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ONE-DIMENSIONAL VISCOELASTICITY 
WITH A NON-INTEGRABLE MEMORY FUNCTION 

MICHAEL RENARDY 

ABSTRACT. We consider a model equation for one-dimen
sional motions of viscoelastic materials with a non-integrable 
memory function. We prove existence of solutions to the 
initial value problem globally in time when the data are 
smooth and small, and locally in time when the data are 
smooth but large. The proof of existence is based on coercive 
estimates for the linearized problem. Such estimates exploit 
the singular nature of the memory function. 

1. Introduction. We consider integrodifferential equations of the 
form: 

utt{x,t) = g{ux(x,t))x+ / m{t-T)h(ux(x,i),ux{x,T))xdT 
(1J J — oo 

+ /(M), ze[o,i],*>o, 

under the following assumptions: 

(i) The functions g and h are of class C4 a îd C5 , respectively. 

(ii) The function tm(t) is integrable on (0, oo). 

(iii) g'(0) > 0, and h(p,p) = 0, /i,i(p,p) = -hi2 (p,p) > 0 for every 
p E R. Here h^ denotes the derivative with respect to the iih argument. 

(iv) m G W1'1 [t0ì oo) for every to > 0 and m > 0, m' < 0. 

Equations of the form (1) can be used to model one-dimensional 
motions of viscoelastic materials in both shear and elongation (see, 
e.g., [6, Chapter I]). The kernel m is called the memory function. 
The assumptions (i)-(iv) are physically natural ones. The variable 
u represents the displacement. For simplicity, we shall confine our 
attention to homogeneous Dirichlet boundary conditions 

(2) ix(0,*) =u{l,t) = 0 , t > 0 ; 
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the results that follow can easily be modified to accommodate more 
general boundary conditions. In addition, we prescribe the initial 
history for t < 0: 

(3) ti(z, t) = u0{x, t), x e [0,1], t < 0. 

For the case where m is smooth,problem (l)-(3) or special cases thereof 
have been considered by a number of authors; see Chapters III and IV 
of [6] for a summary of results and references to the literature. It is 
known that solutions exist locally in time if the data / and UQ are 
sufficiently smooth and globally in time if, in addition, it is assumed 
that the data are small. The proofs rely heavily on treating (1) as a 
perturbation of a hyperbolic equation. This can no longer be done if 
m has a singularity at the origin. 

In [2], [3] a special case of (1) is considered under assumptions 
which allow a singularity in m. The proofs in [2], [3] proceed by 
considering a sequence of approximating problems for which m is 
regular and establishing uniform energy estimates which allow passage 
to the limit. On the other hand, it is known that for a wide class of 
memory functions with nonintegrable singularities at the origin there 
are coercive estimates for the linearization of (1) similar to those for 
parabolic equations (see [1], [5]). This suggests that the energy method 
may not be the optimal basis of an existence theory. The goal of this 
paper is to develop an existence theory which exploits the parabolic 
character of the equation. We make the following assumption on m: 

(v) Let 

/

oo 

m{s)ds, 

and let G denote the Fourier transform of G: 

/•OO 

(5) G(u) := / G{t)e~iujtdt. 
Jo 

Then there is a constant C > 0 such that, for every u G R, we have 
\®G{u)\>C\$SG{u)\. 

We note that assumption (ii) implies that G is integrable. Assump
tion (v) implies that m cannot be integrable at the origin. Assumption 
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(v) is satisfied if, for example, G(t) behaves like an inverse power of t 
near t = 0. 

In the following, we shall assume that the history ^o satisfies the 
boundary conditions (2) and the differential equation (1) for t < 0. Of 
course we can always make the history satisfy the differential equation 
by defining f(x,t) appropriately for t < 0. It should be kept in mind, 
however, that smoothness assumptions on / at t = 0 actually represent 
compatibility conditions between the prescribed history and the evolu
tion for positive t. Henceforth we shall adopt the point of view that 
we seek a solution of equation (1) and boundary condition (2) for all £, 
but that the solution for t < 0 is actually known. 

2. Existence of solutions for small data. In this section we con
sider the case where / and ^o are small in appropriate norms. Since it 
will turn out that in this case UQ is uniquely determined by /,we shall 
for the moment ignore the initial condition (3) and seek a solution of 
(1) and (2) for given / . The existence proof will be based on the im
plicit function theorem and the properties of the linearized equation. 
Before we state a precise theorem, we must first define some function 
spaces. 

