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THE CLASSICAL SOLUTIONS FOR NONLINEAR 
PARABOLIC INTEGRODIFFERENTIAL EQUATIONS 

HONG-MING YIN 

ABSTRACT. In this paper, we consider the solvability in 
the classical sense of a class of nonlinear one-dimensional in
tegrodifferential equations of parabolic type. The motivation 
for studying this problem comes from the many physical mod
els in such fields as heat transfer, nuclear reactor dynamics 
and thermoelasticity. One of the characteristics of this kind 
of equation is that the maximum principle is no longer valid 
in general. We combine the integral estimate method and 
Schauder estimate theory for a linear parabolic equation to 
derive an a priori bound for the solution of our nonlinear prob
lem in the norm of the Banach space C2+a,1+ 2" (QT). The 
method of continuity then allows us to establish the global ex
istence of the solution. For completeness, we also demonstrate 
the uniqueness and continuous dependence of the solution. 

1. Introduction. Let QT = [0,1] x [0,T] with T > 0 arbitrary. In 
this paper we consider a nonlinear integrodifferential initial-boundary 
value problem of finding a function u{x,t) G C ' 2 + a ' 1 + ^ " ( Q T ) which 
satisfies: 

/ c(x, r, u, ux 
Jo 

(1.1) ut = a(xìtìu,ux)uxx + b(x,t,u,ux) + / C(X,T,U,ux)dr in QT, 
Jo 

(1.2) "(<M) = / i ( t ) , 0<t<T, 

(1.3) u ( M ) = / 2( t ) , 0<t<T, 

(1.4) u(x, 0) = u0(x), 0 < x < 1. 

The motivation for studying (1.1)-(1.4) arises from a variety of phys
ical and engineering problems (see [13, 20, 21], etc.). Considerable 
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research on the wellposedness for special kinds of integrodifferential 
equations has been previously carried out (cf. [1 - 11, 14 - 15, 17, 
18 - 25] and their references). Various approaches such as abstract 
semi-group theory, perturbation method, compactness arguments, etc. 
have been applied to this kind of equation. When the principal part 
of such an equation is nonlinear, one needs certain strong assumptions 
to obtain the global solution ([1, 5, 15, 19,] and [24]). In this pa
per, we shall take a rather different point of view in dealing with the 
problem (1.1)-(1.4). Indeed, we use integral estimates in conjunction 
with Schauder estimate theory to derive an a priori estimate for the 
solution of (1.1)-(1.4). The method of continuity, which is similar to 
that applicable for a regular parabolic boundary value problem, is then 
applied to establish the global solvability of (1.1)-(1.4) in the classical 
sense. 

The paper is organized as follows. In §2, we first deduce an a priori 
estimate for the solution and then prove the existence of the solution 
by means of the method of the continuity. We also include a useful 
regularity theorem. The continuous dependence of the solution upon 
the known data and uniqueness are established in §3. 

The following basic hypotheses are assumed throughout the paper: 

H(l). The functions a(x,t,u,p),b(x,t,u,p) and c{x,t,u,p) are differ
ent ia te with respect to all of their arguments. Furthermore, 

(i) a(x,t,u,p) > Ai > 0, 

(ii) \b(x,t,u,p)\<A2[l + \u\ + \p\], 

(iii) \c{x,t,u,p)\ <j43[l + |u| + |p|] 

for (x,t,u,p) G QT x Ä2, where A\,A2 and A3 are three absolute 
constants. 

H(2). fx(t) and f2(t) G C2[0,r] ,u0(x) G C 2 + a [0 , l ] and the consis
tency conditions 

/i(0) = t*o(0), /2(0) = tio(l), 

/i(0) = a(0,0, MO), ^ ( 0 ) K ( 0 ) + fc(o,0, MO(0), u'0(0)) 

and 

/£(0) = a(l , 0, uo(l), < ( 1 ) K ( 1 ) + 6(1,0, txo(l), *{,(!)) 
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are satisfied. 

The notations of the norms in Banach spaces C(QT),C2,1(<2T), etc. 

are those of Ladyzenskaya et al [16]. 

2. Existence and regularity. The following inequalities are well-
known and are frequently used in this paper. We list them here for 
convenience. 

