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QUASI-GORENSTEINNESS OF
EXTENDED REES ALGEBRAS

YOUNGSU KIM

ABSTRACT. Let R be a Noetherian local ring and I
an R-ideal. It is well known that, if the associated graded
ring grI(R) is Cohen-Macaulay (Gorenstein), then so is R,
but in general, the converse is not true. In this paper, we
investigate the Cohen-Macaulayness and Gorensteinness of
the associated graded ring grI(R) under the hypothesis that
the extended Rees algebra R[It, t−1] is quasi-Gorenstein or
the associated graded ring grI(R) is a domain.

1. Introduction. A Noetherian ring with a canonical module is
called quasi-Gorenstein if it is locally isomorphic to the canonical mod-
ule. Clearly, a ring is Gorenstein if and only if it is quasi-Gorenstein
and Cohen-Macaulay. Murthy [15] showed that a Cohen-Macaulay
UFD having a canonical module is Gorenstein. In general, the UFD
property implies quasi-Gorensteinness if the ring has a canonical mod-
ule. There exists a complete UFD having a canonical module which is
not Cohen-Macaulay, see [5, Theorem 5.8]. This shows that a quasi-
Gorenstein ring need not be Gorenstein in general. Surprisingly, the
quasi-Gorenstein property implies Gorensteinness for some classes of
extended Rees algebras. In this regard, Heinzer, M.-K. Kim and Ulrich
posed the following question.

Question 1.1 ([6, Question 4.11]). Let (R,m) be a local Gorenstein
ring, and let I be an m-primary ideal. Is the extended Rees alge-
bra R[It, t−1] Gorenstein (equivalently Cohen-Macaulay) if it is quasi-
Gorenstein?
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In the case where the dimension of R is one, Question 1.1 has
an affirmative answer because R[It, t−1] has dimension 2 in this case
and quasi-Gorenstein rings satisfy Serre’s condition (S2). The authors
showed that Question 1.1 has an affirmative answer when R is a two
dimensional pseudo-rational ring [6, Corollary 4.12]. The general case
still remains open. However, if one removes the condition of I being
m-primary, then there exists an extended Rees algebra which is a UFD
(hence, quasi-Gorenstein), but not Gorenstein [12, Example 4.7].

In Section 3, we provide an affirmative answer to Question 1.1 if
I is an almost complete intersection under the additional assumption
that the index of nilpotency and the reduction number of I coincide
(which is a necessary condition for R[It, t−1] to be Cohen-Macaulay),
see Theorem 3.19. We are also able to treat the case where I is a
monomial ideal in a polynomial ring in d-variables and I has a d-
generated monomial reduction, see Theorem 3.14. The latter condition,
I having such a reduction, is equivalent to the condition that I has only
one Rees valuation.

For monomial ideals in a polynomial ring, the normalization of
the extended Rees algebra is Cohen-Macaulay [11]. Therefore, these
normalizations are quasi-Gorenstein if and only if they are Gorenstein.
In [7], the authors characterized the Gorenstein property of normalized
extend Rees algebras of a monomial ideal when the ideal of finite
colength has only one Rees valuation. Recall that the Rees valuations of
such monomial ideals correspond to the bounded half spaces defining
the Newton polyhedron of I. We are able to remove the condition
of having one Rees valuation, and provide a characterization of the
Gorenstein property in terms of the half spaces, defining the Newton
polyhedron of the given ideal.

Since grI(R) ∼= R[It, t−1]/(t−1) and t−1 is a homogeneous non
zero-divisor, the associated graded ring grI(R) is Cohen-Macaulay (or
Gorenstein) if and only if so is the extended Rees algebra R[It, t−1].
Hochster [11, page 55, Proposition] and Herzog, Simis and Vasconcelos
[9, Proposition 1.1] showed that, if R is a local Gorenstein ring and
the associated graded ring grI(R) is a domain, then R[It, t−1] is quasi-
Gorenstein. Hence, an affirmative answer to Question 1.1 would imply
that grI(R) is Cohen-Macaulay if it is a domain. This version of the
question is meaningful even when the ambient ring R is not Gorenstein.
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Question 1.2. Let (R,m) be a local Cohen-Macaulay ring. Is grm(R)
Cohen-Macaulay if it is a domain?

Question 1.2 has an affirmative answer when R is a complete inter-

section ring of embedding codimension at most 2, i.e., R̂ ∼= S/I, where
(S, n) is a regular local ring and I is a complete intersection ideal of
height at most 2. It is natural to ask whether the question has an
affirmative answer when the ideal I is generated by three elements. In
Section 5, we prove that this is indeed the case if, in addition, I * n5

(Theorem 5.7).

We have shown that, if grI(R) is Cohen-Macaulay, then R is Cohen-
Macaulay. Recall that the Cohen-Macaulayness of a ring can be
characterized by Serre’s condition (Si) for every i.

Question 1.3. Let R be a Noetherian ring and I be an R-ideal. If
grI(R) satisfies Serre’s condition (Si) (or (Ri)), then does R[It, t−1]
satisfy the same condition?

We give a positive answer to Question 1.3 for proper ideals in a
universally catenary equidimensional local ring (Theorem 6.2).

The outline of the paper is as follows. In Section 2, we provide
the notation. In Section 3, we begin by introducing the graded
canonical module of Z-graded rings and study basic properties related
to the quasi-Gorensteinness of extended Rees algebras. The two main
theorems, Theorems 3.14, 3.19, are proved in this section. In addition,
a result on the a-invariant of the extended Rees algebra (Theorem
3.24) and the core of powers of the ideal (Theorem 3.20) are presented.
In Section 4, we provide a characterization of the Gorensteinness of
normalized extended Rees algebras of finite colength monomial ideals
in a polynomial ring. This is a generalization of [7, Theorem 5.6].
In Section 5, we discuss Question 1.2 in detail and provide a positive
answer in the case of almost complete intersections of codimension 2
(Theorem 5.7). In Section 6, we give a positive answer to Question 1.3
when the ring in question is a universally catenary equidimensional
local ring and the ideal is not a unit ideal (Theorem 6.2).
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2. Preliminaries. All rings are commutative Noetherian with unity.
Let (R,m) be a local ring and M a finitely generated R-module. Let
µ(M) denote the minimal number of generators of M . By Min(M) and
Ass(M), we denote the set of minimal primes and associated primes of
M , respectively. For R-ideals J ⊆ I, the ideal J is called a reduction
of I if there exists a non-negative integer n such that JIn = In+1. The
smallest such integer is called the reduction number of I with respect to
J , denoted by rJ(I), and let r(I) := min{rJ(I) | J a reduction of I}.
For an r × s matrix Φ with entries in R, we write In(Φ) for the ideal
generated by the n× n minors of Φ. By convention, we set In(Φ) = R
for n ≤ 0, and we set In(Φ) = 0 for n > min{r, s} .

For an ideal I ⊂ R, we write

R[It] = ⊕i≥0I
iti, R[It, t−1] = ⊕i∈ZI

iti, and grI(R) = ⊕i≥0I
i/Ii+1,

for the Rees algebra, the extended Rees algebra and the associated graded
ring of R with respect to the ideal I, respectively. Sometimes, they are
also called blowup algebras. These are the rings which appear in the
construction of blowing up an affine variety along a closed subvariety
in algebraic geometry.

Let ωR denote a canonical module of R, if it exists. Here the canon-
ical module is the dualizing module in the sense of Grothendieck’s
local duality theorem. For instance, when (R,m) is a complete
local ring of dimension d, then a canonical module ωR of R is
HomR(H

d
m(R), ER(R/m)), where Hd

m(−) and ER(−) denote the dth
local cohomology with respect to m and the injective envelope, respec-
tively. A local ring R with a canonical module ωR is called Gorenstein
if R is Cohen-Macaulay and R is the canonical module ωR. The second
property R ∼= ωR can be isolated, and it is called the quasi-Gorenstein
property, that is, a local ring is quasi-Gorenstein if it is isomorphic to
the canonical module ωR.

Let S be a Noetherian Z-graded ring with unique homogeneous
maximal ideal M, and assume that M is maximal. For a graded
module M , let [M ]i denote the ith graded piece of M . The a-invariant
of S, denoted by a(S), is

max{i ∈ Z | [∗Soc(Hd
M(S))]i ̸= 0}.

Here ∗Soc(M) = 0 :M M for any graded S-module M . If S has a
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graded canonical module ωS , then, by graded local duality, we have

a(S) = −min{i ∈ Z | [ωS/MωS ]i ̸= 0}.

If S is positively graded, then this number is

max{i ∈ Z | [Hd
M(S)]i ̸= 0}.

In the sequel, we use the book by Bruns and Herzog [2] as a reference
for basic terminology and definitions.

3. Quasi-Gorensteinness of extended Rees algebras.

Graded canonical modules. Let R be a Noetherian Z-graded ring
with unique maximal homogeneous ideal M. Then the subring R0 is
local. We write m for the maximal ideal of R0. Let ER0(R0/m) be the
injective envelope of the residue field of R0. For a homogeneous prime
ideal p of R, we write R(p) := S−1R where S is the set of homogeneous
elements of R which are not in p. Observe that R(p) is Z-graded and has
unique maximal homogeneous ideal pR(p). For Z-graded R-modules M

and N , let *HomR(M,N) denote the R-submodule of HomR(M,N)
generated by the homogeneous R-linear maps of arbitrary degree from

M to N . For a finitely generated Z-graded R-module M , let M̂ denote

the tensor product M ⊗R0 R̂0

m
. We say M is ∗-complete if M ∼= M̂

by the natural isomorphism. In particular, R̂ is ∗-complete, and R is
∗-complete if and only if R0 is complete.

Definition 3.1. Let d = dimRM. A finitely generated graded R-
module ωR is called a graded canonical module of R if

ω̂R
∼= *HomR0(H

d
M(R), ER0(R0/m))

as graded R-modules.

Remark 3.2. Let R be a Noetherian Z-graded ring with a unique
maximal homogeneous ideal.

(a) If R is ∗-complete, then R has a graded canonical module.
(b) [4, Exercise 7.5]. For finitely generated Z-graded R-modules M

and N , if M̂ ∼= N̂ , then M ∼= N .
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Lemma 3.3 (cf., [2, Corollary 3.6.14]). Let R be a Z-graded Cohen-
Macaulay ring with a unique maximal homogeneous ideal. Assume
that R has a graded canonical module ωR. If x = x1, . . . , xn form a
homogeneous regular sequence on R, then x form a regular sequence on
ωR, and we have

ωR/(x)
∼= (ωR/xωR)

( n∑
i=1

deg(xi)

)
.

