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ON FINITELY STABLE DOMAINS, I

STEFANIA GABELLI AND MOSHE ROITMAN

ABSTRACT. We prove that an integral domain R is
stable and one-dimensional if and only if R is finitely stable
and Mori. If R satisfies these two equivalent conditions,
then each overring of R also satisfies these conditions,
and it is 2-v-generated. We also prove that, if R is an
Archimedean stable domain such that R′ is local, then R
is one-dimensional and so Mori.

1. Introduction. In this introduction, we start with a short re-
minder of finitely stable and stable rings, recall the definitions of other
classes of rings that we use here, as Mori, Archimedean, etc., and fi-
nally summarize our main results. By a ring, we mean a commutative
ring with unity. A local ring is a ring with a unique maximal ideal,
not necessarily Noetherian. A semilocal ring is a ring with just finitely
many maximal ideals.

Motivated by the earlier work of Bass [3] and Lipman [11] on
the number of generators of an ideal, in 1972, Sally and Vasconcelos
[24, 25] defined an ideal I of a ring R to be stable if I is projective over
its endomorphism ring; they called R a stable ring if each nonzero ideal
of R is stable. Stability of rings is often determined by the stability
of regular ideals, that is, ideals containing a nonzero divisor. Rush
[22, 23] studied the rings such that each finitely generated regular ideal
is stable, in particular, in connection with properties of their integral
closure and to the 2-generator property. These rings are now called
finitely stable.

In a note of 1987, Anderson, Huckaba and Papick [1] considered
the notion of stability for integral domains. If I is a nonzero ideal of a
domain R, then the endomorphism ring of I coincides with the overring
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E(I) = (I : I) of R; also, I is projective over E(I) if and only if I is
invertible as an ideal of E(I). We use here notation like (I : I) in a
more general context: if R and T are domains with the same field of
fractions K, I is an ideal of R and S is a subset of K, we set

(I :T S) = {t ∈ T | tS ⊆ I}

and (I : S) = (I :K S). The stability property of a nonzero ideal I
does not depend upon the domain containing I; more precisely, if I is a
common nonzero ideal of two domains A and B, then I is stable as an
ideal of A if and only if I is stable as an ideal of B since FracA = FracB.

Since 1998, finitely stable and stable domains have been thoroughly
investigated by Olberding in a series of papers [14]–[19]. In [20],
he also studied finitely stable rings in the spirit of Rush, extending
several results known for stable domains. Our paper heavily relies on
Olberding’s work. As he communicated to us, his articles [15, 16, 17]
contain some errors.

Of course, when R is a Noetherian ring, stability and finite stability
coincide, but, in general, these two classes of rings are distinct, even
if R is an integrally closed domain: in this case, R is finitely stable if
and only if it is Prüfer, that is, each nonzero finitely generated ideal
of R is invertible. Indeed, a domain R is integrally closed if and only
if R = E(I) for each nonzero finitely generated ideal I. However, a
valuation domain is stable if and only if it is strongly discrete, that is,
each nonzero prime ideal is not idempotent [4, Proposition 7.6]. Thus,
a valuation domain that is not strongly discrete is finitely stable, but
not stable.

A domain R is finitely stable if and only if it is locally finitely stable
[6, Proposition 7.3.4]. Actually, if I is a stable ideal of R, then IS is a
stable ideal of RS for each multiplicative part S ⊆ R.

Recall that a domain R has finite character if each nonzero element
of R is contained at most in finitely many maximal ideals. A finitely
stable domain need not have finite character, since any Prüfer domain
is finitely stable. On the other hand, a domain is stable if and only if
it is locally stable and has finite character [17, Theorem 3.3].

We denote by R′ the integral closure of a domain R.

Olberding characterized finitely stable domains as follows:
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Theorem 1.1 ([20, Corollary 5.11]). A domain R is finitely stable if
and only if it satisfies the following conditions:

(i) R′ is a quadratic extension of R;
(ii) R′ is a Prüfer domain;
(iii) each maximal ideal of R has at most two maximal ideals of R′

lying over it.