1. Young's inequality: If a > 0 and b > 0, then, for any 77 > 0, 

(2.1) afc<r?— + r T s / r - , 
r s 

where r > 1, s > 1 and £ + ^ = 1. 

2. Interpolation inequalities: If u(x) G i î 1 (0 , l ) , then 

(2-2) I M I L ~ ( O , I ) < C| |^IIH%,I)II W I^ / I 3 (O,I ) -

It is clear that the maximum principle for equation (1.1) is no longer 
valid in general. However, in the sequel we establish such a global a 
priori bound for w(x, t) in the norm of the Banach space C'2+a>1+T (QT). 
Our technique is based on integral calculations, imbedding inequalities 
and Schauder estimates under the hypotheses H(l)-H(2). 

Let T > 0 be arbitrary and assume that w(x, t) is an arbitrary solu
tion of the problem (1.1)-(1.4). We first deduce the following result. 

LEMMA 2.1. Under the assumptions H(l) and H(2), u(x,t) satisfies 
the following inequality : 

(2.3) / / u2
xxdxdt+ sup / u2

x{x,t)dx < d 
J JQT 0<t<TJ0 

where C\ depends only on the Ai(i = 1,2,3), the known data and the 
upper bound ofT. 

PROOF. In what follows, various constants which appear during the 
process of the proof will be denoted by C; their dependency is the 
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same as the final constants except for an additional explanation. Let 
v(x,t) = (l — x)fi(t)+xf2(t) and w(x,t) = u(xit) — v(x,t), (x,t) G QT. 
Then w(x, t) is a solution of the following problem: 

(2.4) wt = awxx + b-vt+ I c(x, T,W + v,wx + vx)dr 
Jo 

(2.5) w(0,t) = w(l,t) = 0, 0<t<T, 
Hpf 

(2.6) w(x, 0) = uo(x) - [(1 - z)/i(0) + xf2(0)] = w0(x), 0 < x < 1. 
Multiplying equation (2.4) by lo^ and integrating it over QT> we ob
tain, employing the Cauchy-Schwarz inequality with a small parameter 
e > 0 and the assumption H(l), that 

^ i / / wxxdxdt — wtwxxdxdt 
J JQT J JQT 

< £ / / ™2
xxdxdt + C(e) (f { l 

[ / A3(l + |H + K I ) d r ] }dxdt 

(2.7) " ^ T J JQT 

+ r 

Observe that 

+ w2 + wl+ 

( 2 . 8 ) - / / wtwxxdxdt=- / ^ ( a ; , T)2dx- - I w'0(x)2dx, 
J JQT * Jo * Jo 

(2.9) / / w2dxdt <C w2
xdxdt, 

J JQT J J QT IQT J JQT 

and that 

/ / [ / (1 + |H + K . | ) d r | dxdt 

- / [2t / ^ + w2 + ^ ) d r ] d x c ^ 
(2.10) < 2T f f f [1 + w2 + w2

x]drdxdt 
Jo Jo Jo 

= 2T f f [T - r][l + w2 + w2]c£rdT, 
./o ./o 

<2T2 f f [1 + w2 + w2]dx<ft 
./o ./o 
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Combining (2.8), (2.9) and (2.10) by choosing e — ^ - , we have from 
(2.7) that 

TT \ \ wlxd%dt+ / wx(x,T)2dxdt 
2 J JQT JO 

<(1 + T2)C [ [ w2
xdxdt + {l+T2)C. 

Since T > 0 is arbitrary, Gronwall's inequality implies that 

/ wx(x,t)2dx< C(T) 
Jo 

Therefore, 

(2.11) / / wx(x,t)2dxdt<C 
J JQT 

and 

(2.12) / / wlxdxdt+ sup / w2
x(x,t)dx<C 

J JQT o<t<rJo 

This concludes the estimate (2.3) since u(x,t) = w(x,t) + v(x,t) on 
QT. D 

COROLLARY 2.1. There exists a positive constant C2 such that 

(2.13) l l « ( M ) | | c ( Q T ) < C a 

where C2 depends on the same quantities as C\. 

PROOF. This can be obtained directly from the estimate (2.3). DO 

In order to estimate the norm of ux, we need considerably more ef
fort. 
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LEMMA 2.2. There exists a constant C3 such that 

(2-14) IKHc(QT) < ^3 

where the dependency of C3 is the same as C\. 

