find 

THEOREM 2.12. The fields E and H := l\ifc curl E solve the 
exterior boundary-value in a simply connected domain if the densities 
(A' , / /)TG (C^a(dD))2 satisfy 

A V^Hi^^J^^^l^curlV^J' 

LEMMA 2.13. Let k be an interior eigenvalue and let (A,//)T G W 
be an eigensolution of the homogeneous integral equation (2.4). Let 
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E be the related interior eigensolution given by (2.1) and let F be the 
corresponding field. Then we have 

PROOF. By Green's and Stokes' Theorems we derive 

((JcurlU-C)> = I J"'" ««<*•>+ <*F>+>* 
= / (i/,/i curl F_|_) + T~5 (y, curl curl F)+Ads 

JdD k2 

= / (z/,F+, Grad/x) +-^(z/ , curl F + , Grad A)ds 
JdD k 

= I (1/, F+, JE_) + -L(i/, curl F+, curl E_)ds 
JdD & 

= / (z/,F__,£_) - — (1/, curl E_, curl F_)ds 
JdD k 

= ^J(F,AE)-(E,AF)dx 

= -^ / (F, fc2£) - (E, fc2F) + (F, £)dx 

= ±J\E\2dx^0, 

where we have used the continuity of F and curl F. D 

From the preceding Lemma 2.13 we see that if k is an interior 
eigenvalue, the coefficients ot^i — 1,...,ra&, can be chosen so that 

Therefore as the second result we get the existence 

THEOREM 2.14. For all wave numbers k the exterior boundary-value 
problem in a simply connected domain is solvable if and only if 

o C)>=°-«-- 0—{(ÎMÎ)}-
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PROOF. The necessity follows from Remark 1.1, the sufficiency from 
the choice of the coefficients at by the Riesz-Fredholm Theory. D 

3. T h e interior and exter ior boundary-va lue p r o b l e m in a 
mul t ip ly c o n n e c t e d d o m a i n . In the final chapter we want to give 
the reader a short impression of how to consider the boundary-value 
problems in multiply connected domains. The connectedness of D can 
be described by its topological genus p. Since dD is topologically 
equivalent to a sphere with p handles we can choose two sets of 
orientated surfaces 5 i , . . . , 5 p in R?\D with orientated boundaries 
C[ :— dSi,i = l , . . . , p , and S[,...,S/ with orientated boundaries 
Ct := dS[, i = 1 , . . . ,p , such tha t R 3 \ D u f l i & and D\ uf=1 SJ are 
simply connected. 

In the potential theoretic case k — 0, the time-harmonic Maxwell 
equations separate into the system 

(3.1) d i v £ = 0 a n d c u r l E = 0 

for the electric field and the same system for the magnetic field H. 
Solutions to the system (3.1) are called harmonic vector fields. The 
radiation condition has to be replaced by 

x 
(3.2) E(x) = o( l ) , \x\ —> oo, uniformly for all directions -—-. 

\x\ 

From condition (3.2) at infinity for harmonic fields E it follows tha t 

(3.3) E(x) = 0[ —— ), Ixl —> cxo uniformly for all directions. 

Harmonic fields with vanishing normal components on the boundary 
(and satisfying (3.2) in unbounded domains) are called Neumann vector 
fields. If D is simply connected there exists only the trivial Neumann 
field E = 0 in D since any curl free field can be represented as the 
gradient of a harmonic function. If D is multiply connected, then as 
shown by Martensen [9] and Werner [13], there exist exactly p linearly 
independent Neumann fields in D and exactly p linearly independent 
Neumann fields in R 3 \ Z ) . Let Z[,..., Z' denote a basis of Neumann 
fields in D. These can be normalized by the circulations 

(3.4) [ (T,Z'l)ds = 6ji, j,l=l,...,p. 



380 V. GÜLZOW 

By r we denote the unit tangent vector to curves. 

In order to treat the interior boundary-value problem in multiply 

connected domains, we reformulate the 

Interior boundary-value problem. Find two vector fields E,H G 
Cl(D) n C(D) satisfying the time-harmonic Maxwell equations (1.5) 
and the boundary conditions (1.6). In addition the fields E and H are 
required to have circulations 

(3.5) [ (i/,£?,Zj)ds = eJand / (i/,ff, Z'3)ds = h'p j = 1 , . . . ,p 
JdD JdD 

with given complex numbers e\— (e^ , . . . , e'p)
T, h := (/i^,..., frp)T 

In the same way, for the exterior boundary-value problem circulations 
have to be prescribed. Under these additional conditions as shown by 
Kress [5,4] the uniqueness Theorems 1.2, 1.3 and 1.4 are still valid. 