Recall that a domain D is a quadratic extension of a domain R if,
for each x, y ∈ D, we have xy ∈ xR + yR + R. Olberding also proved
that, in the local one-dimensional case, stability and finite stability are
equivalent, provided the maximal ideal is stable:

Proposition 1.2 ([21, Theorem 4.2]). Let R be a local one-dimensional
domain. The following conditions are equivalent :

(i) R is stable;
(ii) R is finitely stable with stable maximal ideal ;
(iii) R′ is a quadratic extension of R and R′ is a Dedekind domain

with at most two maximal ideals.

Stability is related to divisoriality and to the 2-generator property.
Recall that an ideal I of a domain R is divisorial if I ̸= (0) and
I = Iv = (R : (R : I)). A domain R is called divisorial if each
nonzero ideal of R is divisorial, and it is called totally divisorial if each
overring of R is divisorial. An ideal I of R is called 2-generated if I can
be generated by two elements. The domain R is 2-generated if each
finitely generated ideal of R is 2-generated.

A domain R is stable and divisorial if and only if it is totally
divisorial [18, Theorem 3.12]. Also, any stable Noetherian domain
is one-dimensional [25, Proposition 2.1], and a Noetherian domain
is stable and divisorial (i.e., totally divisorial) if and only if it is 2-
generated ([4, Theorem 7.3], [15, Theorem 3.1]). The 2-generator
property for Noetherian domains is strictly stronger than stability. The
first example of a stable Noetherian domain that is not 2-generated
(equivalently, it is not divisorial) was given in [25, Example 5.4].
Several other examples may be found in [18, Section 3].
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A Mori domain is a domain with the ascending chain condition
on divisorial ideals. This is equivalent to the property that each
nonzero ideal I of R contains a finitely generated nonzero ideal J
such that (R : I) = (R : J), that is, Iv = Jv [2, Theorem 2.1].
Clearly, Noetherian domains are Mori. For the main properties of Mori
domains, see the survey [2] and the references therein. A nonzero
ideal I of an integral domain R is 2-v-generated if I contains a 2-
generated ideal J such that (R : I) = (R : J), and R is 2-v-generated
if each nonzero ideal of R is 2-v-generated. Of course, a 2-v-generated
domain is Mori. However, if each divisorial ideal of R is principal
(hence, 2-v-generated), then R is not necessarily Mori (see [12, page
561]). Clearly, a Mori 2-generated domain is 2-v-generated.

A Mori domain R satisfies the ascending chain condition on principal
ideals (accp), and so it is Archimedean, that is,

∩
n≥0 r

nR = (0), for
each nonunit r ∈ R. Indeed, a domain R satisfies accp if and only if∩

n≥1

( n∏
i=1

riR

)
= (0)

for any nonunits ri ∈ R, equivalently,∩
n≥1

anR = (0)

if the sequence of principal ideals anR is strictly decreasing. Besides
accp domains, the class of Archimedean domains also includes one-
dimensional domains [13, Corollary 1.4] and completely integrally
closed domains [10, Corollary 13.4]. We recall that a domain R is
completely integrally closed if and only if R = E(I) for each nonzero
ideal I. Hence, completely integrally closed domains are integrally
closed, and the converse holds in the Noetherian case. A completely
integrally closed stable domain is Dedekind.

Here are our main results:

(1) If R is an Archimedean stable domain such that R′ is local, then
R is one-dimensional (Corollary 2.9).

(2) A domain R is stable and one-dimensional if and only if it is finitely
stable and Mori (Theorem 4.8). If R satisfies these two equivalent
conditions, then each overring of R also satisfies these conditions,
and it is 2-v-generated.
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If R′ is not local, an Archimedean local stable domain R need not be
one-dimensional. Indeed, in a forthcoming paper, we will give examples
of Archimedean local stable domains of dimension n, for each n ≥ 1;
see [8, Section 5].

A class of one-dimensional local domains that are stable and not
Noetherian was constructed by Olberding in [19, Theorems 4.1, 4.4]
(see also [18, Theorem 3.10]). By our results, all of these domains are
new examples of one-dimensional Mori domains.

2. The one-dimensional case. In the following, R is an integral
domain that is not a field. By an ideal we mean an integral ideal.

The following construction, due to Olberding, is basic for our paper.

