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ABSTRACT. We compare solutions of integral equations 

k(s,t)x(t)dt = t/(s), *(*) - [ 
Jo 

• / Ha, 
Jo 

Xß(s)- / k(s,t)xß(t)dt = y(s). 
Jo 

The setting for the analysis is the space of bounded, continu
ous functions on [0, oo). Under reasonable hypotheses, there 
are unique solutions x and Xß such that Xß —» x as ß —> oo, 
uniformly on any finite interval. The main purpose of this 
paper is to obtain computable bounds for the error \xß — x\, 
particularly for certain classes of Wiener-Hopf operators and 
for compact perturbations of Wiener-Hopf operators. 

1. Background and objectives. We are concerned with integral 
equations of the form 

/»OO 

(1.1) x(s)- k(s,t)x(t)dt = y(s), 0 < s < oo, 

and the corresponding finite-section equations 

rß 
(1.2) Xß(s)- k(s,t)xß(t)dt = y(s), 0 < s < oo. 

Jo 

Such equations arise in probability theory, wave propagation, and 
radiative transfer, amongst other fields. 

The functions x, Xß and y are assumed to be bounded and continuous. 
The hypotheses on the kernel k(s,t) are 

H I 
/ •OO 

sup / \k(s,t)\dt < 1, 
s>0 Jo 
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H2 
/»OO 

/ \k(s',t)-k(s,t)\dt-+Q as sf -> s, for 0 < s < oc. 
Jo 

These conditions imply that the equations (1.1) and (1.2) have unique 
solutions x(s) and Xß(s). Moreover, Xß(s) —• x(s) as ß —> oo, uniformly 
for s in any finite interval. See Anselone and Sloan [2] for a proof under 
more general hypotheses. 

Our main objective is to obtain computable bounds for the error 
\xß(s) — x(s)\. Our analysis is influenced by that of Atkinson [5], 
who worked in a somewhat different context. He derived realistic error 
bounds which however are not very easy to compute. We shall relate 
our bounds to those of Atkinson in §8. 

An important special case is that of a Wiener-Hopf kernel k(s,t) = 
K(S — £), where n G Ll(—oo,oo) and | |K| |I < 1. A particular example 
is the Picard kernel 

k(s,t) = a e - M , 0 < a < J . 

Another important case is k(s,t) — l{s,t\ where l(s,t) satisfies HI, 
H2 and, moreover, 

/»OO 

sup / |^(s,£)|d£ —> 0 as ß —> oo. 
s>0 Jß 

For example, 

«•'<> = ;?rkr r 
We also consider sums, K(S — t) + £(s,t), of the two types of kernels. 

In [7], de Hoog and Sloan dealt with kernels of this form. They 
relaxed HI by requiring the left member only to be finite, but imposed 
other conditions in order to ensure that (1.1) and (1.2) are uniquely 
solvable. They obtained theoretical bounds for \xß(s) — x(s)\ which 
give qualitative information about the order of convergence, but do 
not seem to be suitable for numerical calculation. 

The equation (1.2) reduces to an integral equation with 0 < s < ß. 
Numerical integration can be used in order to obtain approximate 
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solutions Xßn(s) of (1.2) which converge to Xß(s) as n —> oo. Bounds 
for \xßn — x^l are available. A triangle inequality gives 

\Xßn - A < \Xßn -Xß\ + \Xß-x\. 

See Anselone and Sloan [3, 4] for further details. 

A number of investigators have studied the convergence of finite-
section approximations in various settings. However, the literature 
on error bounds, especially computable error bounds, is rather sparse. 
Some pertinent references on both aspects of the problem are Chandler 
and Graham [6], Gähler and Gähler [8], Gohberg and Feldman [9], 
Krein [10], Silbermann [11], Sloan [12], and Sloan and Spence [13, 
14]. See also the references cited in [2]. 

2. Notation and basic relations. Let X + be the Banach space of 
bounded, continuous, real or complex functions / on R + = [0, oo) with 
the norm | | / | | = sup s > 0 | / (s) | . Thus, convergence in norm is uniform 
convergence on R + . 