In order to show existence, let Z[,...,Z'p be a basis of interior 
Neumann fields, normalized by their circulations (3.4) and define 

(3.5) Xj(x):= ! [v{y),Z,
J{y)]^{x,y)ds{y), x G D, j = 1 , . . . ,p. 

JdD 

Since Neumann fields are Holder-continuous up to the boundary we 
have Xj G C1'a(D)^j = l , . . . , p . By Gauss' Theorem we derive 
divXj = 0 in Z), that is, the Xj solve the Maxwell equations. We 
now try to find a solution for the interior boundary-value problem in 
the form 

E(x)=cml [ A(y)i/(y)*(x,y)ds(y) 

JdD 

(3.6) H-curl curl / /x(y)i/(y)$(x,y)ds(y) 

p p 

+ ^ a , c u r l X j ( x ) + ^ b j X j ( x ) ; x G D. 
i = i j= i 

In addition to the unknown densities À,// G C1,a(dD) we have to 
determine the coefficients a := ( a i , . . . , a p ) T and ò := (6 i , . . . , bp)

T G C. 
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Let's define the linear operators 

p 

(Mb)(x): = 2j2(Hx),XJ(x))bJ, 

p 

(Na){x) : = 2]£(i/(x),curl Xj(x))aj, x G 9D 
3 = 1 

and the vector valued linear operators H and J by their i-th component 

(Hp)i := 2 / (i/(x), (5/iz.)(x), Z,(x))^(x), 
J<9D 

(J\)i~2f (i/(x),curl / A(y)i/(y)*(x,y)ds(y),Zi(x))ds(x), 

i = 1 , . . . ,p. Further we declare the finite dimensional operators C and 
Z} by the p x p matrices with the (z, j)-element 

C0-: = 2 / Hx) ,X,_ ,Z ? : (x ) )^ (x) , 

Dij : = 2 / (i/(a;),curlXj_,Zi(x))ds(x). 
./ÖD 

These operators clearly have the following mapping properties: M, AT : 
CP _• C°'a(9D) are bounded, # , J : C l a ( ö D ) - • C p are bounded and 
C, D : Cp —• C p are bounded. We modify the operator 4̂ for multiply 
connected domains by 

(3.7) A:= 

-T-k2Q P k2M N 
k2P -T-k2Q k2N k2M 

J H D C 
k2H J k2C D 

Then A : (C1 ' a(öD))2 x C2 p - • (C°-"(&D))2 x C2p is continuous. 
Analogously to Theorem 2.1 we can formulate 

THEOREM 3.1. The fields E, defined by (3.2) and H := l\ifc,curl E 
solve the interior boundary-value problem, if the unknown densities 
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À,/x G C1,a(dD) and the coefficients a, ò G Cp are solutions of the 
integral equations 

[91 
\f\ 
\ ë 
LftJ 

REMARK 3.2. If we change the interior to the exterior Neumann fields 
in the additional fields in (3.5), we can modify the ansatz (2.6) for the 
exterior problem in the same manner. This leads to the corresponding 
operator A!, which is still the adjoint to A if we complete the bilinear 
form (2.13) correspondingly. 

Since the additional integral equations have a finite dimensional 
image, we can regularize as above by 

S 0 0 0 ] 
0 5 0 0 
0 0 / 0 ' 
0 0 0 lì 

Now, by the same procedure but with more technical difficulties we can 
determine the nullspaces of A and A!. For details the reader is referred 
to Gülzow [2]. Again from the Riesz-Fredholm theory we get 

THEOREM 3.3. The interior boundary-value problem is solvable if and 
only if 

f P 

/ {X'g + fJL,f)ds + y2{eF.hj + hFjej} = 0 
Jon j=1 

for all eigensolutions F of the homogeneous interior boundary-value 
problem with 

eFj :=- I {y.F.Z^ds, hFj := - / (i/,curlF,Zj)ds 
JdD JdD 

and 

p p 

Grad / / = Ft&n - £ eFj Zt, Grad A' = (curl F ) t a n - £ hFj Zj. 

(3.8) 

R:= 
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Similarly, for the exterior boundary-value problem we can derive 

THEOREM 3.4. The exterior boundary-value problem is solvable if 
and only if 

(3.9) / gds = 0, [ fds = 0. 
JdD JdD 

REMARK 3.5. We have only discussed the case of one scattering 
object. If there are more, the condition (3.5) has to be fulfilled on each 
component. This is easily seen, if we remember that the solvability 
condition arises from the fact that in the null space of A' we have two 
free constants which may differ on each connectivity component. 

REMARK. This paper is a short version of the author's thesis. 
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