Construction 2.1 ([17, Section 4]). Let (R,M) be a local domain.
Set Ri = {0} for i < 0, R0 = R and M0 = M . Define, inductively,
for n > 0: Rn = Rn−1 if Rn−1 is not local, and Rn = E(Mn−1) =
(Mn−1 : Mn−1) if Rn−1 is local with maximal ideal denoted by Mn−1.
Set T =

∪
n≥0 Rn. Thus, we have:

(a) if there exists an integer k > 0 such that Rk is not local, but Ri

is local for 0 ≤ i < k, then Rn = Rk for all n ≥ k, and T = Rk;
(b) if Rn ( Rn+1 for all n ≥ 0, all the rings Rn are local.

We will repeatedly use the following theorem of Olberding.

Theorem 2.2 ([17, Corollary 4.3, Theorem 4.8] and its proof, and
[20, Theorem 5.4]). Let R be a finitely stable local domain with stable
maximal ideal M . With the notation of Construction 2.1, we have:

(i) Each Rn is finitely stable with stable maximal ideals, and there
exists an element m ∈ M such that M = mR1. Moreover, for k ≥ 1, if
Rk is local with maximal ideal Mk, then Mk = mRk+1 = MRk+1, and
if T is local, then its maximal ideal is mT = MT .

(ii) Each Rn is a finitely generated R-module, thus T is an integral
extension of R.

We also have:
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(a) if T = Rn for some n ≥ 0, then T is a finitely generated R-
module, and T has at most two maximal ideals;

(b) if T ̸= Rn for all n ≥ 0, then T is local ;
(c) the maximal ideals of T are principal, and the Jacobson radical

of T is equal to mT = MT , where mR1 = M .

In addition, if R is a stable domain, then T is equal to the integral
closure R′ of R, and R′ is a strongly discrete Prüfer domain.

In the one-dimensional case we have:

Corollary 2.3. Let R be a one-dimensional finitely stable local domain
with stable maximal ideal M . Then, R is stable, and, in the setting of
Theorem 2.2, T = R′ is a principal ideal domain with at most two
maximal ideals. Hence, if T is local, in particular, if T ̸= Rn for each
n ≥ 0, T is a DVR.

Proof. R is stable by Proposition 1.2; thus, T = R′. Since R′ is
one-dimensional with principal maximal ideals, R′ is a principal ideal
domain by [10, Corollary 37.9]. �

Proposition 2.4. In the setting of Theorem 2.2, T ̸= Rn for each
n ≥ 0 if and only if T is a finite R-extension, that is, T is a finitely
generated R-module. Hence, T = Rn for some n ≥ 0 if and only if T
is not a finite R-extension. (Recall that, if R is stable, then T = R′.)

Proof. If T = Rn for some n ≥ 0, then T is a finitely generated
R-module by Theorem 2.2 (a). Conversely, assume that T is generated
as an R-module by a finite subset F of T . Then, there exists an integer
n ≥ 0 such that F ⊆ Rn, implying that T = Rn. �

Denote by U(A) the set of units of a domain A.

Remark 2.5. In the setting of Theorem 2.2, for any integer n ≥ 0 ,we
have U(T ) ∩Rn = U(Rn) since T is an integral extension of Rn.

Lemma 2.6. Let R be a finitely stable local domain with stable maximal
ideal. In the setting of Theorem 2.2, if T is local, in particular, if
condition (b) holds, we have:
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(i) for each n ≥ 0, (R :T mn) = (R :T Mn) = Rn; equivalently,
Tmn ∩R = Rnm

n (here M0 = R).
(ii) Let r = umn be a nonzero element of R, where u ∈ U(T ), and

n ≥ 0. Then, (R :T r) = Rn.

Proof.

(i) We prove the equality (R :T mn) = Rn by induction on n starting
with n = 0. Let n > 0. Since M = R1m, by applying the induction
assumption to R1, replacing R, we obtain that:

(R :T mn) = (M :T mn) = (R1m :T mn) = (R1 :T mn−1) = Rn.

Also, Mn = (R1m)n = R1m
n. Since Rn = (R :T mn) and R1 ⊆ Rn,

we obtain

Rn ⊆ (R :T R1m
n) = (R :T Mn) ⊆ (R :T mn) = Rn,

so (R :T Mn) = Rn.