Proof. It suffices to show the statement when n = 1. Let M be the
unique maximal homogeneous ideal, d = dimRM and m the maximal
ideal of R0. By Remark 3.2 (b), we may assume that R is ∗-complete
(hence, so is R/xR). Since R and R/(x) are Cohen-Macaulay, the exact
sequence

0 −→ R(− deg(x))
·x−→ R −→ R/(x) −→ 0

induces the exact sequence

0 −→ Hd−1
M (R/(x)) −→ Hd

M(R)(− deg(x))
·x−→ Hd

M(R) −→ 0.

Taking *HomR0(−, ER0(R0/m)), we obtain the exact sequence
(3.1)

0 −→ ωR
·x−→ ωR(deg(x)) −→ *HomR0(H

d−1
M (R/(x)), ER0(R0/m)) −→ 0.

This shows that x is a nonzerodivisor of ωR. Hence, we are done once
we have shown the isomorphism

ωR/(x)
∼= *HomR0(H

d−1
M (R/(x)), ER0(R0/m)).

From the ring homomorphism R → R/(x), we obtain a surjective ring
homomorphism R0 → [R/(x)]0 of local rings. We write (R0,m) for the
local ring [R/(x)]0. By [13, Exercise 13], we have

ER0
(R0/m)) ∼= HomR0(R0, ER0(R0/m)).

Therefore, by the hom-tensor adjointness, we obtain

*HomR0
(−, ER0

(R0/m)) ∼= *HomR0
(−, *HomR0

(R0, ER0
(R0/m)))

∼= *HomR0(−⊗R0
R0, ER0(R0/m))

∼= *HomR0(−, ER0(R0/m)),
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for any R/(x)-module in the first variable. Since

Hd−1
M (R/(x)) ∼= Hd−1

M/(x)(R/(x)),

this shows the statement. �

The next lemma is a partial converse of Lemma 3.3.

Lemma 3.4. Let R be a Z-graded Cohen-Macaulay ring with a unique
maximal homogeneous ideal. Assume that x = x1, . . . , xn forms a ho-
mogeneous regular sequence, and R/(x1, . . . , xn) has a graded canoni-
cal module ωR/(x1,...,xn). Write ρ =

∑n
i=1 deg(xi). If ωR/(x1,...,xn)

∼=
(R/(x1, . . . , xn))(a) for some a ∈ Z, then ωR

∼= R(a− ρ).

Proof. It suffices to show the statement when n = 1. By Remark
3.2 (a) , ωR̂ exists, and by Remark 3.2 (b), it suffices to show that

̂R(a− ρ) ∼= ωR̂. Hence, we may assume that R is ∗-complete. By
Lemma 3.3, we have ωR/xωR(deg(x)) ∼= ωR/(x)

∼= R/(x)(a). By
Nakayama’s lemma, we see that ωR is a cyclic R-module. Consider
the exact sequence

(3.2) 0 −→ K −→ R(a− deg(x)) −→ ωR −→ 0.

We tensor (3.2) with R/(x). By Lemma 3.3, x is a nonzerodivisor on

ωR. This implies that TorR1 (ωR, R/(x)) = 0, i.e., (3.2) remains exact
after applying − ⊗R R/(x). Since R/(x)(a − deg(x)) ∼= ωR/xωR, one
has K/xK = 0. By Nakayama’s lemma, we obtain K = 0. Indeed, this
implies

R(a− deg(x)) ∼= ωR. �

Theorem 3.5 (cf., [8, Theorem 5.12]). Let R and S be Noetherian
Z-graded rings with unique maximal homogeneous ideals M and N,
respectively. Let ϕ : S → R be a graded ring homomorphism. Assume
that R is a finitely generated S-module, ϕ(S0) = R0 and S is Cohen-
Macaulay. We write dimSN = n and dimRM = d. If S has a graded
canonical module ωS, then

ωR
∼= *Ext

n−d

S (R,ωS).

Proof. By Remark 3.2 (b), it suffices to show the isomorphism after
∗-completions. Since ϕ(S0) = R0, by

∗-completing both R and S as
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S-modules, we may assume that R and S are ∗-complete. Let mS0

and mR0
denote the maximal ideals of S0 and R0, respectively. Set

E′ := ES0(S0/mS0) and E := ER0(R0/mR0). By [13, Exercise 13],
we have E ∼= HomS0

(R0, E
′). From the hom-tensor adjuction and the

graded version of the local duality theorem [2, Theorem 3.6.19(b)], we
obtain the isomorphisms:

ωR
∼= *HomR0(H

d
M(R), E)

∼= *HomR0
(Hd

M(R),HomS0
(R0, E

′))

∼= *HomS0(H
d
M(R)⊗R0 R0, E

′)

∼= *HomS0(H
d
N(R), E′)

∼= *Ext
n−d

S (R,ωS),

and this completes the proof. �

Corollary 3.6. Let R be a Noetherian Z-graded ring with a unique
maximal homogeneous ideal M. Let S = A[X1, . . . , Xn] be a Z-
graded polynomial ring over a Gorenstein local ring A. Assume that
there exists a surjective graded ring homomorphism ϕ : S → R with
ϕ(A) = R0 and M is maximal. Let N := ϕ−1(M), g = ht ker(ϕ), and
ρ =

∑n
i=1 deg(Xi). Then we obtain ωS(N)

∼= S(N)(−ρ) and

ωR
∼= *Ext

g

S(N)
(R,S(N))(−ρ)

∼= *Ext
g

S(R,S)(−ρ).

Proof. Since *Ext
g

S(R,S) is a graded R-module and R = R(M), we
have

*Ext
g

S(R,S) ∼= *Ext
g

S(R,S)(M)
∼= *Ext

g

S(R,S)(N)

∼= *Ext
g

S(N)
(R(N), S(N)) ∼= *Ext

g

S(N)
(R(M), S(N))

∼= *Ext
g

S(N)
(R,S(N)).

Therefore, it suffices to show the first isomorphism.

First we show that we can reduce to the case where allXi are inN. If
deg(Xi) ̸= 0, then ϕ(Xi) is a homogeneous element of degree not equal
to 0 in R. Since M is maximal, there is no homogeneous unit of degree
not equal to 0. Hence, ϕ(Xi) ∈ M, i.e., Xi ∈ N. Therefore, if Xi /∈ N,
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then deg(Xi) = 0. Suppose Xi /∈ N. Since ϕ(Xi) ∈ R0 = ϕ(A), there
exist zi ∈ A ⊆ S0 such that zi = ϕ(Xi). Since Xi − zi is in ker(ϕ),
Xi − zi ∈ N. Replacing the variable Xi by Xi − zi, we may assume
that Xi ∈ N.

Since Xi ∈ N for all i, we have N = (m, X1, . . . , Xn) where m is
the maximal ideal of A. Let S′ = S(N). Since N = ϕ−1(M), ϕ factors
through S′. Write ϕ′ : S′ → R for the ring homomorphism induced
by ϕ. Since S′ and R have unique maximal homogeneous ideals, ϕ′

surjective, and ϕ′(A) = R0, by Theorem 3.5, we are done once we
have shown that ωS′ ∼= S′(−ρ). By Remark 3.2 (b), it suffices to show
the isomorphism after ∗-completion. Hence, we may assume that S′

is ∗-complete. Write X = X1, . . . , Xn. Then X form a homogeneous
regular sequence on S′, and

S′/(X)S′ ∼= S/(X)(N)
∼= A(N) = Am = A.

Since A is a Gorenstein local ring concentrated in degree 0, we have
ωA

∼= A. Then

S′/(X)S′ ∼= A ∼= ωA
∼= ωS′/(X)S′

and Lemma 3.4 imply the isomorphism ωS′ ∼= S′(−ρ). This completes
the proof. �

Recall that a Noetherian Z-graded ring R with a unique maximal
homogeneous ideal is called quasi-Gorenstein if ωR

∼= R(a) for some
a ∈ Z. If the unique maximal ideal is maximal, the number a is well
defined, and it is called the a-invariant of the ring R. A Gorenstein Z-
graded ring is a quasi-Gorenstein ring which is Cohen-Macaulay. The
ring S(N) in Remark 3.2 is a Gorenstein ring. Note that this definition
agrees with [2, Theroem 3.6.19] when R is Cohen-Macaulay. However,
we do not require a ring to be Cohen-Macaulay.

Graded canonical modules of extended Rees algebras.

Proposition 3.7. Let (R,m) be a Cohen-Macaulay local ring having
a canonical module ωR. Let I ⊆ m be an R-ideal. If R[It, t−1] is
quasi-Gorenstein, then R is Gorenstein.
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Proof. The canonical module of R[t, t−1] is isomorphic to ωR[t, t
−1]

[1, Proposition 4.1]. Since R[t, t−1] = R[It, t−1](t−1)−1 and canonical
modules localize,

ωR[t, t
−1] ∼= (ωR[It,t−1])(t−1)−1

∼= (R[It, t−1])(t−1)−1(a) = R[t, t−1](a),

where a is the a-invariant of R[It, t−1]. Hence, we have R ∼= ωR, i.e.,
R is Gorenstein. �

Lemma 3.8. Let (R,m) be a Cohen-Macaulay local ring with a canon-
ical module ωR and I ⊆ m an ideal. If R[It, t−1] is quasi-Gorenstein,
then the canonical module ωgrI(R) of grI(R) is of rank 1, and there
exists an inclusion

grI(R)(ρ) ⊆ ωgrI(R)

of graded grI(R)-modules where ρ = a(R[It, t−1])− 1.

Proof. Write T = R[It, t−1] and G = grI(R). We need to show
that (ωG)p ∼= Gp for all the associated primes of ωG. Since G is
equidimensional and unmixed, Ass(ωG) = Min(G) [1, (1.7)]. Let

π : T
nat→ G and p ∈ Min(G). Write P = π−1(p). Since T satisfies

Serre’s condition (S2) and P ∈ Min(T/(t−1)), P is of height 1. Hence,
TP is Gorenstein. Since Gp

∼= TP /(t
−1)P , Gp is Gorenstein, and this

shows that (ωG)p ∼= Gp is of rank 1.

Now, we show the inclusion

grI(R)(ρ) ⊆ ωgrI(R).