DEFINITION. Let Xbe a Hilbert space. By H^(R;X) we denote the 
set of all functions f : R —• X such that the Fourier transform of f has 
the form f(w) = G(ui)g(u) where g lies in Hk(R;X). 

Since G is positive and monotone decreasing, G(u) does not vanish; 
moreover, G(u) tends to zero and |O;G(CJ)| tends to infinity as \CJ\ —• oo. 
Hence it follows that Hk+1(R;X) C H&(R\X) C # f c (R;X) . We shall 
prove the following result: 

THEOREM. Let f e Ä £ ( R ; L 2 ( 0 , 1 ) ) be given and assume that the 
norm of f is sufficiently small. Then there exists a solution u o/(l) and 
(2) for allteR and we have u G Jffg(R; £2(0,1)) n # 2 ( R ; # 2 (0 ,1) ) . 
The solution u is unique within the class of functions which have small 
norm in this space. 

The proof will be based on the implicit function theorem. We define 
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the map F by 
(6) 

F(u)(x,t) = utt{x,t)-g(ux(x,i))x- l m(t-r)h(ux(x,t),ux(x,r))xdr. 
J — oo 

The theorem follows if we can show the following two statements: 

1. F is a continuously differentiable map from Z := HQ{K] L2(0,1))D 
tf 2(R; # 2 (0 ,1) H ff<}(0,1)) into H^(R; L2(0,1)). 

2. The Fréchet derivative DF(0) is invertible. 

In verifying statement 1, the first two terms in (6) present no difficulty 
(the term g{ux)x lies in # 2 (R;L 2 (0 ,1) ) C #£(R;L 2 (0 ,1)) ) . We shall 
now focus on the integral term. After integration by parts, this term 
reads as follows: 

d fl 

— / G(t-T)h,2(ux(x,t),Ux(x,T))uxt(x,T)dT 
, 7 i ox J_00 

= — / G(s)h,2{ux(x1t)1ux(xit-s))uxt(x,t-s)ds. 
ox J0 

We first note that the map H given by 

(8) 
/»OO 

H(u)(x,t) = / G(s)h,2 {ux(x,t),ux(x,t — s))uxt(x,t — s)ds 
Jo 

is continuously differentiable from Z into H 1(R; ß'1(0,1)). To see this, 
we simply have to observe that G is integrable and that the maps Hs 

defined by 

(9) ffs(u)(z,*) = ft,2 (ux{x,t),ux{x,t - s))uxt(x,t- s) 

are continuously differentiable from Z into if1 (R; if1 (0,1)), uniformly 
with respect to s. In order to complete the proof of statement 1, we 
have to show that H actually is continuously differentiable from Z into 
the smaller space i / (^(R;i/1(0,1)). For this, let us consider the time 
derivative of H(u): 

—H(u)(x,t) = / G(s)[ha2(ux(x,t),ux(x,t -- s))uxt(x,t) 

(10) + /i,22 (ux(x, t), ux(x, t - s))uxt{x, t - s)]uxt(x, t - s)ds 
/»OO 

+ / G(s)h,2 {ux{x, t),ux(x, t - s))uxtt{x\ t - s)ds. 
Jo 
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The first term on the right hand side of (10) takes values in i / 1 (R; 
Ä^Ojl)) C ^ ( R j J Î ^ O , ! ) ) and presents no problem. The second 
term can be split as follows: 

/•OO 

/ G(s)h,2 {ux(x, t - s)ux(x, t - s))uxU(x, t - s)ds 
Jo 

(11) f°° 
K J + / G(s)[h,2{ux{x,t),ux(x,t-s)) 

Jo 
- h,2 (ux(x, t - s),ux(x, t - s))}uxtt{x, t - s)ds. 

The first term in (11) is in convolution form and it is clear that it rep
resents a continuously differentiable map from Z into i /§(R; #H0,1) ) . 
In the second term, we integrate by parts with respect to s and obtain 
(12) 

/•OO 

- / G(s)[h,22 {ux{x,i),ux(x,t - s)) - h,22 {ux{x,t - s),ux(x,t- s)) 
Jo 

- h,!2 (ux(x,t - s),ux(x,t - s))]u2
xt{x,t - s)ds 

/•OO 

- / m(s)[h,2 {ux(x,t),ux(x,t- s)) - h,2{ux{x,t~ s),ux{x,t - s))) 
Jo 

-uxt{x,t - s)ds. 