The integral equations (1.1) and (1.2) are expressed in operator forms 
on X+ by 

(2.1) (I-K)x = y, (I-Kß)xß = y, 

where K and Kß, ß G R + , are the integral operators defined by 

poo pß 

(2.2) Kf(s)= k(s,t)f(t)dt, Kßf{s)= k(s,t)f(t)dt. 
Jo Jo 

The hypotheses HI and H2 on k(s, t) imply that K and Kß are bounded 
linear operators o n I + into X + and 

POO 

(2.3) ||A>|| < \\K\\ = sup / \k(s,t)\dt < 1. 
s>0 Jo 

It follows that the equations (I — K)x = y and (I — Kß)xß — y have 
the unique solutions 

(2.4) x = (I-K)-1y, xß = {I-Kß)-
1y, 
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where 

OO OO 

(2.5) (I-K)-'=Y,Kn, (I-Kß)-' = Y^Kn
ß, 

n=0 n=0 

(oa\ lull <r IHI iu II <r IÎ H ^ IMI 
(2-6) I N I ^ r r w I M - r^T^ î - ÏHW 
The solutions x and a^ in (2.1) satisfy 

(2.7) x-Xß = (I-Kß)-\K-Kß)x. 

This basic relation will yield several bounds for \xß — x\. 

To facilitate the derivation of computable error bounds, we introduce 
nonnegative kernels k(s,t) such that 

(2.8) \k(s,t)\ < k(s,t) 

and k satisfies HI and H2. Define operators K and Kß by 

/•OO pß 

(2.9) Kf{s)= k(s,t)f(t)dt, Kßf(s)= k(s,t)f(t)dt. 
Jo Jo 

Then | | ^ | | < ||Ä"|| < 1. If k(s,t) = \k(s,t)\ then ||Â'|| = ||Ä-||. Let 

/»OO 

(2.10) Kl(s)= / k(s,t)dt 
Jo 

Then 

/»OO 

(2.11) ||Ä"1|| = 11^11= sup / k(s,t)dt. 
s>OJo 

From (2.2) and (2.8)-(2.10), 

(2.12) \Kf(a)\<\\f\\kl(8). 
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3. Norm estimates for solutions. The solutions of (I — K)x = y 
and (I — Kß)xß — y are related by (2.7), in which (K — Kß)x is given 
by 

/»OO 

(3.1) (K - Kß)x{s) = / k(s,t)x(t)dt. 
Jß 

This involves x(t) only for t > ß. Let 

(3.2) lkll[/3,oo) =sup |x( t ) | . 
t>ß 

LEMMA 3.1. Bounds for H^H^oc) are given by the inequalities 

(3-3) \\x\\w oc) < Ibll < ^ „ < — M — , 
V ; M 111 ,̂00) - I l M - 1 _ nKn - 1 _ . . , 

\K\\ 
( 3 . 4 ) l k H ^ o o ) < H ? / l l [ / 3 , o o ) + " i _ | | ^ 

[/3,oo) 
< 

PROOF. The inequalities in (3.3) are elementary. Since x = y + Kx, 

(3.5) 
\\x\ |[/3,oc) < IMI[/3.oc) + \\Kx\\{ß 

By (3.5) and (2.12), 

(3.6) || 
) + \\x\\ \\KM\[ß,oo)-

Now (3.6) and (2.6) give the first inequality in (3.4). Since 
H 7 Ï ||7<|| i ^nJg l l l l / J .oo) < M ., . \\y\\\\K\\ \\y\\ 

the second inequality in (3.4) is established. D 

In Lemma 3.1, suppose that k(s,t) = k(s,t) and hence ||A"|| = \\K\\. 
Then it follows from (3.7) that the first bound for ||#||[/3,oo] in (3.4) is 
sharper than the second bound if and only if 

IMI[/3,oc) < IMI or HtfiH^oo) < ||JR:||. 
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The two bounds coincide if and only if 

IMIp,«,) = IMI and \\Kl\\[ß^} = \\K\\. 

Clearly, 

IMI[/3,oc) < IMI if \y(s)| is decreasing, 

IMI[/3,oo) = \\y\\ i f \y(s)\ is nondecreasing. 