(ii) By item (i), we have u ∈ Rn, and also:

(R :T r) = (R :T umn) = ((R :T mn) : u) = (Rn :K u) = Rn,

where K = FracR, since u ∈ U(Rn). �

Lemma 2.7. Let (R,M) be a finitely stable local domain with stable
maximal ideal. In the notation of Construction 2.1, assume that T is
local. Then: ( ∩

n≥0

mnT

)2

⊆
∩
n≥0

mnR.

Proof. By Lemma 2.6 (i), we have for all n ≥ 0:(
R ∩

∩
k≥0

mkT

)2

⊆ (R ∩mnT )2 = (mnRn)
2 = mn(mnRn) ⊆ mnR,

so (R ∩
∩

k≥0 m
kT )2 ⊆

∩
n≥0 m

nR.

Now, let s, t∈
∩

n≥0 m
nT . Again, by Lemma 2.6 (i), we have sme,

tme ∈ R for a sufficiently large integer e. Thus,

(sme)(tme) ∈
(
R ∩

∩
n≥0

mnT

)2

⊆
∩
n≥0

mnR.
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It follows that

st =
(sme)(tme)

m2e
∈

∩
n≥0

mnR.

Hence, ( ∩
n≥0

mnT

)2

⊆
∩
n≥0

mnR. �

Theorem 2.8. Let R be an Archimedean finitely stable local domain
with stable maximal ideal. In the notation of Construction 2.1, if T
is local, in particular, if condition (b) of Theorem 2.2 holds, then R is
one-dimensional.

Proof. By Theorem 2.2, the maximal ideal of T is mT , m ∈ M . Let
Q =

∩
n≥0 m

nT . By Lemma 2.7,

Q2 ⊆
∩
n≥0

mnR = (0).

Hence, Q = (0). By [10, Theorem 7.6 (a),(c)], Q is the largest non-
maximal prime contained in mT . Thus, T is one-dimensional, and so
is R, as T is an integral extension of R. �

Corollary 2.9. Let R be an Archimedean stable domain satisfying one
of the following two conditions:

(i) R is local and R′ is not a finitely generated R-module;
(ii) R′ is local.

Then, R is one-dimensional.

Proof.

(i) Since R is local and stable, we have T = R′. By Proposition 2.4,
condition (i) here is equivalent to Theorem 2.2 (b). Thus, T = R′ is
local, and so, R is one-dimensional by Theorem 2.8.

(ii) Since R′ is local, R is also local. As in (i), since R is also stable,
we have T = R′, and again, R is one-dimensional by Theorem 2.8. �

If R′ is not local, an Archimedean local stable domain R need not be
one-dimensional. Indeed, in a forthcoming paper, we will give examples
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of Archimedean local stable domains of dimension n, for each n ≥ 1,
see [8, Section 5].

3. The 2-v-generator property. In the Noetherian case, the next
theorem was proven by Sally and Vasconcelos [24, Theorem 2.4]. Ol-
berding proved that the hypotheses of the theorem imply Noetherianity.

Theorem 3.1 ([16, Proposition 4.5]). Let R be a one-dimensional
stable domain. If R′ is a finite R-extension, then each ideal of R is
2-generated.

In Proposition 3.13 below, we state that a stable one-dimensional
domain R is 2-v-generated, that is, for each nonzero ideal I, there are
two elements x, y ∈ I such that Iv = ⟨x, y⟩v; thus R is Mori. We start
with the following notation:

Notation 3.2. In the setting of Theorem 2.2, assume that the do-
main R is one-dimensional and that T is local (in particular, T is local
if condition (b) holds). Since T is a DVR (Corollary 2.3) with max-
imal ideal mT , we denote by v the discrete valuation of T such that
v(m) = 1.

Lemma 3.3. In the setting of Theorem 2.2, assume that the domain R
is one-dimensional and that T is local. Then, by using Notation 3.2,
we have:

(i) Let r be a nonzero element of R. Then:

(R :T r) = Rv(r).

(ii) Let I be a nonzero ideal of R, and let a be an element of minimal
value v(a) = k in I. Then:

(R :T I) = Rk.

Proof.