PROOF. Let p > 2 be an arbitrary even integer. Since 

Jo dtiJo '' 

Jo Jo 

= - / / p(p-l)wp~2wxxwtdxdt + pwP^wtHzldt 
Jo Jo Jo 

= - / / p(p - l)wp~2wxx \awxx + b-vt+ / cdr\ dxdt, 

wpdx\dt 

cT /-I 
lwxtdxdt 

(2-15) '" IT ,1 

it follows that 
(2.16) 

dxdt 

f wP(x,T)dx + Ai f f p{p-l)wPx-
2w2

xxdxdt 
Jo Jo Jo 

< f w'0(x)pdx + / |p(p - l)wp~2wxx (b-vt+ f cdrj 

< J w'0{x)pdx + e I I p{p-l)wp
x-

2w2
xxdxdt 

Jo Jo Jo 

+ C(e) I J p(p- 1 ) < " 2 [b - vt + / cdr] dxdt. 

Choosing e = A\12 and using H(l), we find 

/ wp(x, T)dx + AJ2 [ f p(p - l)wr2w2
xxdxdt 

Jo Jo Jo 

(2.17) < f w'0(x)pdx + C [ [ p{p- l)wp~2 fl + w2 + w2
x+ 

Jo Jo Jo L 

( (1 + \w\ + \wx\)dr) ]dxdt. 
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Let 

I = [ [ *%-2\ [ (l + \w\ + \wx\)dr\2dxdt. 
Jo Jo L « / o J 

Then, 

I < f f K~2 [2T(T + C2
2 + I w2

xdr\\dxdt 

pT pi pT pi pt 
< C T ( 1 + T ) / / wp~2dxdt + 2T / wp~2( w2

xr)dxdt 
Jo Jo Jo Jo Jo 

= CT(1 + T)h + 2TI2 

Using Young's inequality (2.1) with r = - ^ , s = | and 77 = 1, we have 

(2.18) 

I2= f j U , P - 2 ( / u£dr) dardi 

< f f wpdxdt + j j [t^f j wp)dr\dxdt 

pT pi pT pi pt 
< wPdxdt + T2^1 / / / wpdrdxdt 

Jo Jo Jo Jo Jo 

< wpdxdt + T^~ / / (T-r)wpdxdr 
Jo Jo Jo Jo 

pT ni 
< ( 1 + T*) / / wpdxdt, 

Jo Jo 

def 
For the moment, we restrict T b y O < T < T0 = 1. Under this 

condition, it follows from (2.17)-(2.18) and T G [0,T0] arbitrary that 

sup / w%(x,t)dx + Ai/2 / p(p —l)wp~2wxxdxdt 
{0 1Qx o<t<rJo J JQT 

< / w'0(x)pdx + C / p(p-l)wp
x-

2[l + w2
x}dxdt, 

Jo Jo Jo 
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where C depends only on C2 and known data. Assume that ||it;x(x, £)||LOO(QT) — 
max{l, ^| |^ó(x)| |o} (Here 0 < T < T 0 = l i s a fixed number). Other
wise, we already have the estimate(2.14) on the interval [0,Tb]. Then 

sup [ wp
xdx + A1/2[ J p(p-l)w%-2w2

xxdxdt 
0<t<TJ0 JO JO 

(2.20) < c [ f p(p- l)wp
xdxdt 

Jo Jo 

<C J p(p-l)\\wx{;t)\\l~(0A)dt 

If the interpolation inequality (2.2) is employed we have 

IK2IUoo(o,i) < ^ I I ^ I I H W J I I ^ I I L W ) -

i.e. 
- ,4/3 . . „ „ f ..2/3 

^ | | L o o ( 0 , i ) - C\\W% 11^1(0,1)11^* 11^(0,1) 

< C f7 | | t i ; # | | ^ 1 ( o a ) + C i 7 - 2 | | n ; x | | ^ f ( 0 s i ) , 

where the last inequality is from Young's inequality (2.1) for r = § and 
5 = 3. Note that 