Simple examples of the two cases are furnished by y(s) = e~s and 
y(s) = 1 - e~s. In view of (2.10) and (2.11), 

ll^l||[/3,oo) < 11̂ 11 if k(s,t) is decreasing in s, 

| |Ä"1| |[/3,oo) — 11-̂ 11 if k(s,t) is nondecreasing in s. 

Examples will be given later. 

Uniform convergence on finite intervals plays a central role in our 
analysis. Note that fß(t) —> f(t) as ß —» oo, uniformly on each finite 
interval, if and only if \\fß — /||[o,a] -^ 0 as /? —» oc for a G R + . 

LEMMA 3.2. Assume 

(3.8) (I-Kß)fß=gßl \\gß\\<b<oc, 

(3.9) IMI[o,a] ^ 0 o s / 3 - * o o / o r a G R + . 

Then 

I"») 11*11 <- T ^ L < T-Lm, 

(3.11) \\fß\\[0M - 0 as /? - oo /or a G R+. 

PROOF. Since more general results were proved by Anselone and 
Sloan [2], we merely outline the main steps in the argument. First, 
(3.10) is clear. Now HI and H2 imply that {Kßfß : ß G R + } is bounded 
and equicontinuous. Repeated applications of the Arzelâ-Ascoli lemma 
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on successive intervals [0, m], m = 1,2,..., yield a sequence ft —> oc 
and / G X + such that 

WKßifßi - /ll[o,a] ^ 0 as ft -* oo for a G R + . 

By (3.8), (3.9) and (2.2), 

Wfßi - /II[O,Q] ^ ° a s ft -> oo for a G R + , 

H ^ / ^ - ^/ | | [ 0 ,a] ^ 0 as ft - , oo for a G R + , 

It follows that Kf = / , ( / - K ) / = 0, / = 0, and 

ll//3ill[o,Q] -^ 0 as ft -^ oo for a G R + . 

Similarly, every sequence {/&} has a subsequence which converges to 
zero uniformly on finite intervals. A contrapositive argument yields 
(3.11). D 

For the case of a Wiener-Hopf kernel, we shall give a constructive 
proof of (3.11) which produces error bounds. 

LEMMA 3.3. Let k(s,t) = K(S - t), where K G £X(R) and | |K| |I < 1. 
Then \\Kß\\ < \\K\\ = ||AC||I < 1. Assume 

(3.12) (I-Kß)fß=gß. 

Fix e > 0. Choose r and n such that 

(3.13) | j K ( u ) | d « < ( i - | | Ä ' | | ) | , | | A r i r + 1 < | . 

Then 

,O-,A\ nt M ^ I M i [ 0 , a + n r ] + | | g / ? l | g 
W-14) ll//3ll[0,a] < 1 _ i|A-|| • 

PROOF. From (/ - Kß)fß = gß, 

(3.15) fß = gß + Kß9ß + K2
ß9ß + ••• + K$gß + Kß

l+1fß. 
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By (3.13), 

\Kß9ß{s)\ <( f + [ )\K(s-t)gß(t)\dt, 

/

s — oc — r 

\K(u)\du, 
-OC 

Umilio.*] < IMI \\9ß\\[0.a+r] + (1 - l^ll)ll^ll|-

Repetition of this argument yields 

| |A^| | [o ,a] < \\K\\2\\gß\\[0,a+2r]+2\\K\\(l-\\K\\)\\gß\\
£-, 

\\K3ß9ß\\[0,a] < II* l|3|MI[0,«+3r] + 311 ̂ T [ j 2 ( 1 - | \K\ |)| \gß\ | J , 

and, in general, 

l l ^ ^ l l [ 0 , a ] < l l ^ i r i l ^ l l [ 0 , a + m r ] + m | | / f | r - 1 ( l - | | A : | | ) | | ^ | | | . 

Hence (3.15) and (3.13) yield 

\\fß\\[0,a] < (i + \\K\\ + HAH2 + • • • + ||Ar|r)||^|| [0.„+nr] 

+ (l + 2\\K\\ + 3\\K\\* + -.. + n\\K\r1)(l-\\K\\)\\gß\^ 

+ ll//Hlf> 

which implies (3.14). • 

For the special case of a Wiener-Hopf kernel, (3.8), (3.9) and (3.14) 
imply (3.11). In principle, the bound in (3.14) is computable. 