Let S := R[X1, . . . , Xn] be a Z-graded polynomial ring over R such that
ϕ : S → R[It, t−1] is a surjective homogeneous ring homomorphism.
Let H = ker(ϕ) and g = htH. Observe that G = S/(H,h), where
ϕ(h) = t−1. From the exact sequence of graded T -modules

0 −→ T (1)
t−1

−→ T −→ G −→ 0,

we have an exact sequence of graded Ext modules

0 −→ ExtgS(T, S)
t−1

−→ ExtgS(T (1), S) −→ Extg+1
S (G,S).

By Corollary 3.6, this shows that

(3.3) 0 −→ ωT
t−1

−→ ωT (−1) −→ ωG,
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is exact, and the result follows since ωT
∼= T (a), where a is the a-

invariant of T . �

Theorem 3.9. Let (R,m) be a Cohen-Macaulay local ring having a
canonical module ωR and I ⊆ m an ideal. Assume that a graded
canonical module ωR[It,t−1] of R[It, t−1] satisfies Serre’s condition (S3).
This gives us the following statements.

(a) If R[It, t−1] is quasi-Gorenstein, then (ωR[It,t−1]/t
−1ωR[It,t−1])(1)

is a graded canonical module of grI(R).
(b) R[It, t−1] is quasi-Gorenstein if and only if grI(R) is quasi–

Gorenstein.

Proof. Let G = grI(R) and T = R[It, t−1]. Let ωG be the graded
canonical module of G.

(a) We have

0 −→ (ωT /t
−1ωT )(−1) −→ ωG −→ L −→ 0,

where L is the cokernel of the natural map in (3.3). We show that L =
0. This is equivalent to showing that Lp = 0 for all p ∈ Ass(L). Since
ωT satisfies Serre’s condition (S3), ωT /t

−1ωT satisfies Serre’s condition
(S2) as a G-module. Let p ∈ Ass(L). Since TP is Gorenstein for all
prime ideals of height at most 2, Gp is Gorenstein for all prime ideals
of height at most 1. Hence, if p ∈ Ass(L), then ht p ≥ 2. Since p is an
associated prime of L, depthLp = 0. However, depth(ωT /t

−1ωT )p ≥ 2
and depth(ωG)p ≥ 2. This implies that depthLp ≥ 1, and this is a
contradiction.

(b) The forward direction follows immediately from part (a). For
the other direction, we only need to show that ωT is a cyclic faithful
T -module. From the isomorphism ωG

∼= ωT /t
−1ωT and µT (ωT ) =

λT (ωT /MTωT ) = µG(ωT /t
−1ωT ) = 1, where MT is the maximal

homogeneous ideal of T , we conclude that ωT is cyclic. Here, λ(−)
denotes the length of a module. Also, ωT is faithful since T is unmixed,
cf., [1, (1.8)(a)(c)]. Therefore, ωT

∼= T (a(G) + 1). �

Main theorems. It is interesting to see under which conditions
quasi-Gorenstein extended Rees algebras are Gorenstein. To this end,
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Heinzer, M.-K. Kim and Ulrich posed the next question. In this section,
we present two cases which give an affirmative answer to the question.

Question 3.10 ([6, Question 4.11]). Let (R,m) be a local Gorenstein
ring. Let I be an m-primary ideal. If the extended Rees algebra
R[It, t−1] is quasi-Gorenstein, then is it Gorenstein?

In the same paper, the authors characterized the quasi-Gorenstein
property of the extended Rees algebra in terms of colon ideals.

Proposition 3.11 ([6, Theorem 4.1]). Let (R,m) be a Gorenstein
local ring of dimension d, and let I be an m-primary ideal. Assume
that J ⊆ I is a reduction of I with µ(J) = d. Let r := rJ (I) be the
reduction number of I with respect to J , and let k be an integer such
that k ≥ r. Then the graded canonical module ωR[It,t−1] of R[It, t−1]
has the form

ωR[It,t−1]
∼=

⊕
i∈Z

(J i+k :R Ik)ti+d−1.

In particular, for a ∈ Z, the following are equivalent :

(a) R[It, t−1] is quasi-Gorenstein with a-invariant a.
(b) J i :R Ir = Ii+a−(r−d+1) for every i ∈ Z.

Definition 3.12. Let R be a Noetherian local ring. Let I be an
ideal and J a minimal reduction of I. Then the index of nilpotency,
denoted by sJ(I), is min{i | Ii+1 ⊂ J}, and s(I) = max{sJ(I) |
J is a minimal reduction of I }.

Lemma 3.13 ([6, Remark 4.4]). We use the setting of Proposi-
tion 3.11. In addition, assume that R[It, t−1] is quasi-Gorenstein.
Then,

(a) sJ (I)− d+ 1 ≤ a(R[It, t−1]) ≤ rJ(I)− d+ 1, and
(b) max{n | IrJ (I) ⊆ Jn} = rJ(I)− d+ 1− a(R[It, t−1]).

Now, we are ready to provide a positive answer to Question 3.10 for
a class of monomial ideals in a polynomial ring.
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Theorem 3.14. Let R be a polynomial ring in d-variables over a field
and I a monomial ideal of height d. Assume that I has a d-generated
monomial reduction. If R[It, t−1] is quasi-Gorenstein, then R[It, t−1]
is Gorenstein.

Proof. We show that grI(R) is Cohen-Macaulay. Let J = (g1, . . . , gd)
be the monomial reduction of I, and write r := rJ(I). Let u =
r − d + 1 − a(R[It, t−1]), where a(R[It, t−1]) is the a-invariant of
R[It, t−1]. Since R[It, t−1] is quasi-Gorenstein, we have J i : Ir = Ii−u

for all i by Proposition 3.11 (b). The Cohen-Macaulayness of grI(R)
follows by the Valabrega-Valla criterion [21, Theorem 1.1] once we
have shown that

J ∩ Ii ⊆ JIi−1 for 0 ≤ i ≤ r.

Recall that all of the ideals in question are monomial. Let a be an
arbitrary monomial in J ∩ Ii. Since a ∈ J and J is a monomial
ideal generated by the gi’s, we can write a = a′g where a′ ∈ R and
g = gj for some j. We want to show that a′ ∈ Ii−1. For an arbitrary
element z ∈ Ir, we have az ∈ Ii+r = J iIr ⊆ J iJu, where the last
inclusion follows from Lemma 3.13 (b). Then az = a′zg ∈ J i+u,
and this implies a′z ∈ J i+u−1 since g + J2 is a non zero-divisor on
grJ (R). Our choice of z ∈ Ii was arbitrary. Hence, we conclude that
a′ ∈ J i+u−1 : Ir = Ii−1. �

In the rest of this section we use the setting of Proposition 3.11 and
study quasi-Gorenstein extended Rees algebras under the condition
that sJ(I) = rJ (I) for some d-generated minimal reduction J of I.
This is a necessary condition if the associated graded ring grI(R) is
Cohen-Macaulay by [21, Theorem 1.1].

Remark 3.15. Let (R,m) be a d-dimensional Gorenstein local ring and
I an m-primary ideal. Assume that sJ(I) = rJ(I) for some d-generated
minimal reduction J of I. Then, R[It, t−1] is quasi-Gorenstein if and
only if J i : Ir = Ii for all i ∈ Z.

Proof. This follows directly from Proposition 3.11 and Lemma
3.13 (a). �
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Definition 3.16 ([19]). Let (R,m) be a Noetherian local ring and I
an m-primary ideal. The ideal I called n-standard if J ∩ Ii = JIi−1 for
all i ≤ n.

Proposition 3.17. Let (R,m) be a d-dimensional Cohen-Macaulay
local ring having a canonical module and I an m-primary ideal. Assume
that R[It, t−1] is quasi-Gorenstein and sJ(I) = rJ(I) for some d-
generated minimal reduction J of I. Then I is 2-standard.

Proof. Since R[It, t−1] is quasi-Gorenstein and sJ(I) = rJ (I), we
have J i : Ir = Ii for all i ∈ Z by Remark 3.15. We show that
J ∩ I2 ⊆ JI. Write J = (x1, . . . , xd), and let a ∈ J ∩ I2. Then,
we may write a =

∑
aixi for some ai in R. For any z ∈ Ir,

az ∈ IrI2 = Ir+2 = J2Ir ⊆ J2, that is,

z
∑

aixi =
∑

zaixi ∈ J2.

Since J/J2 is a free R/J-module with basis x1 + J2, . . . , xd + J2, we
obtain zai ∈ J . This implies that, indeed, ai ∈ J : Ir = I. �

Lemma 3.18. Let (R,m,k) be a d-dimensional Cohen-Macaulay local
ring having a canonical module with infinite residue field k. Let I be
an m-primary ideal. Assume that R[It, t−1] is quasi-Gorenstein and
sJ(I) = rJ (I) for some minimal reduction J of I.

(a) It is obvious that rJ (I) = r(I) and sJ(I) = s(I); in particular,
s(I) = r(I).

(b) a(grI(R)) = a(R[It, t−1]) − 1 = d − rJ (I) where a(grI(R)) and
a(R[It, t−1]) are the a-invariants of grI(R) and R[It, t−1], respec-
tively.

Proof.

(a) By Lemma 3.13 (a), we have

sJ (I)− d+ 1 = a := a(R[It, t−1]) = rJ(I)− d+ 1.

Let L,K ⊆ I be minimal reductions with rL(I) = r(I) and sK(I) =
s(I), respectively. Apply Lemma 3.13 (a) to obtain

s(I)− d+ 1 ≤ a ≤ r(I)− d+ 1.



EXTENDED REES ALGEBRAS 521

This shows that s(I) ≤ sJ (I) and r(I) ≥ rJ (I). The other direction of
the inequalities follows from the definition of s(I) and r(I).

(b) From the exact sequence (3.3) in the proof of Lemma 3.8, we
have a(grI(R)) ≥ a(R[It, t−1]) − 1 = r − d, and the other inequality
follows from a result of Trung [20, Proposition 3.2]. �

Theorem 3.19. Let (R,m) be a Cohen-Macaulay local ring having a
canonical module with infinite residue field. Let I be an m-primary
ideal. Assume that I is an almost complete intersection ideal, i.e.,
µ(I) ≤ ht I + 1. The following are equivalent :

(a) R[It, t−1] is Gorenstein.
(b) R[It, t−1] is quasi-Gorenstein and sJ(I) = rJ(I) for some minimal

reduction J of I.