\w£\ • f1 £ - i f1 

' \\HHO,I) = / KP/2)WX wxx]
2dx+ / wp

xdx. 
Jo Jo 

As a consequence, 

sup f wPxdx + (A1/2)p(p-l) f f wl~2w2
xxdxdt 

0<t<T0 Jo Jo Jo 

<CP(p-l)[^-Vj J wP-2w2
xxdxdt + Vj J wldxdt 

+ Cp(p-l)V-2 f I K H*. dt. 
Jo -£-2(0,1) 
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If now T] is chosen as rj = m i n j ^ ^ " , -4Q}, then 

sup / wp
xdx + p ( p - l ) / / wp

x-
2w2

xxdxdt 
0<t<TJ0 JO Jo 

< C p ( p - l ) r T 2 T sup \\wx\\
p, 

0<t<T ^ 2 ( 0 , l ) 

<Cp4 sup I K | | V , 
0<t<T L2(0,1) 

where C is constant which depends only on known data. 

In order to complete our proof we will want to consider large 
value of p. To accomplish this, first let p = pk = 2k and a^ = 
supr0<j<T}{Jo w%kdx}^k. If we take the p£n root of both sides of 
above inequality, we obtain 

Now 

and 

since 

oik < (Cpi)*!* ak-i. 

pi* = 2^*=i ÌF < c, 

k=l 

k=l 

fc=l k=l 

l 

is convergent. Thus it follows that, for dk = {Cp\)pk, 

k 

ah < dkotk-i < ([[di]ai ^ Cai-

As 
lim a* = H^XIILOO(QT) 

K—t + OO 
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and ai <C\ by Lemma 2.1, it follows that 

(2.21) | K H ? T < C a i < a 

Note that for the interval [To, 27b], we can repeat the above procedure 
and obtain previously the same inequality (2.21). After finitely many 
steps, one has the estimate (2.14). D 

LEMMA 2.3. There exist constants C\ and a(0 < a < 1), which 
depend on the same quantities as d(i = 1,2,3), such that 

(2.22) N l c - . ^ ( g T ) ^ 

and hence 

(2-23) I K | | C Q , a / 2 ( g T ) < C 4 . 

P R O O F . Let 

fi = max |o(x,t ,u,u x)\ + \b(x,t, w,ux)| + / |C(£,T, U, ^^c)|dT 

| t * x l < C 3 

Lemma 2.2 implies that /i is uniformly bounded and that the bound 
depends ordy on the known data. The desired result then follows 
from Theorem 5.1 (page 561) of Ladyzenskaya et al. [16] as a reg
ular parabolic equation case. D 

LEMMA 2.4. There exists a constant C$ such that 

(2-24) \\u\\c2+aA+f{QT)<C5, 

where C$ depends only on the same quantities as Ci,i = 1 , . . . , 4. 

PROOF. By Lemma 2.3, we know that a(x,t,w(x,t),ux(x,t)) and 
b(x,t, u(x, £),ux(:c, t)) are uniformly Holder continuous in QT with 
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exponents a and ̂  with respect to x and £, respectively. Considering 
equation (1.1) as a linear equation 

/ • 
Jo 

ut = auxx + b+ I cdr 
Jo 

with initial-boundary conditions (1.2)-(1.4), we employ the Schauder 
estimate to obtain 

(2.25) ML2+a,i+*(75 x < C 1 + / cdr\\ . 

Note that, for any function g(x, t) G C a ' a /2((3T) , we have the property 
(2.26) 

II / 9^r)dr\\ < [ | | ^ ,0 ) | | c [o l i ] + ( r + r 1 - * ) | | ^ | | c a , f ( 5 }] . 
" JO MC 2 {QT) v*J / 

As a consequence 

II / c(x , t ,u ,u x )dr | | „ < C[l + (T + T1-*)\\c{x,t,u,ux)\\ca,%(ä J 

<qi + (r + T-*)|Hicl+a,^_j 

is uniformly bounded by Lemma 2.3, and the bound depends only on 
the known data. Hence the estimate (2.24) follows (2.25) and the above 
inequality. D 

With the above result in hand, we now can establish 

THEOREM 2.1. There exists a solution u(x,t) G C2 + a '1 +^(<3T) to 
the problem (1.1)-(1.4) under the conditions H(l) and H(2). 

PROOF. Let us define the operator L\ by 

L\u = ut— \auxx +b + \ cdr\. 

Let E(A) = {A e [0,1]: the problem (1.1)A-(1.4) is solvable}, where 
(1.1)A is the equation L\u = 0. By a standard continuation method 
(E(A) is not empty, S (A) is open and also closed), it follows that 
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E(A) = [0,l].n 

To conclude this section, we give a theorem on the regularity of the 
solution for the problem (1.1)-(1.4). 