4. Nonnegative kernels. Now let k(s,t) be any kernel such that 

(4.1) k(s,t) > 0 

and k(s,t) satisfies HI and H2. Then the corresponding integral 
operators K and Kß are given by (2.9), and \\Kß\\ < \\K\\ < 1. 
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We shall compare solutions of the equations 

(4.2) (/ - K)x = y, (I - Kß)xß = y, il > 0. 

Thus y (s) > 0 for s e R + 

All of the results of §2 and §3 are valid with k(s11) = k(s, t),K = K, 
and Kß — Kß. 

Since k(s,t) >0,K and Kß are positive operators. By (2.9), 

(4.3) f>0^Kf> Kßf > 0. 

By (2.12) and (2.5), 

(4.4) f>0=>Kf<\\f\\Kl, 

(4.5) / > 0 => (/ - K)~lf >(I- Kß)'1/ > 0. 

Thus, x > xß > 0 in (4.2). 

Bounds for \x — Xß\ will involve the functions 

/»OO 

(4.6) vß(s) = (k - kß)l(s) = / k(s, t)dt, 
Jß 

(4.7) uß = (i- kß)-Hß = (i- Kß)-\k - kß)\. 

Among other properties, 

(4.8) \\v0\\ = \\k-kß\\<\\k\i 

K-Kß\\ . \\K\ 
(4.9) \\uß\\ < ^ < 

m - \-\\Kß\\ " I - I M I 

Thus, {vß} and {uß} are bounded uniformly on R + . 

LEMMA 4.1. The functions Vß and uß satisfy 

(4.10) IMI[o,«] ^ 0 as ß -+ oo for a G R + , 
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(4.11) l|â/?ll[o,a] -> 0 as ß -> oo for a e R + . 

PROOF. By Hl, H2 and (4.6), 

Vß(s) —* 0 as ß —• oo for s G R + , 

{vp : /? G R + } is equicontinuous, 

which imply (4.10). Lemma 3.2 yields (4.11). D 

THEOREM 4.2. The solutions x and Xß in (4.2) satisfy 

(4.12) x - xß = (/ - Kß)-\k - Kß)x, 

(4.13) 0<x-xß< 11^11 ,̂00)̂ /3, 

^ i n UNI ^i i- i i , l|yllll^i|lb3.oo) ^ lidi 
(4.14) \\x\\ißt00) < \\y\\\ß,oo) + = < 1-\\K\\ - 1-\\K\\ 

(4.15) \\x - Xß\\[0,a] < |N|[/3,oo)l|û/9||[o,a] for a G R + , 

(4.16) \\x — i/3||[o,a] -^ 0 as ß ^ oo / o r a G R + . 

PROOF First, (4.12) and (4.14) are special cases of (2.7) and (3.4). 
By (2.9) and (4.6), 

O^iK-Kß^^Wxiy^Vß. 

Now (4.12), (4.5) and (4.7) yield (4.13) and (4.15). Finally, (4.16) 
follows from (4.15) and (4.11). o 

The quantities \\y\\, \\y\\[ßt0o)i \\K\\ and H Ä l H ^ ) in (4.14) could be 
estimated numerically, since only suprema and integrals of functions 
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are involved. But the function uß in (4.13) is not generally available. 
Fortunately, üß can be evaluated in the case of a Picard kernel, and uß 
can be estimated in the case of a Wiener-Hopf kernel. 

EXAMPLE 4.1. Let k(s,t) be the Picard kernel 

(4.17) l (s , t ) = o e - M , 0 < a < Ì . 

Then \\K\\ = 2a < 1. Let b = \ / l - 2o and c = ^f. Then 

(4.18) vß(s) = ae8-ß, 0 < s < ß, 

(4.19) uß(s) = -
2a 
+ c 

ecs - fre~cs 

e c / 3 _ 6 2 e - c / 3 j ' 
0 < s < ß. 

There are other formulas for s > ß\ see Atkinson [5]. For the Picard 
kernel, (4.18) and (4.19) imply (4.10) and (4.11). Note that ||û/3||[o,a] 
is small only if ß is significantly larger than a. 