The first term in (12) represents a continuously differentiable map 
with values in i / 1 (R; if1 (0,1)). In the second term, we make the 
substitution 

h,2 {ux(x,i),ux(x,t- s)) - h,2 {ux(x,t - s),ux(x,t- s)) 

(13) f1 

- s / /i,i2 {ux(x, t - as),ux(x, t - s))uxt(x, t - as)da 
Jo 

Since sm(s) is integrable, it is clear that after substituting (13) into 
(12) we obtain an expression which also represents a continuously 
differentiable map with values in i / 1 (R; jy1(0,1)). This concludes the 
verification of statement 1. 

To verify statement 2, we expand u in a sine series, 

OO 

(14) ti(x, t) = 2_] u>k(t) sin knx, 
k=i 
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and we denote by ûk(w) the Fourier transform of Uk- Analogous 
notation is used for / . The statement that / G HQ(R;L2(0,1)) 
translates into 

(15) £ / \fk{u)\2-ff-^du<<x>, 

and the statement that u e Z translates into 

(16) £ / | û f c (w ) | 2 - ^ 0 > 4 + l ) d w < o o . 

The Fréchet derivative DF(0) is the map 

£»F(0)«(x,i) =utt{x,t) - g'(0)uxx{x,t) 

(17) 
+ / G(t- r)h,2 (0,0)uXIt(a;, r)dr 

J — oo 

The equation DF(0)u = f transforms into 

(18) (-a;2 + 0,(O)fc27T2 - Ä,2 (0,0)G(o;)2a;Ä:27r2)^(u;) = fk(u). 

Let us denote the term multiplying ûk{oo) on the left hand side by 
N(k,u). Since G is positive, monotone decreasing and convex, the real 
part of G(u) is always strictly positive [4], and hence N(k,u) is never 
zero. We also have |iV(Ä;,a;)| > |9iV(Ä:,a;)|, and because of assumption 
(v) the latter is bounded from below by a constant times k2\uG(uj)\. 
Hence (18) implies an estimate of the form 

(19) | Û * ( " ) | < C - Ûk{Uj)i 

k2{l + \uG{u)\) 

Using this, we can bound the second and third term on the left of (18) 
in terms of the right hand side, and hence we can also bound the first 
term. One easily concludes that the norm of u defined by (16) can be 
bounded in terms of the norm of / defined by (15). 

REMARK. We still need to discuss the meaning of this result in terms 
of the original initial-history value problem (l)-(3). It is clear that for 
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any sufficiently well-behaved history uo we can define / for t < 0 by 
using equation (1) (with ^o substituted for u). We can then use the 
above theorem to find a solution u for all £, but it takes a proof that we 
actually recover u = UQ for t < 0. This follows if the solution operator 
for (1), (2) (posed for all t G R) is causal, i.e., if the solution u for 
t < 0 depends only on the values of / for t < 0. In this case we can 
argue as follows: Take a well-behaved extension of UQ for positive time 
(let us call it u) and define a corresponding forcing function / by using 
equation (1). If the solution operator is causal, then / = / for t < 0 
implies that u = u = UQ for t < 0. Note now that the assumptions on 
G and on the signs of ^(0) and h,2 (0,0) permit the above estimates for 
N(k,üü) to be extended for u in the lower half plane. It follows from 
this that DF(0)_1 is causal. The causality of the solution operator 
now follows from the iteration which underlies the proof of the implicit 
function theorem. 

3. Local existence of solutions for large data. In this section, 
we shall prove existence of solutions without a smallness assumption 
on uo and / . In this case, however, we shall only obtain existence 
of solutions for short time. Before we state precise assumptions and a 
theorem, we shall first outline the basic procedure. Let F(u) be defined 
as in (6); after an integration by parts we obtain 
(20) 

F(u)(x,t) =utt(x,t) -g{ux{x,t))x 
/»OO 

+ / G(s)[h,2 {ux(x,t),ux(x,t - s))uxt{x,t - s)]xds. 
Jo 

Let u be a smooth extension of UQ for positive time and let / = F(u). 
Moreover, let v = u — ü and / = / — / . That is, we have f(x, t) = 0 
for t < 0 and we are looking for solutions which satisfy v(x,t) = 0 for 
t < 0. The equation of motion now assumes the form 
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(21) 

H(v)(x, t) := vtt{x, t) + ^ [( - (y(üx(«, t) + Ur(x, *)) + 9{üxfa *))) 
/»OO 

+ / G(s) (ft,2 (äa;(a:, *) 4- vx(x, t),ux{x, t - s) 
Jo 

+ vx(x,t - s))vxt(x,t - s) 