THEOREM 2.2. Assume that a(x,t,u,p),b(x,t,u,p) and c(x,t,u,p) 
are infinitely differentiahle in all of their arguments and that the bound
ary values fi(t) and J2{i) belong to C°°(0,T]. Then the solution 
w(x, t) is infinitely differentiahle with respect to x and t on the region 
QTn{(x,t) :t>0}. 

PROOF. Since u E C 2 + a ' 1 + * ( Q T ) , we can differentiate equation (1.1) 
with respect to t and then V = ut satisfies 

, 9 7 \ Vt = aVxx + iapuxx + bp]Vx + [auuxx + bu)V 
+ [dtuxx + h + c(x, t, u, ux)], in QT, 

(2.28) V{0,t) = f[(t), 0<t<T, 

(2.29) V(l,t) = f'2{t), 0<t<T. 

Since the coefficients of equation (2.27) are Holder continuous with 
respect to x and £, the Schauder estimate for a parabolic equation 
implies that the solution 

VeC2+a'1+i(QT). 

Hence, 
ueC4+a>2+%(QT). 

We can redo the above procedure step-by-step to obtain 

VeC+oo^oo(QTn{t:t>0}). 

It follows that 

u(x,t) e C + 0 0 ' + 0 0 (Q T n{t:t> 0}). 

D 
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3 . C o n t i n u o u s d e p e n d e n c e and un iqueness . 

THEOREM 3.1. Assume that (fi(t), f2(t),u0(x)) and (/i(t),/2*(*)> uo(x)) 
are two known sets of initial-boundary values which satisfy H(2). Let 
u(x,t) and u*(x,t) be two solutions of the problem (1.1)-(H) corre
sponding, respectively, to the above data. Then 

\\u(x,t) - U * ( f f , * ) | | c 2 + a,l+*(gT) 

(3.1) < C[ | | / ! ( t ) - / r ( * ) l l ^ + * [ o , n ^ H/a(*) - /a (*)ll^+*[o,!n 

+ \\u0{x) - u*0{x)\\C2+a[0A]], 

where C depends only on known data. 

PROOF. Let w(x,t) = u(x,t) - u*(x,t),(x,t) e QT. Then w(x,t) 
satisfies 

(3.2) wt = awxx + &*(#, t)wx + c*(x, t)w -f d*(x, t) in Q T 5 

(3.3) w(0,t) = f1(t)-fì(t), 0 < * < T , 

(3.4) t i ;( l , t ) = / 2 ( t ) - / 2 * ( t ) , 0 < t < r , 

(3.5) w(x,o) — uo(x) — UQ(X), 0 < x < 1, 

where 

b*(x,t) = / bp(x,tu*,zux + (1 — z)ux)dz 
Jo 

+ [ / ap(x, t, u*,zux + (1 - z)u* )dz) | u*xx, 

c*(x,t)= / bu(x,t, zu + (1 — z)u*,ux)dz 
Jo 

+ / flu(^ t,ZU+ (1 - Z ^ j U a ^ d z U * ^ , 

d*(x,t)= / [c?i(x,r)ii;x + ck(:r,T)w]dT, 

di (#,£)== / Cp(x,t, u*, zwx + (1 — z)u*)c?2:, 

d2(x,t) = / c^(x, t, zu H- (1 — z)u*, ux)dz. 
Jo 



262 H.-M. YIN 

The estimate (2.22) implies that all the Holder moduli of the coefficients 
in (3.2) are dominated by known data. From the Schauder estimate for 
the linear parabolic equation (3.2), we have 

\\u\\c,+a,1+i{QTÌ<clJ2\\fi(t)-f;(t)\\cl+noT] 

+ \\U0(X) - U*0(x)\\C2 + a[0A] + | | d * ( M ) | | c a , $ ( g T ) 

The inequalities (2.24) and (2.26) yield 

Therefore when T is small enough so that (T + T1~%)C < \ we have 
the desired result. By taking a finite number of steps, therefore, we 
establish (3.1) for arbitrary T. u 

COROLLARY 3.1. The solution of the problem (1.1)-(1.4) is unique. O 
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