EXAMPLE 4.2. Let k(s, t) be a non-negative Wiener-Hopf kernel, 

(4.20) k{s,t) = k(s - t), k E L ^ R ) , H^Hi < 1, k > 0. 

Then 

(4.21) Kl{s)= k(s-t)dt= k{u)du, 
JO J-oc 

(4-22) l l ^ l l l ^ o o ) = libil i = 11^11-

Now the first bound for ||£||[/3,oo) in (4.14) simplifies, so the first 
bound for ||#||[0,oo) is sharper than the second bound if and only 
if ||2/||[/3,oo] < I \y\ I > e-g-5 when y(s) is decreasing in s. An estimate 
for | |Ä011 [o,a] to use in (4.15) is available from Lemma 3.3 applied to 
(I — Kß)üß — Vß. Fix e > 0. Choose r and n such that 

(4.23) / r\k(u)\du<(l-\\K\\f-, \\K\\ 
J-OC Z 

n+1 < f_ 
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Then 

Mlfo ,a+nr| 
(4.24) | M | [ 0 , a ] < 

1 - HAI 

The right member involves only suprema and integrals of functions. So 
the bound for \\x — Xß\\ in (4.15) could be estimated numerically. 

5. Kernels of mixed sign Again consider the integral equations 

(5.1) (I-K)x = y, (I-Kß)xß = y, 

where K and Kß are given by (2.2) with a kernel which satsifies HI 
and H2. As before, 

(5.2) x-Xß = (I-Kß)-1{K-Kg)x. 

Again let 

(5.3) \k{s,t)\<k{s,t), 

where k(s,t) also satisfies HI and H2. For example, k(s,t) = 
\k(s,t)\ or k(s,t) = k(s,t) > 0. 

Define K and Kß by (2.9). Then 

(5.4) \\Kß\\ < \\K\\ < \\K\\ < 1, \\K0\\ < \\KP\\ < HATH < 1. 

For / G X+ let |/ |(s) = | /(a) | . Then 

(5.5) | # / | < Â : | / | , \Kßf\<k0\f\, \{K-Kß)f\<{K-Kß)\f\. 

By (2.5), 

(5.6) |(7 - K)-lf\ < (7 - K)-l\f\, |(7 - Kß)^f\ < (I - kß)~
l\f\. 

THEOREM 5.1. The solutions x and Xß in (5.1) satisfy 

(5.7) \x-Xß\<{I-kß)-\k-kß)\x\, 



ERROR BOUNDS 333 

(5.8) \x-xß\ < l lxll^oo)^, 

\K1\ 
(5.9) ||x||[/3,oo) < \\y\\[ß,oo) + —YZ7\~j 

[/3,oo) 
< 

\K\\ — 1 — HATH' 

(5.10) ||x - xß\\[0.a] < ||£||[/3,oc]IMI[o,<*] for a G R + , 

(5.11) \\x — X/3||[o,a] ~> 0 as ß—* oc for a eH^~. 

PROOF. The arguments parallel those for Theorem 4.2, with the use 
of (5.4)-(5.6). D 

EXAMPLE 5.1. For 0 < a < | , let 

k(s,t) = a sin(> - £)e~ | s _ t | , k(s,t) = a e~ | s~ f |. 

Then üß is given by (4.19) and \\x — £/3||[o,a]
 c a n be estimated numer

ically. 

For a general Wiener-Hopf kernel k(s,t) = K(S — £), we can define 
k(s,t) — \K(S — t)\ and obtain numerical estimates for \\x — £/3||[o,a] 
with the aid of the bound for ||û/3||[o,a] given by (4.24). 

6. Uniform convergence on R + . As we have seen, the hypotheses 
HI and H2 on the kernel /;;(s, t) imply that the solutions of (I — K)x = y 
and (J — Kß)xß = y satisfy Xß(s) —> x(s) as ß —• oc, uniformly on 
finite intervals. More restrictive conditions on k(s,t) will give uniform 
convergence on R + . Different notation is used in this case. 

Define integral operators L and Lß on X + by 

(6.1) £ / ( * ) = / i(s,t)f(t)dt, Lßf(s) = t(s,t)f(t)dt, 
Jo Jo 
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where l(s, i) satisfies 

/»OO 

(6.2) \\L - L ß \ \ = s u p / \£(s,t)\dt - • 0 a s ß -> oo 
•s>0 iß 

in addition to HI and H2. Then \\Lß\\ < ||L|| < 1. 