(i) This follows from Lemma 2.6 (ii).
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(ii) By item (i), we have

(R :T I) =
∩

r∈I\{0}

(R :T r) =
∩

r∈I\{0}

Rv(r) = Rk. �

From Lemma 2.6 (i), we obtain:

Lemma 3.4. In the setting of Theorem 2.2, assume that the domain R
is one-dimensional and that T is local. Then, from Notation 3.2, we
have for all k ≥ 0:

{r ∈ R | v(r) ≥ k} = R ∩mkT = Rkm
k.

Proposition 3.5. A one-dimensional local stable domain R is 2-v-
generated ; hence, R is a Mori domain.

Proof. In case (a) of Theorem 2.2, every ideal of R is 2-generated by
Theorem 3.1.

Assume condition (b) of Theorem 2.2, and use Notation 3.2. Let
I ̸= R be a nonzero ideal of R. Since T is a DVR, there exists a
nonzero element t ∈ T of maximal value v(t) such that (1/t)I ⊆ R.
Let J = (1/t)I, so (R : J) ⊆ T . Since (1/m) /∈ T , there exists a
nonzero element a1 ∈ J such that a1/m /∈ R. Let a2 be an element
of minimal value k in J . If a2/m /∈ R, set a = a2. Assume that
a2/m ∈ R. If v(a1) = v(a2), set a = a1. Otherwise, v(a1) > v(a2);
thus, v(a1 + a2) = v(a2) and (a1 + a2)/m /∈ R. In this case, we set
a = a1 + a2. In each case, a is a nonzero element of minimal value k
in J such that a/m /∈ R. Thus, a = umk, where u ∈ U(Rk) \Rk−1, by
Lemma 2.6 (i).

Since (R : J) ⊆ T and 1/(um) /∈ T , there exists an element b ∈ J
such that b/(um) /∈ R. We show that (R : {a, b}) ⊆ T .

If x is an element in (R : {a, b}) \ T , we have x = 1/vmi, where
v ∈ U(T ) and i > 0. Thus, (1/vm)a, (1/vm)b ∈ R. Since (1/vm)a =
(u/v)mk−1 ∈ R, we have (u/v) ∈ U(Rk−1) by Lemma 2.6 (i). Since
v(b) ≥ k, we have

v

(
b

vm

)
≥ k − 1.
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Since (b/vm) ∈ R, we obtain, by Lemma 3.4, that b/(vm) ∈ Rk−1m
k−1.

Hence, b/(um) = (v/u)(b/vm) ∈ Rk−1m
k−1 ⊆ R, a contradiction. It

follows that (R : {a, b}) ⊆ T .

Since a is of minimal value in J , by Lemma 3.3 (i), (ii), we have
(R :T J) = (R :T a). Hence, (R : J) ⊆ (R : {a, b}) = (R :T {a, b}) =
(R :T J) ⊆ (R : J); thus, (R : J) = (R : {a, b}). Hence, J is 2-v-
generated and so is I = tJ . We conclude that R is 2-v-generated. �

Corollary 3.6. Let R be an Archimedean stable domain such that R′

is local (in particular, assume that condition (b) of Theorem 2.2 holds).
Then, R is a one-dimensional Mori domain.

Proof. R is local and one-dimensional by Corollary 2.9. Hence, R is
Mori by Proposition 3.5. �

In Proposition 3.13 below, we globalize Proposition 3.5.

Lemma 3.7. Let S be a multiplicative subset of an integral domain R.
If I is a 2-v-generated nonzero ideal of R, then the ideal IRS of RS is
2-v-generated. Hence, if R is 2-v-generated, RS is also 2-v-generated.

Proof. There exists a 2-generated subideal J of I such that (R : J) =
(R : I). Since (R : J)RS = (RS : JRS), we have (RS : IRS) =
(RS : JRS), and thus, the ideal IRS of RS is 2-v-generated. �

Lemma 3.8. Let (R,M) be a local one-dimensional domain, and let
a, b ∈ M be two nonzero elements. Then, each element in a + Rbk is
associated with a for all sufficiently large integers k.