Proof. Recall that, if I is a complete intersection, i.e., µ(I) =
ht I, then R[It, t−1] is a Cohen-Macaulay ring, and the equivalence
immediately follows. Suppose that µ(I) = ht I + 1. Implication (a) ⇒
(b) is obvious. Let d = dimR and J a minimal reduction such that
r = rJ (I) = sJ (I). Choose a generating set x1, . . . , xd of J . Since J
is a minimal reduction of I, a generating set of J can be extended to
that of I. Hence, we may write I = J + (x) for some x in R. By [21,
Theorem 1.1], it suffices to show that

J ∩ Ii ⊆ JIi−1 for 1 ≤ i ≤ r.

Since I = J + (x),

J ∩ Ii ⊆ JIi−1 ⇐⇒ J ∩ (J + (x))i ⊆ JIi−1

⇐⇒ J ∩ (J i + xJ i−1 + · · ·+ (x)i) ⊆ JIi−1

(⋆)⇐⇒ J i + xJ i−1 + · · ·+ xi−1J + J ∩ (x)i ⊆ JIi−1

⇐⇒ J ∩ (x)i ⊆ JIi−1,

where the equivalence (⋆) follows from the containment J i, . . . , xi−1J ⊆
J . First, we claim that J ∩ (x)i ⊆ Ii+1. Observe that J ∩ (x)i =
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J ∩ (xi) = xi(J :R xi) = xi(J :R Ii). This gives

Irxi(J : Ii) ⊆ IrIi(J : Ii) ⊆ Ir+i(J : Ii)

= J iIr(J : Ii) = J iIr−iIi(J : Ii)

⊆ J iIr−iJ ⊆ J i+1.

Therefore, xi(J : Ii) ⊆ J i+1 : Ir = Ii+1, and this shows the claim.

Now, we apply decreasing induction on i. When i = r,

J ∩ (x)r ⊆ Ir+1 = JIr ⊆ JIr−1.

For i < r, J ∩ Ii+1 = JIi by the induction hypothesis. Hence, we have

J ∩ (x)i ⊆ J ∩ Ii+1 = JIi ⊆ JIi−1. �

Results on the a-invariant, and the core of an ideal. Let R be
a Noetherian local ring and I an R-ideal. In this section, we present
results on the core of powers of an ideal I and the a-invariant of the
extended Rees algebras when the extended Rees algebra R[It, t−1] is
quasi-Gorenstein.

Theorem 3.20. Let (R,m) be a Cohen-Macaulay local ring having a
canonical module and k = R/m. Let I be an m-primary ideal. Assume
that R[It, t−1] is quasi-Gorenstein and either characteristic of k is 0 or
greater than r(I). Let a := a(R[It, t−1]) be the a-invariant of R[It, t−1].
Then core(Iu) = Idu+a for all u ∈ Z.

Proof. We may assume that the residue field is infinite. Let J be
a minimal reduction of I with r := rJ(I) = r(I). Fix a minimal
generating set x1, . . . , xd of J where d = dimR. Let J ′ = J [u] :=
(xu

1 , . . . , x
u
d) and I ′ = Iu. Then J ′ is a minimal reduction of I ′. By

[16, Theorem 4.5],

core(I) = Jn+1 : In for n ≥ r(I).

We compute the core of I ′ by using [17, Lemma 2.2], which shows

Jn+1 : In = J [n] : Idn for n ≫ 0

in our setting. For n ≫ 0, one has
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core(I ′) = J ′n+1 : I ′n = J ′[n+1] : I ′dn

= (J [u])[n+1] : (Iu)dn = J [nu+u] : Iudn

= J [nu+u] : Iudn−rIr = J [nu+u] : Judn−rIr

= (J [nu+u] : Judn−r) : Ir = Jd(nu+u−1)+1−(udn−r) : Ir

= Jdu−d+1+r : Ir = Idu+a,

where the last equality follows from Proposition 3.11 (b). �

Definition 3.21. Let S be a Z-graded ring and M a graded S-
module. The initial degree of M , denoted by indegS(M), is the
inf{i ∈ Z | [M ]i ̸= 0} if M ̸= 0 and 0 if M = 0.

Remark 3.22. The number indegS(M) can be −∞ in general. For
a finitely generated Z-graded module M over a Noetherian ring
having a unique maximal homogeneous ideal M, which is maxi-
mal, indegS(M/MM) is a well-defined finite number. In this case,
indegS(M/MM) is the minimum among the degrees of the elements in
a minimal homogeneous generating set of M .

Lemma 3.23. Let (R,m) be an analytically unramified Cohen-Macaulay
local ring having a canonical module with infinite residue field. Let I be
an m-primary ideal. Write T := R[It, t−1], and let MT be the maximal
homogeneous ideal of T . Let T be the integral closure of T in R[t, t−1]
and C the conductor ideal, i.e., C = T :T T . If T is quasi-Gorenstein,
then

a(T ) = a(T )− indeg(C/MT C),

where a(−) denotes the a-invariant. Furthermore, we have indeg(C/
MTC) ≤ 0, and equality happens if and only if T is integrally closed in
R[t, t−1].

Proof. If T is integrally closed, then there is nothing to prove.

We assume that T is not integrally closed. Let d = dimR and
A := R[Jt, t−1] where J is a minimal reduction of I. Then, A
is a Cohen-Macaulay ring with A0 = [T ]0 = R, and, since R is
analytically unramified, A ⊆ T is module-finite extension. Hence, the
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graded canonical modules ωT of T and ωT of T are HomA(T, ωA) and

HomA(T , ωA), respectively, where ωA is the graded canonical module
of A. We claim that ωT

∼= HomT (T , ωT ). Observe that

HomT (T , ωT ) ∼= HomT (T ,HomA(T, ωA))

∼= HomA(T ⊗T T, ωA)

∼= HomA(T , ωA),

where the last module is a graded canonical module of T , see Theo-
rem 3.5. Since T has a unique maximal homogeneous ideal which is
maximal, it has a well defined a-invariant

− indeg(ωT /MTωT ).

Since T ⊂ T is birational, i.e., they have the same total quotient
ring, we have HomT (T , T ) ∼= (T :T T ), where the last module is the
conductor ideal C. Recall that, since T is quasi-Gorenstein, ωT

∼=
T (a(T )). Therefore, ωT

∼= C(a(T )). This implies that

a(T ) = − indeg(C/MT C(a(T )))
= −(indeg(C/MTC)− a(T )).

It remains to show that

indeg(C/MTC) = indeg(C/MT C).

Since R is analytically unramified, there exists a positive integer q such
that Ii = Ii−qIq for i ≥ q ≥ 0 [18, Theorem 1.4]. This shows that
t−q ∈ C. By choosing q the smallest positive integer with the property,
we have indegT (C/MTC) = −q ≤ 0. Since [T ]i = [T ]i for all i ≤ 0, in
particular, [MT ]i = [MT ]i for i < 0, we obtain

indeg(C/MTC) = indeg(C/MT C). �

Theorem 3.24. Let (R,m) be a d-dimensional analytically unramified
Cohen-Macaulay local ring having a canonical module with infinite
residue field. Let I be an m-primary ideal. Let {Fi}i∈Z, where Fi = Ii,
be the integral closure filtration where Fi = R when i ≤ 0. Assume that
T = ⊕i∈ZFit

i is Cohen-Macaulay. If R[It, t−1] is quasi-Gorenstein,
then the index of nilpotency does not depend on a minimal reduction of
I, and the a-invariant of R[It, t−1] is s(I)− d+ 1.
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Proof. Let T = R[It, t−1], J a minimal reduction of I and q =
a(T ) − a(T ), where a(−) denotes the a-invariant. First, we claim
that sJ(I) = sJ (F) − q, where sJ (F) := min{i | Fi+1 ⊆ J}.
Since T is Cohen-Macaulay, a(T ) = sJ (F) − d + 1, equivalently,
a(T ) = sJ (F)− q−d+1. Lemma 3.13 (a) sJ(I)−d+1 ≤ a(T ) implies

that sJ(I) + q ≤ sJ (F). Since t−q ∈ T :T T , we have In+q ⊂ In.

Hence, we have J : In+q ⊇ J : In, and, by definition, this implies the
other inequality sJ(I) + q ≥ sJ(F). This proves the claim.

Since a(T ) = sJ(I)− d+1 is independent of a minimal reduction J ,
we have sJ(I) = s(I). This completes the proof. �

The ring ⊕i∈ZFit
i is not Cohen-Macaulay in general. However,

Hochster [10] showed that it is Cohen-Macaulay when R is a poly-
nomial ring (localized at the origin) over a field and F1 is a monomial
ideal.

4. The Gorensteinness of extended Rees algebras of mono-
mial normal ideals. Let I be a monomial ideal in a polynomial ring
R = k[x1, . . . , xd] over a field k. The integral closure of the extended

Rees algebra R[It, t−1] is Cohen-Macaulay by a result of Hochster [10].
In [7, Theorem 5.6], the authors characterized the Gorensteinness of

R[It, t−1] when I has a minimal reduction J which is generated by pow-
ers of variables, i.e., J = (xa1

1 , . . . , xad

d ) for some ai ∈ N. This condition
having such a minimal reduction is equivalent to the condition that I
has only one Rees valuation. In this section, we generalize this result by
removing the condition on the number of Rees valuations. We are able
to interpret the reduction number that appears in [7, Proposition 5.4]

in terms of the a-invariant of R[It, t−1], and this leads to a lower bound
on the reduction number. We follow the notation of [2, Chapter 6].

Setting 4.1. Let R = k[x1, . . . , xd] be a polynomial ring in d-variables
over a field k and m = (x1, . . . , xd)R. We assign a Zd+1-grading to
the Laurent polynomial ring R[t, t−1] by setting the exponent function,
denoted by exp, from the set of monomial ideals of R to Zd as

exp(xa1
1 · · ·xad

d tad+1) = (a1, . . . , ad, ad+1).

This determines the grading, since {exp(x1), . . . exp(xd), exp(t)} forms
an (orthonormal) Z-basis for Zd+1. Let A be a Zd+1-graded subring of
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R[t, t−1]. Then the semigroup

CA := {exp(m) | m monomial of R[t, t−1] in A} ⊆ Zd+1

is called the affine semigroup of A if CA is a finitely generated semi-
group. For an affine semigroup C, let relint(C) denote the relative
interior of C that is

relint(C) := C ∩ relintR≥0C.