The conditions Hl, H2 and (6.2) do not imply that L or Lß is 
compact. However, if £(s,t) is also bounded and uniformly continuous 
(the latter can be weakened), then L and Lß are compact. See Anselone 
and Sloan [3] for details. 

Assume that 

(6.3) | * (M) |<£ (M) , 

where l(s,t) satisfies HI and H2. Define L and Lß by 

(6.4) Lf(s)= £(s,t)f(t)dt, Lßf(s)= £{s,t)f(t)dt. 
Jo Jo 

Consider the equations 

(6.5) (I-L)x = y, (I - Lß)xß = y. 

THEOREM 6.1. The solutions x and Xß in (6.5) satisfy 

(6.6) x - Xß = (I - Lß)~l(L - Lß)x, 

(a i\ II II ^ l l L ~ L / ? I M M I [ / 3 , o o ) n n 
(6.7) \\x - xß\\ < l - » 0 asß -> oo , 

(fi*\ IMI <r IUI , II^M.IL1I1[/3,OO) IMI 
(6-8) IFII[/3,OO) < l|y||[/3,oo) + — 1 _ | | L | » — < -l-\\L\ 

PROOF. First, (6.6) is a special case of (2.7). Then (6.7) follows easily. 
Finally, (5.9) implies (6.8). D 
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Since the bounds for \\x — Xß\\ involve only suprema and integrals of 
given functions, they are suitable for numerical calculation. For better 
accuracy, the choice l(s,t) — |£(s,t)| is recommended unless it makes 
the calculations difficult. 

EXAMPLE 6.1. Let 

/,/ x 1 sin st -, , 1 1 
7T S2 + t2 + 1 ' V ' } 7T S2 + t2 + I ' 

Then ||L|| < ||L|| = Ì and 

||£ — Lß\\ < arc tan ß —• 0 as ß —• oo. 
2 7T 

Since t,(s,t) is decreasing in s, the first bound for ||x||[^>00) in (6.8) is 
sharper than the second. This also follows from 

Ll(s) = —T4=, \\Ll\\\ß oc) = , l < \\L\\. 

By (6.8), if y(s) —• 0 as s —> oo, then x(s) —> 0 as s —• oo. The 
operator L is compact and maps X^ and into XQ~, the subspace of X + 

consisting of the functions which vanish at infinity. See Sloan [12]. 

EXAMPLE 6.2. Let 

2 s + t + T 2 s + 1 

Then ||L|| < ||L|| = \ and 

\\L-Lß\\ < ]-e~ß -+ 0 as ß -> oo. 

Since ï(s,t) is increasing in s, | |Ll| |^ i00) = ||L||. This also follows from 
an easy calculation. If ||z/||[/5,oo) — IMI? e-g-? if 2/(s) is nondecreasing, 
then the two bounds for ||#||[/3,oc) in (6.8) coincide. The operator L is 
compact and maps X^ into X^~, the subspace of X + consisting of the 
functions with any finite limits at infinity. See Sloan [12]. 
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7. Operator sums. Consider an operator sum K + L with K as in 
§5 and L as in §6. Define K and L as before. We impose the additional 
condition 

(7.1) ||K + Î | | < 1 . 

Then \\Kß + Lß\\ < \\K + L\\ < \\K + L\\ < 1. 

We shall compare solutions of the equations 

(7.2) (I-K-L)x = y, (I - Kß - Lß)xß = y. 

The following theorem generalizes Theorems 4.2, 5.1 and 6.1. 

THEOREM 7.1. The solutions x and xß in (7.2) satisfy 

(7.3) x-xß = (I-Kß- Lß)~\K -Kß + L- Lß)x, 

(7-4) \x-xß\ < \\x\\[ßi00)(uß + Aß), 

<7*i\ IMI < IMI i M».IIP' + £ ) % , ° ° ) < IMI 
(7.5) IMI^) < \\y\\[ß,x) + J . I I ^ + ^ I < Y^i\ÈTT\ 

(7.6) Aß= x_Uß + m - 0 « / ? - > « , , 

(7.7) \\x - xß\\[0M < ||x||[/3rOo)(||w^||[0,a] + Aß), 

(7.8) llz-a^Ujo.a]->0 as ß^oo foraeR+. 