+ [h,2 {üx{x,t) + vx(x,t),üx(x,t - s) + vx(x,t - s)) 

- h,2 {üx{x, t),ûx(x, t - s))]uxt(x, t - s))ds] 

= /0M)-
As in the previous section, we shall use an implicit function argument. 
We therefore have to consider the linearization of equation (21). We 
have 

DH(0)v(x, t) = va{x, *) + fa[- 9'{ùx(x, t))vx(x, t) 
/»OO 

+ / G(s)h,2{üx(x,t),üx(x,t - s))vxt{x,t - s)ds 
Jo 

PCX) 

+ / G(s)(hìi2{ux(xìt)ìux(xìt-s))vx(x,t) 
Jo 

+ ^22 {ux(x, t),ux(x, t - s))vx(x, t - s))uxt{x, t - s)ds]. 

Let Z = / 4 ( R ; L 2 ( 0 , l ) ) n i J 2 ( R ; # 2 ( 0 , 1 ) n f l ä (0 , l ) ) , Y = J T £ ( R ; 

L2(0,1)) and let T > 0 be given. By ZT,YT we denote the set of all 
functions defined on (—oo, T) which have an extension to all of R which 
lies in Z, or respectively, Y. By ZT,O and YT,O w e denote the space of 
all functions in ZT, or, respectively, YT which vanish on (—oo,0). The 
norm in ZT is defined as the infimum of the norms of all extensions 
which lie in Z. With these definitions we can now state our existence 
result. 

(22) 

THEOREM. Let ü E ZT and f e. Fr,o be given. Then there exists 
T' G (0,T] such that (21) has a uniquely determined solution v E ^T' ,O-

For the proof, we first note that it follows from the arguments given in 
the previous section that if is a continuously differentiate map from 



COERCIVE ESTIMATES AND EXISTENCE OF SOLUTIONS 15 

ZT,O into FT,O- The theorem now follows from the implicit function 
theorem and the following two assertions: 

1. The norm of / in YT',O tends to zero as T" —> 0. 

2. If T' is chosen small enough, then DH(0) (as a map from ZT\O to 
YT',O) is invertible. 

Assertion 1 is clearly true if / is of class C°° and the general statement 
follows from the fact that such functions are dense in Yr,o- We now 
make the following observations: 

a. If v e ff*+1((-oo,r']; X) and v = 0 for t < 0, then the norm 
of v in Hk((—oo,Tf];X) has a bound of order T' times the norm in 

ff^tf-oo, !"];*)• 
b. If v e # f c + 1 ( ( -oo ,T ' ] ;X) and v = 0 for t < 0, then v can be 

extended to a function in # f c + 1 (R; X); let us again denote the extended 
function by v. The extension can be done in such a way that the norm 
of v in / ^ ( R ; X) is still of order V'. Moreover, for every e > 0 there is 
an estimate of the form 

(23) IMI**(R;x) < e|M|tffc+i(R;x) + C'(e)\\v\\Hk{K.x). 

This can be shown by taking Fourier transforms and observing that 
\u>G(u>)\ - • oo as |u| - • oo. Hence, if v G ̂ ^ ( ( - o o , ! * ] ; * ) and V is 
small, then the norm of the extension in HQ(R;X) is small. 

By using these observations and doing a term by term analysis of 
DH(0) similar to the discussion of F in §2 we can show that for small 
T' the operator DH(0) from ZT>,O to Yr',o is a small perturbation of 
the operator Q defined by 
(24) 

d f°° 
Qv(x,t) = vtt(x,t) + — / GWhrtiüxfaÖiiüxfaOfivxtfat - s)ds. 

Let us define a new operator Q by adding to Q the perturbation 

(25) ä x ^ ' 2 (üx{xi0),üx(xi0))vx(x,t)). 

This perturbation is small if X" is small. The operator Q can now be 
analyzed in a fashion similar to the analysis of DF(0) in §2; we only 
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have to replace the sine series by an expansion in eigenfunctions of the 
operator 

(26) — (h,2 {ÜX{X, 0), üx{x, 0)) — ) . 

Hence the operator Q has an inverse from Y to Z. As before, we 
can show that this inverse is a causal operator and hence it also maps 
YT',oto ZT',0- Since Q is a small perturbation of DH(0) for small T", 
we obtain the invertibility of DH(0). This completes the proof. 
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