Lemma 4.2 ([2, Proposition 6.1.5]). With Setting 4.1, let C be the
affine semigroup of R[mt, t−1]. Let W = Zd+1 and {ei} the standard
basis of W . Let ϕ ∈ AutZ(W ) be an automorphism of W defined as
follows: ϕ(ei) = ei+ed+1 for i = 0, . . . , d and ϕ(ed+1) = −ed+1. Then

ϕ|C is an embedding of C into Zd+1
≥0 .

Proof. One can easily check that ϕ is an automorphism on W . We
show that ϕ|C is an embedding. Since C does not have any inverse (in
the sense of affine semigroups), ker(ϕ|C) = 0.

It remains to show that ϕ(C) ⊆ Zd+1. Since ϕ(exp(xi)) =
(0, . . . , 0, 1, 0, . . . , 0, 1) and ϕ(exp(t−1)) = (0, . . . , 0, 1), it suffices to

show that, for ai ∈ Z≥0 and b ∈ Z such that
∑d

i=0 ai ≥ b, the im-

age ϕ(exp(xa1
1 · · ·xad

d tb)) is in Zd+1
≥0 . Indeed, we have

ϕ(exp(xa1
1 · · ·xad

d tb)) =

( d∑
i=0

aiϕ(exp(xi))

)
+ bϕ(exp(t))

=

( d∑
i=0

aiϕ(exp(xi))

)
− bϕ(exp(t−1))

=
(
a1, . . . , ad,

d∑
i=0

ai

)
− b(0, . . . , 0, 1)

=
(
a1, . . . , ad,

d∑
i=0

ai − b
)
∈ Zd+1

≥0 . �

Corollary 4.3. With Setting 4.1, let F = {Fi}i∈Z be a filtration
where Fi = R when i ≤ 0 and Fi are monomial ideals contained in
mi. Then, the affine semigroup of ⊕i∈ZFit

i can be embedded into Zd+1
≥0 .
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In particular, the affine semigroup of R[It, t−1] can be embedded into

Zd+1
≥0 when I is a monomial ideal.

For a monomial ideal I in R, its integral closure I can be determined
by the Newton polyhedron of the ideal I. Here, the Newton polyhedron
NP(I) of a monomial ideal I is the cone generated (over R≥0) by the
exponent vectors of the monomials in I in Rd. We would like to describe
the ring R[It, t−1] using half spaces in Rd+1 that correspond to those
which determine I in Rd. Let ⟨ , ⟩ denote the inner product in Rn.

Lemma 4.4. With Setting 4.1, let I be a monomial ideal in R. Let
H+

i = {v ∈ Rd | ⟨(ai1, . . . , aid), v⟩ ≥ hi}, where hi ∈ Z≥0 are the half
spaces in Zd that determine the Newton polyhedron of I. Define the

half spaces H̃+
i that correspond to each H+

i in Rd+1 as

H̃+
i := {v ∈ Rd+1 | ⟨(ai1 − hi, . . . , aid − hi, hi), v⟩ ≥ 0}.

Let C be the affine semigroup of R[It, t−1]. Then the intersection

∩ H̃+
i is the cone generated by the affine semigroup ϕ(C) where ϕ is

the embedding in Lemma 4.2.

Proof. Let H := H+
i for some i, and write H = {v ∈ Rd |

⟨(a1, . . . , ad), v⟩ ≥ h}. An exponent vector (z1, . . . , zd+1) in ϕ(C)
is the image of (z1, . . . , zd,−zd+1 + (z1 + · · · + zd)) under the map
ϕ. This gives (z1, . . . , zd,−zd+1 + (z1 + · · · + zd)) ∈ C if and only

if the monomial xz1 · · ·xzd is in I−zd+1+(z1+···+zd). In terms of half
spaces, this corresponds to the condition ⟨(a1, . . . , ad), (z1, . . . , zd)⟩ ≥
(−zd+1 + (z1 + · · · + zd))h for the half space Hi defining NP(I). By

setting H̃ = {v ∈ Rd+1 | ⟨(a1 − h, . . . , ad − h,+h), v⟩ ≥ 0}, we obtain

∩ H̃+
i = R≥0ϕ(C). �

Example 4.5. Let R = C[x1, . . . , xd] and I = (x1, . . . , xd). Let

{ei}d+1
i=1 be the standard base of Zd+1. Then, one can easily see that

ϕ(C) = {(z1, . . . , zd+1) ∈ Zd+1 | zi ≥ 0 for all i}

= ∩{(z1, . . . , zd+1) ∈ Zd+1 | ⟨ei, v⟩ ≥ 0},

where ϕ as in Lemma 4.2.
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Lemma 4.6. With Setting 4.1, assume that I is an m-primary mono-
mial ideal. Let C be the affine semigroup of R[It, t−1] and ϕ the embed-
ding in Lemma 4.2. Then there exists an exponent vector of the form
(1, . . . , 1, q) in ϕ(C) for some integer q, with 1 ≤ q ≤ d + 1, which is

part of a minimal generating set for the canonical ideal for R[It, t−1].

Proof. Since I is m-primary, the half spaces of the form {v ∈ Rd |
(0, . . . , 1, . . . , 0) · v ≥ 0}, where the ith entry is 1, are part of the
boundary of the Newton polyhedron of I. By Lemma 4.4, these will
be part of the boundary half spaces in ϕ(C). For instance, the half
space {v ∈ Rd | (1, . . . , 0) · v ≥ 0} corresponds to the half space
{v ∈ Rd+1 | (1, . . . , 0) · v ≥ 0}. Hence, if (z1, . . . , zd, zd+1) ∈ relint(C),
then zi ≥ 1 for i = 0, . . . , d.

By [2, Theorem 6.3.5 (b)], it suffices to show that there exists an
integer q in 1 ≤ q ≤ d + 1 such that, if (1, . . . , 1, q) is in relintϕ(C),

then (1, . . . , 1, q − 1) is not in ϕ(C). Since x1 · · ·xd ∈ R ⊆ R[It, t−1],
ϕ(1, . . . , 1, 0) = (1, . . . , 1, d) is in ϕ(C). If (1, . . . , 1, d) is on the
boundary, then (1, . . . , 1, d+ 1) in relintϕ(C). In this case, we set q =
d+1. If (1, . . . , 1, d) is not on the boundary, we can choose q ≤ d to be
the minimal in the last component since we have ϕ(t−1) = (0, . . . , 0, 1)
in ϕ(C). �

Theorem 4.7. Let R = k[x1, . . . , xd] be a polynomial ring in d-
variables over a field k and m = (x1, . . . , xd)R. Let I be an m-primary
monomial ideal and Hi the half spaces that determine the Newton
polyhedron of I where

Hi = {v ∈ Rd | ⟨(ai1, . . . , aid), v⟩ ≥ hi} for hi ∈ Z≥0.

Let q be as in Lemma 4.6 and

wi := ⟨(ai1 − hi, . . . , aid − hi, hi), (1, . . . , 1, q)⟩.

Define N+
i := {v ∈ Rd+1 | ⟨(ai1 − hi, . . . , aid − hi, hi), v⟩ ≥ wi}. Let C

be the affine semigroup of R[It, t−1] and ϕ the embedding in Lemma 4.2.

Then R[It, t−1] is Gorenstein if and only if the relative interior of ϕ(C)
is contained in ∩N+

i , equivalently,

relint(ϕ(C)) = (∩N+
i ) ∩ ϕ(C).
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Proof. For v ∈ N+
i and, for any i, since

⟨(ai1−hi, . . . , aid−hi, hi), v⟩≥wi=⟨(ai1−hi, . . . , aid−hi, hi), (1, . . . , 1, q)⟩,

we have

⟨(ai1 − hi, . . . , aid − hi, hi), v − (1, . . . , 1, q)⟩ ≥ 0.

Hence, v − (1, . . . , 1, q) is in R≥0ϕ(C) by Lemma 4.4. In other words,
∩N+

i = (1, . . . , 1, q)+R≥0ϕ(C). Since (1, . . . , 1, q) ∈ relint(C), we have
(∩ N+

i ) ∩ ϕ(C) ⊆ relint(C).

By [2, Theorem 6.3.5.(b)], R[It, t−1] is Gorenstein if and only if the
relative interior of ϕ(C) is principal. The previous paragraph shows
that (∩N+

i ) ∩ ϕ(C) is principally generated by (1, . . . , 1, q) and con-
tained in the relative interior of ϕ(C), and by Lemma 4.6, (1, . . . , 1, q)
is a part of the minimal generating set for relintϕ(C). Hence, the rela-
tive interior of ϕ(C) is principally generated by (1, . . . , 1, q) if and only
if (∩N+

i ) ∩ ϕ(C) = relintϕ(C). This proves the statement. �

The next example illustrates Theorem 4.7 when there is exactly
one bounded half space among the half spaces defining the Newton
polyhedron of the ideal I. This will help to understand and prove 4.10,
which is [7, Theorem 5.6].

Example 4.8. Let R = C[x, y, z] and I = (x2, y2, z4). Then the
integral closure of I is determined by the half spaces {v ∈ R3 |
⟨(2, 2, 1), v⟩ ≥ 4} and {v ∈ R3 | ⟨ei, v⟩ ≥ 0} for i = 1, 2, 3, where {ei}
denote the standard bases of R3. Let ν be the valuation corresponding
to the bounded half space {v ∈ R3 | ⟨(2, 2, 1), v⟩ ≥ 4}; then, we

have ν(x) = 2, ν(y) = 2 and ν(z) = 1. Let R[It, t−1] and C be the
corresponding affine semigroup. Then ϕ(C) is determined by the half
spaces represented as a matrix

M =


−2 −2 −3 4
1 0 0 0
0 1 0 0
0 0 1 0

 .

in the sense that an exponent vector (z1, . . . , z4) ∈ ϕ(C) if and only
if all the entries of M(z1, . . . , z4)

tr ≥ 0. Here M ≥ c, where c ∈ R
if all of the entries of M are ≥ c. It can easily be checked that
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(1, 1, 1, 2) ∈ ϕ(C), but (1, 1, 1, 1) /∈ ϕ(C). Hence, q = 2. Furthermore,
M · (1, 1, 1, 2)tr = (1, 1, 1, 1)tr.