PROOF. First, (7.3) and (7.5) are special cases of (2.7) and (3.4). By 
(7.3), 

x - xß = (I - Kß - Lß)~\K - Kß)x 

+ (I-K0-Lß)-\L-Lß)x. 
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The standard identity A"1 - B~l = A~l(B - A)B~l yields 

{I-Kß- Lß)-1 = (/ - Kß)-1 + (J - Kß - Lß)-lLß{I - Kß)'1. 

Therefore, 

{I-Kß-Lß)-\K-Kß) 

= (/ - Kß)-\K - Kß) + (I-Kß- L0)-
lLß(I - Kß)-\K - Kß). 

It follows that 

x-Xß = {I-Kß)-\K-Kß)x 

+ (I-Kß- Lß)-lLß(I - Kß)-\K - Kß)x 

+ (I-Kß-Lß)-1(L-Lß)x. 

An adaptation of (5.8) gives 

\(I-K0r
1(K-Kß)x\<\\x\\[ß,oo)uß. 

Hence, 

Wir is T \ - i r (T is \-l(is is \ \\ ^ Wx\\lß<oo)\\Lßuß\\ \\{I -Kß- Lß) Lß(I - Kß)
 L{K - Kß)x\\ < > . 

1 - \\Kß + Lß\\ 

By similar reasoning, 

\\(T TS T \ - l / r T \ \\ ^\\XW[ß,oo)\\L-Lß\\ 
\\{I-Kß-Lß) {L-Lß)X\\< x ^ K ß + m • 

These results imply (7.4) and (7.7) with A^ defined by (7.6). We prove 
next that A^ —• 0 as ß —> oc. By the triangle inequality, 

(7.9) \\Lßuß\\ < \\Lauß\\ + \\(Lß - La)uß\\, 

\\Lßuß\\ < \\L\\ \\uß\\[0,a] + \\Lß - La\\ \\uß\\. 

By (4.9), (4.11) and (6.2), 

H TS\ I 

11 pu~ l-\\K\\ 

ll^||[o,a] —• 0 a s ß —• °° for a e R + , 
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\\Lß — La\\ < \\L — La\\ —» 0 as a —> oo. 

Fix e > 0. Choose a — a(e) such that 

| | L | | | M | < | for/3>/3(e). 

There exists ß(e) > a(e) such that 

||L|| | M I < ! iorß>ß(e). 

Now (7.9) yields 

(7.10) 

By (6.2), 

(7.11) 

\\Lßuß\\<e for ß< ß(e), 

\\Lßuß\\ ^ 0 as ß —*• oo. 

| | L - L ^ | | ^ 0 a s / î ^ o o . 

Since l l ^ + L^II < ||ür + L | | < l , 

( 7 ' 1 2 ) 1 - | |A> + ̂ | | - l - | | X + L | r 

Now (7.10)-(7.12) imply that A^ -> 0 in (7.6). Finally, (4.11), (7.6) 
and (7.7) yield (7.8). D 

In the bounds for \x—Xß\, the quantities uß and HẐ &^H could present 
numerical difficulties. As for uß the remarks in §4 apply here as well. 
If k(s,t) is a Picard kernel, then uß is given by (4.19). If k(s,t) is any 
Wiener-Hopf kernel, then (4.24) estimates uß. As for | |L^Ä^ | | , it might 
be possible to estimate it directly in the Picard case. In the general 
Wiener-Hopf case, (7.9) and (4.24) could be exploited. 

8. Related bounds. Return to the setting of §5. Thus, K and Kß 
are integral operators with a kernel k(s,t) which satisfies HI and H2. 
Again consider the equations 

(8.1) (I-K)x = y, (I-Kß)xß = y. 
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Bounds for \x — Xß\ are given in Theorem 5.1. 

Another bound for \x — Xß\ comes from x = y + Kx and 

x-xß = {I-Kß)-\K-Kß)x = (I-Kß)-1(K-Kß)y+(I-Kß)-1(K-Kß)Kx. 