Proof. Since R is local and one-dimensional, we have M =
√
aM ;

thus, bk ∈ aM for each sufficiently large integer k. Hence, for all r ∈ R,
we have a+ rbk = a(1+ r(bk/a)), where 1+ r(bk/a) is a unit in R since
bk/a ∈ M . �

Proposition 3.9. Let R be a one-dimensional domain of finite char-
acter. The following conditions are equivalent :

(i) R is 2-v-generated ;
(ii) R is locally 2-v-generated.
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Proof.

(i) ⇒ (ii). If R is 2-v-generated, then R is locally 2-v-generated by
Lemma 3.7.

(ii) ⇒ (i). Assume that R is locally 2-v-generated. We prove that
each nonzero ideal I ̸= R of R is 2-v-generated. Since R has finite
character, there are just finitely many maximal ideals containing I, say
M1, . . . ,Me, which we assume to be distinct. For each 1 ≤ i ≤ e, the
domain RMi is 2-v-generated; thus, there exist nonzero elements ai, bi
in I such that

(RMi : I) = (RMi : {ai, bi}).

There exist pairwise comaximal elements mi ∈ Mi, for 1 ≤ i ≤ e. By
the Chinese remainder theorem, for each positive integer k, there exists
an element a ∈ I such that we have, in R:

a ≡ ai mod Imk
i

for 1 ≤ i ≤ e. By Lemma 3.8, we may choose k sufficiently large such
that, for each i, the elements a and ai are associated in RMi . Therefore,

(RMi : I) = (RMi : {ai, bi}) = (RMi : {a, bi}).

Let Nq, q = 1, 2, . . . , f , be the maximal ideals containing a but not I.
There exist pairwise comaximal elements ni ∈ Mi, for 1 ≤ i ≤ e, that
belong to no maximal ideal Nq. In addition, there exists an element
c ∈ I that belongs to no ideal Nq. By the Chinese remainder theorem,
for each positive integer j, there exists an element b ∈ I such that
b ≡ bi mod Inj

i for each 1 ≤ i ≤ e, and b ≡ c mod INq for each ideal
Nq. Hence, b /∈ Nq for all 1 ≤ q ≤ f . By Lemma 3.8, for a sufficiently
large integer j and for each i, the elements b and bi are associated in
RMi , so (RMi : I) = (RMi : {a, b}) for all 1 ≤ i ≤ e.

Let M be a maximal ideal of R. If M contains I, then M = Mi

for some integer 1 ≤ i ≤ e. Thus, (RMi : I) = (RMi : {a, b}). If M
contains a but not I, then M = Nq for some integer 1 ≤ q ≤ f , so
b /∈ M . Thus, (RM : I) = RM = (RM : {a, b}). If M does not contain
a, then again, (RM : I) = RM = (RM : {a, b}). Thus, for each maximal
ideal M of R, we have (RM : I) = (RM : {a, b}). Hence,

(R : I) =
∩
M

(RM : I) =
∩
M

(RM : {a, b}) = (R : {a, b}),
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where M runs over all the maximal ideals of R. We conclude that I is
2-v-generated, so the domain R is 2-v-generated. �

Corollary 3.10. A one-dimensional stable domain is 2-v-generated if
and only if it is locally 2-v-generated.

Proof. Indeed, a stable domain has finite character. �

A locally 2-v-generated domain R is not necessarily 2-v-generated
even if R is one-dimensional. For example, if R is an almost Dedekind
domain that is not Dedekind, then R is locally a DVR, but R is not
Mori since an almost Dedekind and Mori domain is Dedekind. For a
positive result, see Proposition 3.12 below.

Lemma 3.11. A one-dimensional Mori domain has finite character.

Proof. If R is Mori and one-dimensional, every maximal ideal of R
is divisorial [2, Theorem 3.1]. By [2, Theorem 3.3 (c)], a Mori domain
is an intersection of finite character of the localizations at its maximal
divisorial ideals. It follows that R has finite character. �

Proposition 3.12. Let R be a one-dimensional domain. The following
conditions are equivalent :

(i) R is 2-v-generated ;
(ii) R is locally 2-v-generated and R has finite character.

Proof.

(i) ⇒ (ii). R is locally 2-v-generated by Lemma 3.7 and has finite
character by Lemma 3.11.

(ii) ⇒ (i). See Proposition 3.9. �

Proposition 3.13. A one-dimensional stable domain R is 2-v-generated;
hence, R is Mori.