For simplicity, we view elements of vector spaces as column vectors.
If w ∈ relintϕ(C), then M · w  0, i.e., M · w ≥ 1. Since M · w ≥ 1
and M · (1, 1, 1, 2)tr = (1, 1, 1, 1)tr, we have M ·w−M · (1, 1, 1, 2)T ≥ 0,
i.e., M · (w − (1, 1, 1, 2)tr) ≥ 0. Hence, w − (1, 1, 1, 2)tr ∈ ϕ(C). This
implies the exponent vector (1, 1, 1, 2) generates relintϕ(C). Therefore,

R[It, t−1] is Gorenstein by Theorem 4.7. Furthermore, by [2, Corolllary
6.3.6], the ideal corresponding to relintϕ(C) is the graded canonical

ideal of R[It, t−1], and it is generated by xyzt, which corresponds to
(1, 1, 1, 2). This gives

a = a(R[It, t−1]) = −1 = 2− (1 + 1 + 1) = q − d,

where d = dimR = 3. Since R[It, t−1] is Cohen-Macaulay, a = r−d+1

where r = r(F) is the reduction number of the filtration F = {Ii}i∈Z.
Therefore, r = −1 + 3− 1 = 1.

Corollary 4.9. With the setting of Theorem 4.7, we obtain a(R[It, t−1])

≥ q − d and r(F) ≥ q − 1. Furthermore, if R[It, t−1] is Gorenstein,

then a(R[It, t−1]) = q − d and r(F) = q − 1.

Proof. Note that a(R[It, t−1]) = r(F) − d + 1 since R[It, t−1] is

Cohen-Macaulay. The inequality a(R[It, t−1]) ≥ q − d shows the first
part of the statement. The second part follows from the fact that
a(R[It, t−1]) = r − d+ 1 if R[It, t−1] is Gorenstein. �

Corollary 4.10 ([7, Theorem 5.6]). With the setting of Theorem 4.7,
assume that I = (xa1

1 , . . . , xad

d ). Let L = lcm(a1, . . . , ad). Write
L/a1 + · · · + L/ad = jL + p, where j ≥ 0 and 1 ≤ p ≤ L. Then,

R[It, t−1] is Gorenstein if and only if p = 1.

Proof. Let {ei} be the standard basis of Rd. Let H+
i = {v ∈

Rd | ⟨ei, v⟩ ≥ 0} for i = 1, . . . , d. Observe that the half spaces
which determine the integral closure of I are the bounded half space
{v ∈ Zd | ⟨(L/a1, . . . , L/ad), v⟩ ≥ L} and the H+

i ’s, and the bounded
half space corresponds to the Rees valuation of I. Now, we proceed as
in Example 4.8. The affine semigroup ϕ(C) is determined by the half
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spaces represented as a matrix:

M =


L/a1 − L L/a2 − L · · · L/ad − L L

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 0 1 0

 ,

i.e., ϕ(C) = {(x1, . . . , xd+1) ∈ Zd+1
≥0 | M · (x1, . . . , xd+1) ≥ 0}. There-

fore, we have

relintϕ(C) = {(x1, . . . , xd+1) ∈ Zd+1
≥0 | M · (x1, . . . , xd+1)  0}.

Let q be as in Lemma 4.6. Then we have

(∩N+
i ) ∩ ϕ(C) = {(x1, . . . , xd+1) ∈ Zd+1

≥0 | M · (x1, . . . , xd+1)

≥ M · (1, . . . , 1, q)}.

By Theorem 4.7 R[It, t−1] is Gorenstein if and only if relintϕ(C) ⊆
∩N+

i , that is,

{(x1, . . . , xd+1) ∈ Zd+1
≥0 | M(x1, . . . , xd+1)

tr  0}

⊆ {(x1, . . . , xd+1) ∈ Zd+1
≥0 | M(x1, . . . , xd+1)

tr

≥ M(1, . . . , 1, q)tr}.

Observe that

M


x1

x2

...
xd+1

 =


L
a1
x1 + · · ·+ L

ad
xd + L(xd+1 − (x1 + · · ·+ xd))

x1

...
xd


and

M


1
...
1
q

 =


L
a1

+ · · ·+ L
ad

+ L(q − d)

1
...
1

 .
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Hence, for any (x1, . . . , xd+1) in the set {(x1, . . . , xd+1) ∈ Zd+1
≥0 |

M(x1, . . . , xd+1)
tr  0}, we have that xi ≥ 1 for 1 ≤ i ≤ d. Let

ρ := min

{
L

a1
x1 + · · ·+ L

ad
xd + L(xd+1 − (x1 + · · ·+ xd)) |

for integers x1, . . . , xd ≥ 1 and xd+1 ≥ 0

}
,

and write η = L/a1 + · · · + L/ad + L(q − d). It suffices to show that
η ≤ ρ if and only if p = 1. Since (1, . . . , 1, q) is in relint(ϕ(C)), we have
η  0, i.e., η ≥ 1. Assume that ρ = 1. Then relintϕ(C) ⊆ ∩N+

i if
and only if η = 1, and the last condition is equivalent to that of p = 1.
Hence, it suffices to show that ρ = 1.

First, we claim that gcd(L/a1 − L,L/a2 − L, · · · , L/ad − L,L) = 1.
Recall that L = lcm(a1, . . . , ad). Since δ := gcd(L/a1 − L,L/a2 −
L, . . . , L/ad − L,L) = gcd(L/a1, . . . , L/ad, L) = gcd(L/a1, . . . , L/ad),
we have δ|(L/ai) for all i. This implies that ai | (L/δ) for all i since
δ divides L. Hence, we see that L/δ ≥ lcm(a1, . . . , ad) = L, and this
implies that δ = 1.

Next, we claim that there exists (y1, . . . , yd+1) ∈ Zd+1
≥0 where

yi > 0 for i = 1, . . . , d such that ⟨(L/a1 − L,L/a2 − L, . . . , L/ad −
L,L), (y1, . . . , yd+1)⟩ = 1. Since gcd(L/a1 − L,L/a2 − L, · · · , L/ad −
L,L) = 1, there exist such (y1, . . . , yd+1) in Zd+1.

We show that one can modify the yi’s so that yi > 0 for all
i = 1, . . . , d. Suppose that i ≤ d is the least index where yi ≤ 0.
Let n be an integer such that yi + nL > 0. By replacing yi by yi + nL
and yd+1 by yd+1 − n(L/ai − L), we may assume that yi > 0. This
shows that the first row of M · (y1, . . . , yd+1)

tr is 1 and all the other
rows are positive. This indeed shows that ρ = 1, and this completes
the proof. �

Remark 4.11. One may ask if the numbers wi in Theorem 4.7 are
the minimum in {⟨(a1 − hi, . . . , ad − hi, hi), v⟩ | v ∈ Zd+1

≥0 } for each i.
The following example in the next paragraph shows that it can happen
that wi is not the minimum for each halfspace, but it is the minimum
in the intersection, i.e., it is the minimum in the relative interior.
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Let R = C[x, y], I = (x3, xy, y3) and T = R[It, t−1]. Then T is
Gorenstein, and ϕ(CT ) is determined by the half spaces

−1 −2 3
−2 −1 3
1 0 0
0 1 0

 .

It is easily seen that q = 2. But, ⟨(−1,−2, 3), (3, 1, 2)⟩ = 1, whereas
w1 = ⟨(−1,−2, 3), (1, 1, 2)⟩ = 3.

5. Cohen-Macaulayness of the associated graded ring. Let
(R,m) be a regular local ring and I an ideal. Let J be a proper ideal.
We define a function ordJ : R → N≥0 ∪ {∞} as follows:

ordJ(x) := sup{i | x ∈ J i} for x ∈ R

and

ordJ(I) := inf{ordJ (x) | x ∈ I}.

By Krull’s intersection theorem, this number is finite if x ̸= 0. In
general, we have ordm(xy) ≥ ordm(x) + ordm(y). Since grm(R) is a
domain, ordm is a valuation, i.e.,

ordm(xy) = ordm(x) + ordm(y) for x, y ∈ R.

For x ∈ R, let

x∗ := x+mordm(x)+1 ∈ mordm(x)/mordm(x)+1

denote its image in grI(R). We call x∗ the leading form of x and
I∗ := (x∗ | x ∈ I) the leading ideal of I, respectively.

Remark 5.1. Since (R,m) is a regular local ring, so is (R̂, m̂) wherê denotes m-adic completion. Because grm(R) = grm̂(R̂), we have

ordm(x) = ordm̂(x) and ordm(I) = ordm̂(IR̂). In particular, we have

I∗ = (Î)∗ in grm(R) = grm̂(R̂). Since R̂ is complete, we may write

x =
∞∑
i≥0

[x]i =
∞∑

i≥ordm(x)

[x]i,

where [x]i ∈ m̂i \ m̂i+1 ∪ {0} and x∗ = ([x]ordm(x))
∗.
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Lemma 5.2. Let (R,m) be a regular local ring with maximal ideal m.
Let I be an ideal which is minimally generated by the 2 × 2 minors of
the 2× 3 matrix

M =

(
a b c
u v w

)
whose entries are in m. Write G := grm(R). Let L = (b∗w∗ −
c∗v∗,−(a∗w∗ − c∗u∗), a∗v∗ − b∗u∗), and let C• be the complex

0−→G2


a∗ u∗

b∗ v∗

c∗ w∗


−−−−−−→ G3

[b∗w∗ − c∗v∗ − (a∗w∗ − c∗u∗) a∗v∗ − b∗u∗]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ G.

If L is of height 2, then C• is acyclic. Furthermore, if any two elements
in the generating set of L are homogeneous, then so is the third and
I∗ = L = ((bw − cv)∗, (aw − cu)∗, (av − bu)∗).

Proof. The acyclicity of C• follows by the Buchsbaum-Eisenbud
acyclicity criterion [3, Corollary 1]. If any two elements of the gener-
ating set of L are homogeneous, then it is easy to see that the columns
of the matrix representing the differential map G2 → G3 have the same
degree. Hence, L is homogeneous. Since C• acyclic and all entries of
the maps are in the maximal homogenous ideal of grm(R), the ideal
(b∗w∗ − c∗v∗,−(a∗w∗ − c∗u∗), a∗v∗ − b∗u∗) is minimally generated by
these three elements. In particular, these elements are not zero. This
implies that

(bw−cv)∗=b∗w∗−c∗v∗, (aw−cu)∗=a∗w∗−c∗u∗, (av−bu)∗=a∗v∗−b∗u∗.