It follows, by now familiar arguments, that 

\y\\(i - kß)-\k - Kß)k\ 
(8.2) \x-xß\<\\y\\[ß,oo)uß + 

\K\ 

The bound for \x — Xß\ from Theorem 5.1 can be expressed in a similar 
form. By (5.8), (5.9) and (4.7), 

/O ON I I / I, || ~ , IMIH^II^OC) . 

(8.3) \x - xß\ < WyWiß^Uß + —ïZTÎûki—ufr 

(*A\\ i d i l l i . , \\y\\(I - Kß^llKiy^iK - Kß)l 
(8.4) \x-Xß\<\\y\\[ß,oo)Uß + l - l l g l l ' 

The right members of (8.3) and (8.4) are equal. 

Since 

(8.5) (K - kß)k\ < IIÂrill^.^)^ - Kß)l, 

(8.2) implies (8.3). However it is likely to be more difficult to compute 
the bound in (8.2) because (K — Kß)Kl is a double integral. 

Moreover, as we shall show, (8.2) gives only a marginal improvement 
over (8.3) in the important case of a Wiener-Hopf kernel. Let 

k(s,t) = k(s-t), keLl(TL), \\k\\i < 1, k > 0. 

Then 

Kf(s) = f k(s- t)f(t)dt, Kßf(s) = ( k(s- t)f(t)dt, 
Jo Jo 

and II^H = \\K\\ = ||£||, < 1. To compare (8.2) and (8.3), it suffices 
to compare the two members of (8.5). By (4.22), | |Xl||^<oc) = ||A'||. 
Therefore, (8.5) is now equivalent to 

(8.6) (K-Kß)Kl<\\K\\(K-Kß)l. 
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The right member of (8.6) is given by 

/»oc ps — ß 

(8.7) \\K\\(K - Kß)l(s) = \\K\\ / k(s - t)dt = \\K\\ / K(u)du, 
Jß J-oc 

which goes to zero as ß —• oo. Since 

/»OC pS /»OC 

(8.8) Kl(s)= / k(s-t)dt = / k(u)du = \\K\\ - / Ä(w)dw, 
JO J-oo J s 

the left member of (8.6) can be expressed by 

(K - K0)K1(S) 
/ O Q^ /»OO pOC 
K " ; =\\K\\(K-Kß)l{s)- / ft(s-t) / k{u)dudt. 

Jß Jt 

Therefore the difference of the two members of (8.6) satisfies 

\\K\\(K - Kß)l(s) - (K - Kß)Kl(s) 

(8.10) 

/»oc poo ps — p poc 

/ k(s — t) j k(u)dudt = / k{r) I k(u)dudr 
Jß Jt J-oc Js-r 

/

S-ß /»'OC^ 

k(r)dr / k(u)du, 
-oc J 3 

where both of the last two integrals go to zero as ß —» oo. Thus, for 
large /?, the difference of the two members of (8.6) is small compared 
with either member. As a consequence, the bounds for \x — Xß\ given 
by (8.2) and (8.3) are comparably accurate for large ß. Since (8.3) is 
easier to implement, it is preferable, at least in the Wiener-Hopf case. 

For example, let fc(s, t) be the Picard kernel 

k(s,t) = a e " M , 0<a < - . 

Then the right member of (8.6) is 

\\K\\(K - Kß)l{s) = 2a2es~ß for 0 < s < ß. 
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The left member is 

(K - Kß)Kl(s) - 2a2e*-ß - ]-a2es~2ß for 0 < s < ß. 

Therefore, the difference of the two sides of (8.6) is 

\\K\\(K - Kß)l(8) - (K - Kß)Kl(s) = \a2es-20 for 0 < s < ß, 

which goes to zero faster than either member of (8.6) as ß —» cxo with 
s fixed or restricted to a finite interval. 

Atkinson [5] derived an analogue of (8.2) in a wider context. He 
obtained a bound for \x — xaß\, where 

rß 
xaß{s)- / k(s,t)xaß(t)dt = y(s). 

Ja 

His bound reduces to (8.2) when a = 0. 

Our analysis can be extended to the more general setting studies by 

Atkinson. 
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