Proof. Since R is locally stable, R is locally 2-v-generated by Propo-
sition 3.5. Thus, R is 2-v-generated by Corollary 3.10. �
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The stability assumption in Propositions 3.5 and 3.13 cannot be
relaxed to finite stability. Indeed, let R be a one-dimensional valuation
domain that is not a DVR. Thus, R is finitely stable, but R is
neither Mori, nor stable (the maximal ideal of R is not stable); see
[16, Example 3.3]. On the other hand, we prove below that a one-
dimensional finitely stable Mori domain is stable (Proposition 4.4).

4. The Mori case. In this section, we give a characterization of
one-dimensional stable domains. We need a few preliminary results.

Proposition 4.1. Let I be a stable ideal of an integral domain R.
Then, Iv = I(Iv : Iv) is stable, and (Iv)

2 ⊆ I.

Proof. Let D = (Iv : Iv). Thus,

(I : I) ⊆ (Iv : I) = (Iv : Iv) = D.

Since I is an invertible ideal of (I : I) and (I : I) ⊆ D, it follows that
ID is an invertible ideal of D. As D is a fractional divisorial ideal
of R, we obtain that ID is a fractional divisorial ideal of R. Hence
Iv ⊆ ID, so Iv = ID since Iv is an ideal of D. Thus, Iv = ID is
invertible in D = (Iv : Iv), that is, Iv is a stable ideal of R. Also,
(Iv)

2 = Iv(ID) = (IvD)I = IvI ⊆ I. �

Corollary 4.2 ([7, Lemma 2.7]). In a finitely stable domain all of
the v-finite divisorial ideals are stable. In particular, all the divisorial
ideals of a finitely stable Mori domain are stable.

A nonzero ideal I of a domain is called a t-ideal if I =
∪
Jv, where

J runs over all finitely generated subideals of I. Divisorial ideals are
t-ideals, and in a Mori domain, each t-ideal is divisorial.

Corollary 4.3.

(i) A stable radical ideal is divisorial, cf., [17, Corollary 4.13].
Here, we do not assume that the domain R is stable.

(ii) If I is a radical ideal and each finitely generated subideal of I
is stable, then I is a t-ideal.

(iii) Each nonzero radical ideal of a finitely stable domain is a t-
ideal.
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(iv) All the nonzero radical ideals of a finitely stable Mori domain
are divisorial and stable.

Proof.

(i) Let I be a stable radical ideal of R. By Proposition 4.1, we
have (Iv)

2 ⊆ I, so Iv ⊆ I as the ideal I is radical. Hence,
I = Iv is a divisorial ideal.

(ii) If J is a nonzero finitely generated subideal of I, then (Jv)
2 ⊆

J ⊆ I by Proposition 4.1. Since the ideal I is radical, we obtain
Jv ⊆ I, so I is a t-ideal.

(iii) follows from (ii).
(iv) All of the radical ideals of a Mori domain are divisorial by item

(ii), so they are also stable by Corollary 4.2.

�

Proposition 4.4. A one-dimensional finitely stable Mori domain is
stable.

Proof. For each maximal ideal M of R, RM is Mori and finitely
stable. Hence, MRM is divisorial (Corollary 4.3 (iii)) and so stable
(Corollary 4.2). By Proposition 1.2, RM is stable. Since R has finite
character (Lemma 3.11), R is stable by [17, Theorem 3.3]. �

In actuality, as shown in Theorem 4.8 below, a finitely stable
Mori domain is one-dimensional, so it is stable and 2-v-generated
(Propositions 4.4 and 3.13).

The following lemma is known; we give a proof for lack of a reference.

Lemma 4.5. Let I be a divisorial ideal of a Mori domain R. Then,
the domain (I : I) is Mori.