We shall show that I∗ = L∗. Let I = (f1, f2, f3), where f1 =
bw − cv, f2 = −(aw − cu), f3 = av − bu. By Remark 5.1, we may
assume that R is complete. By definition, (f∗

1 , f
∗
2 , f

∗
3 ) ⊆ I∗. Suppose

that (f∗
1 , f

∗
2 , f

∗
3 ) ̸= I∗. Then there exists an x ∈ I such that x∗ ∈

I∗ \ (f∗
1 , f

∗
2 , f

∗
3 ). Since x ∈ I, we can write x = g1f1 + g2f3 + g3f3

for some gi ∈ R. Since we are in a complete local ring, we can write
x =

∑∞
i≥0[x]i as in Remark 5.1. Observe that

ordm(x) = ordm(g1f1 + g2f2 + g3f3) ≥ min{ordm(gifi)}i=1,2,3.

Since x∗ /∈ (f∗
1 , f

∗
2 , f

∗
3 ), the inequality is strict. We shall show that this

leads to a contradiction.
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The set

Γ =
{
min{ordm(gifi)i=1,2,3} | for a triple gi such that x =

∑
gifi

}
is finite since, for any n ∈ Γ, n ≤ ordm(x). We choose gi’s such that the
number min{ordm(gifi)}i=1,2,3 is the maximum in Γ. We will construct
g′i’s such that

x = g′1f1 + g′2f3 + g′3f3

and
min{ordm(g′ifi)}  min{ordm(gifi)}.

This will contradict the maximality.

Let n := min{ordm(gifi)}. If ordm(x) = n, then x∗ ∈ (f∗
1 , f

∗
2 , f

∗
3 ).

Therefore, we may assume that n < ordm(x). Let δi := ordm(fi) for
i = 1, 2, 3. We have

([g1f1 + g2f2 + g3f3]n)
∗ = ([g1]n−δ1)

∗(f1)
∗

+ ([g2]n−δ2)
∗(f2)

∗

+ ([g3]n−δ3)
∗(f3)

∗

= 0,

that is, ([g1]n−δ1)
∗, ([g2]n−δ2)

∗, ([g3]n−δ3)
∗ is a relation on f∗

1 , f
∗
2 , f

∗
3 .

Since the complex C• is acyclic, there exist s, t in R such that

(([g1]n−δ1)
∗, ([g2]n−δ2)

∗, ([g3]n−δ3)
∗)

= s∗(a∗, b∗, c∗) + t∗(u∗, v∗, w∗)

= (s∗a∗ − t∗u∗, s∗b∗ − t∗v∗, s∗c∗ − t∗w∗).

Let g′1 = g1−(sa+tu), g′2 = g2+(sb+tv) and g′3 = g3−(sc+tw). Then,
x = g1f1 + g2f2 + g3f3 = g′1f1 + g′2f2 + g′3f3 and min{ordm(gifi)} �
min{ordm(g′ifi)}. This is a contradiction. �

We now state a couple of folklore remarks which will be useful for
the proofs of Lemmas 5.5 and 5.6.

Remark 5.3. Let (R,m) be a Noetherian local ring. Let x, y, u, v be
elements in m such that xy − uv ̸= 0. If (xy − uv)∗ is a prime element
in grm(R), then ordm(xy) = ordm(uv).
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Proof. Assume, to the contrary, ordm(xy) ̸= ordm(uv). Without loss
of generality, we may assume that ordm(xy) < ordm(uv). Then (xy −
uv)∗ = (xy)∗ = x∗y∗. Since x∗, y∗ are in the maximal homogeneous
ideal of grm(R), neither is a unit. Therefore, the product x∗y∗ is not a
prime element. This is a contradiction. �

Remark 5.4. Let (R,m) be a Noetherian local ring. Let x, y be
elements in m. If ordm(x) = ordm(y) and x∗ + y∗ ̸= 0, then (x+ y)∗ =
x∗ + y∗. In particular, ordm(x+ y) = ordm(x).

Proof. Let G = grm(R). Recall that ordm(x+ y) = ordG+((x+ y)∗)
where G+ = ⊕i>0Gi. We have

ordG+(x
∗ + y∗) ≥ min{ordG+(x

∗), ordG+(y
∗)}.

If this is a strict inequality, then (x + y)∗ = x∗ or y∗, and this is a
contradiction. Also, if ordG+(x

∗) ̸= ordG+(y
∗), then (x + y)∗ = x∗ or

y∗, and this is a contradiction. �

Lemma 5.5. Let (R,m) be a regular local ring with maximal ideal m.
Let I be an ideal of height 2 which is minimally generated by the 2× 2
minors of the 2×3 matrix M with entries in m. Assume that the leading
forms of any two minors form part of a minimal generating set of I∗.
If I∗ is a prime ideal and I1(M) * m2, then we can find a matrix

M̃ =

(
a b c
u v w

)
such that I = I2(M̃) and I∗ = ((bw − cv)∗, (aw − cu)∗, (av − bu)∗) is
perfect of height 2.

Proof. Write

M =

(
a b c
u v w

)
.

By switching rows and columns, which preserves the minors up to sign,
we may assume that a is in m \ m2. Henceforth, we will only use the
assumption that (av − bu)∗ and (aw − cv)∗ form part of a minimal
generating set of I∗. We shall modify M by applying row and column

operations to obtain M̃ with the desired properties. Observe that by
adding a multiple of a row to the other does not change 2× 2 minors,
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but adding a multiple of a column to another changes one minor while
it does not change the other two in general. In both cases the ideal
I2(−) does not change. In the proof, the only type of column operations
we perform is adding a multiple of the first to the second or the third
column. This does not change the minors av − bu, aw − cu, but the
minor bw − cv will be changed to bw − cw + f(av − bu) + g(aw − cu)
for some f, g in R.

We claim that, after performing row and column operations on M ,
we may assume that (av− bu)∗ = a∗v∗− b∗u∗. Assume to the contrary
that (av − bu)∗ ̸= a∗v∗ − b∗u∗. Since (av − bu)∗ is part of a minimal
generating set of a prime ideal I∗, (av − bu)∗ is a prime element. By
Remark 5.3, we have ordm(av) = ordm(bu). Therefore, by Remark 5.4,
one has a∗v∗ − b∗u∗ = 0, equivalently, a∗v∗ = b∗u∗. Since grm(R) is
a UFD and a∗ is of degree 1, it is a prime element. Hence, we have
a∗ | b∗ or a∗ | u∗. Suppose a∗ | b∗. Then there exists a δ in R such that
a∗δ∗ = b∗, and this implies ordm(b) � ordm(b − δa). We subtract the
first column multiplied by δ from the second column to obtain

M ′ =

(
a b− δa c
u v − δu w

)
.

Since ordm(b) � ordm(b − δa), we have ordm(ub) � ordm(u(b − δa)).
We replace M by M ′. The column operation changes the minors
av − bu, aw − cu, bw − cv to av − bu, aw − cu, bw − cv + δ(aw − cu).
If a∗ | u∗, then we perform a row operation to obtain new u, v and
w. Note that the row operation does not change the minors. We claim
that this process terminates. Each time we replace M by M ′, either
ordm(b) or ordm(u) strictly increases whereas ordm(av − bu) is fixed.
By Remark 5.3, we have ordm(av) = ordm(bu), and this implies

ordm(av − bu) ≥ min{ordm(av), ordm(bu)} = ordm(bu).

The number ordm(av−bu) is fixed, whereas ordm(bu) is strictly increas-
ing after each process. Therefore this will terminate, and we obtain
(av − bu)∗ = a∗v∗ − b∗u∗.

We shall show that, by subtracting a multiple of the first column
from the third column, we can obtain a matrixM such that (av−bu)∗ =
a∗v∗−b∗u∗, (aw−cu)∗ = a∗w∗−c∗u∗. In particular, this will not change
the entries a, b, u, v of the matrix M ; hence, we preserve the property
(av − bu)∗ = a∗v∗ − b∗u∗. Suppose that (aw − cu)∗ ̸= a∗w∗ − c∗u∗.
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Since (aw − cu)∗ is part of a minimal generating set of I∗, it is a
prime element. By Remark 5.3, we have ordm(aw) = ordm(cu) and
a∗w∗ = c∗u∗. If a∗ | u∗, then the prime element (av−bu)∗ = a∗v∗−b∗u∗

is divisible by a∗. This contradicts the fact that a∗v∗ − b∗u∗ is a prime
element. Therefore, we have a∗ | c∗, and there exists a δ in R such
that a∗δ∗ = c∗. We subtract the first column multiplied by δ from the
third. In particular, this does not change the entries a, b, u, v of M .
This process terminates, and we have

(av − bu)∗ = a∗v∗ − b∗u∗ and (aw − cu)∗ = a∗w∗ − c∗u∗.

By Lemma 5.2, it suffices to show that ht(a∗w∗−c∗u∗, a∗v∗−b∗u∗) = 2.
The images (av− bu)∗, (aw− cu)∗ form a part of a minimal generating
set of I∗. This implies that ((av − bu)∗) is a prime ideal in grm(R)
and (aw − cu)∗ /∈ ((av − bu)∗). Hence, the height of the ideal

ht((av − bu)∗, (aw − cu)∗) is 2. Indeed, our new M is M̃ in the
statement. �

Lemma 5.6. Let (R,m) be a regular local ring with maximal ideal m.
Let I be an ideal of height 2 which is minimally generated by the 2× 2
minors of the 2× 3 matrix M with entries in m, where

M =

(
a b c
u v w

)
.

Assume that (av− ub)∗, (aw− cu)∗ is part of a minimal generating set
of I∗. If I∗ is a prime ideal and (av − bu)∗ = a∗v∗ − b∗u∗, then we
have I∗ = ((bw− cv+ f(av− bu))∗, (aw− cu)∗, (av− bu)∗) for some f
in R, and this ideal is perfect of height 2.

Proof. Suppose that (aw − cu)∗ ̸= a∗w∗ − c∗u∗. Since (av −
bu)∗, (aw − cu)∗ form part of a minimal generating set of a prime
ideal, they are prime elements. By Remark 5.3, we have ordm(aw) =
ordm(cu). Therefore, we have a∗w∗ − c∗u∗ = 0. Since a∗v∗ − b∗u∗ is a
prime element and grm(R) is a UFD, gcd(a∗, u∗) ∼ 1. This implies that
a∗ | c∗ and u∗ | w∗. Hence, we may write c∗ = δ∗a∗ and w∗ = δ∗u∗

for some δ in R. Let M ′ be a matrix modified by subtracting the first
column of M multiplied by δ from the third column. This column
operation does not change the entries a, b, u and v of the matrix M .
Note that ordm(c − δa)  ordm(c) and ordm(w − δu)  ordm(w).
As in the proof of Lemma 5.5, this process will terminate. Hence,
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(aw − cu)∗ = a∗w∗ − c∗u∗. Note that the 2 × 2 minors of M ′ are
av − bu, aw − cu, bw − cv + f(av − bu) for some f in R.