Proof. Let J1 ⊆ J2 ⊆ · · · be an infinite increasing sequence of
divisorial ideals of the domain (I : I). Since I is a divisorial ideal of R,
the domain (I : I) is a fractional divisorial ideal of R, so J1, J2, . . .
are fractional divisorial ideals of R. Let c be a nonzero element of I.
Then, cJ1 ⊆ cJ2 ⊆ · · · is a an increasing sequence of divisorial ideals
of R; thus, cJn = cJn+1 for n ≫ 0. Thus, the sequence J1 ⊆ J2 ⊆ · · ·
stabilizes, implying that (I : I) is Mori. �
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Proposition 4.6. Let (R,M) be a finitely stable local Mori domain.
If T is a finite extension of R, then R is one-dimensional, stable and
every ideal of R is 2-generated ; thus, the domain R is Noetherian (see
Construction 2.1 for the definition of T ).

Proof. By Corollary 4.3 (iv), the maximal ideal M of R is divisorial
and stable. We use the setting of Theorem 2.2. By Proposition 2.4,
T = Rn for some integer n ≥ 0. By Lemma 4.5, the domain
R1 = (M : M) is Mori. By induction, Rk is Mori for all k ≥ 0,
so T = Rn is a Mori domain. Since T has principal maximal ideals
(Theorem 2.2 (iii)), T is one-dimensional [2, Theorem 3.4]. So R is
one-dimensional. From Proposition 4.4, R is stable. By Theorem 3.1,
every ideal of R is 2-generated. �

Proposition 4.7. Let (R,M) be a local domain. The following condi-
tions are equivalent :

(i) R is one-dimensional and stable.
(ii) R is finitely stable and Mori.

Proof.

(i) ⇒ (ii) See Proposition 3.5.

(ii) ⇒ (i). By Corollary 4.3 (iv), the maximal ideal M of R is
stable. By Proposition 4.6, we have to consider just the case (b) of
Theorem 2.2. In this case, by Theorem 2.8, R is one-dimensional. By
Proposition 4.4, R is stable. �

In the next theorem, we generalize Proposition 4.7:

Theorem 4.8. Let R be an integral domain. The following two con-
ditions are equivalent :

(i) R is one-dimensional and stable;
(ii) R is finitely stable and Mori.

Moreover, if R satisfies these two equivalent conditions, then every
overring of R also satisfies the two conditions, every overring of R
is 2-v-generated, and R′ is a Dedekind domain.
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Proof.

(i) ⇒ (ii). Since R is locally stable, we obtain that R is locally Mori
by Proposition 4.7. Since R has finite character, it follows that R is
Mori [2, Theorem 2.4].

(ii)⇒ (i). Since R is locally finitely stable and locally Mori, it follows
from Proposition 4.7 that R is one-dimensional and locally stable. Since
R has finite character (Lemma 3.11), R is stable.

Assume that R satisfies the two conditions. Let D be an overring
of R. Since R is one-dimensional and R′ is Prüfer (as R is stable), it
follows that each overring of R is one-dimensional by [9, Theorem 6].
Since R is stable, each overring of R is stable. A one-dimensional stable
domain is 2-v-generated by Proposition 3.13. Finally, R′ is Prüfer and
Mori; thus, it is Dedekind (alternatively, this follows from the fact that
a stable one-dimensional Prüfer domain is Dedekind). �

In connection with Theorem 4.8, recall that an integral domain is
Noetherian 2-generated if and only if it is one-dimensional, stable and
divisorial ([4, Theorem 7.3] and [15, Theorem 3.1]).

However, if we merely assume that R is a 2-v-generated domain, then
R is not necessarily one-dimensional, and thus, also not finitely stable.
Indeed, any Krull domain is 2-v-generated [12, Proposition 1.2]. In
addition, it is not true that, in a 2-v-generated domain, each divisorial
ideal is stable. In fact, if R is a Krull domain, stability coincides with
invertibility. Hence, each divisorial ideal of a Krull domain R is stable,
i.e., invertible, if and only if R is locally factorial [5, Lemma 1.1]. On
the other hand, a one-dimensional Krull domain is Dedekind, and so,
each nonzero ideal is divisorial and stable.

In view of this example and of the 2-generated case, we ask the
following:

Question 4.9. Let R be a 2-v-generated domain R. Are the divisorial
ideals of R v-stable? If R is one-dimensional, are the divisorial ideals
of R stable?

Recall that an ideal I of a domain R is v-invertible if (I(R : I))v = R
and that a divisorial ideal I of R is v-stable if I is v-invertible in the
ring (I : I), that is, (I(I : I2))v = (I : I).
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