Since (av−ub)∗, (aw− cu)∗ form a part of a minimal generating set
of I∗ and (av − ub)∗ is a prime element, we have

ht((av − ub)∗, (aw − cu)∗) = 2.

The result follows by applying Lemma 5.2 to the matrix M ′. �

Theorem 5.7. Let S ∼= R/I, where (R,m) is a regular local ring and
I is a height 2 perfect ideal. Assume that grn(S) is an integral domain
where n = m/I. If µ(I) ≤ 2 or µ(I) = 3 and I * m5, then grn(S) is
Cohen-Macaulay.

Proof. Since grn(S)
∼= grm(R)/I∗ [4, Exercise 5.3], it suffices to show

that I∗ is a Cohen-Macaulay ideal. There exists a minimal generating
set of I such that its leading forms are part of a minimal generating
set of I∗. We fix a generating set of I with this property.

Case 1. When µ(I) = 2. Let I = (f, g) for some f and g in S. We
claim that I∗ = (f∗, g∗). Since I∗ is a prime ideal and f∗, g∗ form a
part of minimal generating set of I∗, f∗ is a prime element. Since f∗

and g∗ are part of a minimal generating set of I∗, g∗ /∈ (f∗). Since
G/(f∗) is a domain, the image of g∗ in this ring is a non-zerodivisor.
By [4, Exercise 5.2], the image of I∗ is generated by the image of g∗.
Hence, I∗ = (f∗, g∗).

Case 2. When µ(I) = 3: Since I is a height 2 perfect ideal, by the
Hilbert-Burch theorem [2], I can be generated by the 2 by 2 minors of
a 2 by 3 matrix M where the minors are the chosen generators. Write

M =

(
a b c
u v w

)
.

If ordm(I) ≤ 3, I2(M) = I * m4, hence I1(M) * m2. Now, the
result follows by applying Lemma 5.5 to the matrix M .

Suppose ordm(I) = 4. If there exists an entry of M which has
order 1, then we may apply Lemma 5.5. We may assume that no entry
of M has order 1. Since ordm(I) = 4, at least one of the 2× 2 minors
of M has order 4. Without loss of generality, we may assume that
ordm(av − bu) = 4. By assumption on the orders ordm(a), ordm(b),
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ordm(u), and ordm(v) are at least 2. Since 4 = ordm(av − bu) ≥
min{ordm(av), ordm(bu)} ≥ 4, we have

ordm(a) = ordm(b) = ordm(u) = ordm(v) = 2.

This implies (av − bu)∗ = a∗v∗ − b∗u∗. Therefore, we are done by
Lemma 5.6. �

Remark 5.8. One cannot relax the condition of grI(R), a domain.
Let R = C[[a, b, c, d, e]] and I be the 2× 2 minors of the matrix M ,[

a2 + c3 0 ad+ c3

ab+ c3 ae+ a3 0

]
.

Then I∗ is not prime, and G/I∗ is not Cohen-Macaulay.

We can see from Lemmas 5.5, 5.6 that, once we find a minor which
commutes with taking ∗, then we can find a matrix M where the images
of the minors generate the leading ideal.

The next theorem analyzes the case where none of the minors
commute with taking ∗.

Theorem 5.9. Let (R,m) be a regular local ring with maximal ideal m.
Let I be an ideal which is minimally generated by the 2 × 2 minors of
a 2× 3 matrix M with entries in m, where

M =

(
a b c
u v w

)
.

Let

M∗ =

(
a∗ b∗ c∗

u∗ v∗ w∗

)
.

Suppose that (av − bu)∗, (aw− cu)∗ form part of a minimal generating
set of I∗ and I∗ is a prime ideal. If

(av − bu)∗ ̸= a∗v∗ − b∗u∗

and

(aw − cu)∗ ̸= a∗w∗ − c∗u∗,

then either ht I1(M
∗) ≤ 2 or one of the rows of M∗ divides the other.
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Proof. Since the images of the minors form part of a minimal
generating set of an prime ideal I∗, we have a∗v∗ = b∗u∗, a∗w∗ =
c∗u∗. Let p∗ = gcd(a∗, u∗), where p in R. Write a∗ = p∗(a′)∗

and u∗ = p∗(u′)∗, where a′, u′ in R. Then, (a′)∗v∗ = b∗(u′)∗ where
gcd((a′)∗, (u′)∗) ∼ 1. Therefore, (a′)∗ | b∗ and (u′)∗ | v∗. Let q in R be
such that (a′)∗q∗ = b∗ and (u′)∗q∗ = v∗. From a∗w∗ = c∗u∗, we have
(a′)∗w∗ = c∗(u′)∗. Hence, an r in R exists such that (a′)∗r∗ = c∗ and
(u′)∗r∗ = w∗. Now, we have

M∗ =

(
(a′)∗p∗ (a′)∗q∗ (a′)∗r∗

(u′)∗p∗ (u′)∗q∗ (u′)∗r∗

)
.

Therefore, I1(M
∗) ⊆ ((a′)∗, (u′)∗), and this implies ht I1(M

∗) ≤ 2 if
((a′)∗, (u′)∗) is not a unit ideal. If ((a′)∗, (u′)∗) is a unit ideal, then
either (a′)∗ or (u′)∗ is a unit. Without loss of generality, assume that
(a′)∗ is a unit. Then we can easily see that, indeed, the first row divides
the second row. �

6. Serre’s conditions. In this section, we show that, when a ring
R is local, equidimensional and universally catenary, if grI(R) satisfies
Serre’s condition (Si) (or (Ri)), then R[It, t−1] satisfies Serre’s condi-
tion (Si) (or (Ri)), and R satisfies Serre’s condition (Si).

When R is a Z-graded ring and p a prime ideal, let p∗ denote the ideal
generated by all homogeneous elements in p. This is a homogeneous
prime ideal which has height exactly one less than that of p if p is not
a homogenous ideal.

Recall that a Noetherian ring R satisfies Serre’s condition (Si) if,
for every prime ideal p of R, depthRp ≥ min{i,dimRp}. A Noetherian
ring R satisfies Serre’s condition (Ri) if, for every prime ideal p of R
with dimRp ≤ i, the ring Rp is regular.

Lemma 6.1 ([2, Theorem 1.5.9 and Exercises 2.1.27, 2.2.24]). Let R
be a Noetherian Z-graded ring.

(a) For p ∈ Spec(R), the localization Rp is regular (Cohen-Macaulay)
if and only if so is Rp∗ .

(b) Let p ∈ Spec(R). If p is not homogeneous, then depthRp =
depthRp∗ + 1.
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Theorem 6.2. Let (R,m) be a local equidimensional universally cate-
nary ring. Let I ⊆ m be an R-ideal. Consider the following conditions:

(a) The ring grI(R) satisfies Serre’s condition (Si) (or Ri).
(b) The ring R[It, t−1] satisfies Serre’s condition (Si) (or Ri).
(c) The ring R satisfies Serre’s condition (Si).

We have (a) ⇒ (b) ⇒ (c).

Proof.

(a) ⇒ (b). Let π : R[It, t−1] → grI(R) be the natural surjec-
tive ring homomorphism. By Lemma 6.1(a), (b), it suffices to show
Serre’s condition (Si) (or (Ri)) for homogenous prime ideals. Let
P ⊆ R[It, t−1] be a homogeneous prime ideal. Since R is univer-
sally catenary and equidimensional, so is R[It, t−1]. This implies that
ht(P + (t−1)) ≤ htP + 1. We can choose a minimal prime Q of
P + (t−1) of height ht(P + (t−1)). We first show the statement for
Serre’s condition (Si). Since grI(R) satisfies Serre’s condition (Si),
depth grI(R)π(Q) ≥ min{i,dimgrI(R)π(Q)}. Since depth grI(R)π(Q) =

depthR[It, t−1]Q−1 and dimgrI(R)π(Q) = dimR[It, t−1]Q−1, we have

(6.1) depthR[It, t−1]Q ≥ min{i+ 1, dimR[It, t−1]Q}.

If P = Q, i.e., t−1 ∈ P , then we are done. Suppose P ( Q. We
need to show that depthR[It, t−1]P ≥ min{i,dimR[It, t−1]P }. Since
dimR[It, t−1]Q = dimR[It, t−1]P − 1, by (6.1), it suffices to show that
depthR[It, t−1]P ≥ depthR[It, t−1]Q + 1. This follows immediately
once we have shown that

ExtjR[It,t−1]Q
((R[It, t−1]/P )Q, R[It, t−1]Q) = 0

for j<depthR[It, t−1]Q − 1.

Since dim(R[It, t−1]/P )Q = 1, this follows from [14, Lemma 2, (15.E)].

Now, suppose that grI(R) satisfies Serre’s condition (Ri). When
htP ≤ i, since htπ(Q) ≤ htP ≤ i, grI(R)π(Q) is regular. Since

R[It, t−1]/(t−1) ∼= grI(R) and t−1 is a regular element, R[It, t−1]Q
is regular. Since P ⊆ Q, R[It, t−1]P is regular.

(b) ⇒ (c). Let p be a prime ideal of R of height c. Recall
that R[It, t−1]/(t−1 − 1) ∼= R. Let P be the pre-image of p in
R[It, t−1]. Since R[It, t−1] is equidimensional and universally catenary,
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htP = c + 1. Since P contains t−1 − 1, it is a non homogeneous
prime ideal of R[It, t−1]. Therefore, P ∗ is a homogeneous prime ideal
of height c. Since R[It, t−1] satisfies Serre’s condition (Si), we have
depthR[It, t−1]P∗ ≥ min{i,dimR[It, t−1]P∗}. Recall that t−1 − 1 is
a regular element in R[It, t−1] and R ∼= R[It, t−1]/(t−1 − 1). We
have depthR[It, t−1]P∗ = depthR[It, t−1]P − 1 = depthRp + 1 − 1 =
depthRp and dimR[It, t−1]P∗ = dimR[It, t−1]P −1 = dimRp+1−1 =
dimRp, where the first equality follows from Lemma 6.1 (b). Therefore,
depthRp ≥ min{i,dimRp}. �
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