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IDEAL CLASS GROUPS OF MONOID ALGEBRAS
HUSNEY PARVEZ SARWAR

ABSTRACT. Let A C B be an extension of commutative
reduced rings and M C N an extension of positive commu-
tative cancellative torsion-free monoids. We prove that A is
subintegrally closed in B and M is subintegrally closed in
N if and only if the group of invertible A-submodules of B
is isomorphic to the group of invertible A[M]-submodules of
B[N] Theorem 1.2 (b), (d). In the case M = N, we prove
the same without the assumption that the ring extension is
reduced Theorem 1.2 (c), (d).

1. Introduction. Throughout the paper, we assume that all rings
are commutative with unity and all monoids are commutative cancella-
tive torsion-free. For a ring extension A C B, the group of invertible
A-submodule of B is denoted by Z(A, B). This group has been exten-
sively studied by Roberts and Singh [6]. Sadhu and Singh [8, Theorem
1.5] proved: Let A C B be an extension of rings and Z the monoid
of positive integers. Then A is subintegrally closed in B if and only if
Z(A,B) 2 Z(A[Z4], B[Z4]).

Motivated by this result, we ask the following:

Question 1.1. Let A C B be an extension of rings and M C N an
extension of positive monoids. Are the following statements equivalent?

(i) A is subintegrally closed in B and M is subintegrally closed in N.
(ii) A[M] is subintegrally closed in B[N].
(iii) Z(A, B) is isomorphic to T(A[M], B[N]).

It is always true that (ii) = (i). If B is a reduced ring, then (i) =
(ii) is as well [4, Theorem 4.79].
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We answer Question 1.1 in the affirmative by proving the next result.
Our proof uses Swan and Weibel’s homotopy trick.

Theorem 1.2. Let A C B be an extension of rings and M C N an
extension of positive monoids.

(a) If A[M] is subintegrally closed in B[N] and N is affine, then
I(A, B) @ I(A[M], B[N]).

(b) If B is reduced, A is subintegrally closed in B and M is subin-
tegrally closed in N, then Z(A, B) 2 Z(A[M], B[N)).

(¢) If M = N, then the reduced condition on B is not needed, i.e.,
if A is subintegrally closed in B, then (A, B) = Z(A[M], B[M]).

, (d) (converse of (a), (b) and (c)). If Z(A,B) = Z(A[M], B|N]),
then

(i) A is subintegrally closed in B,
(ii) A[M] is subintegrally closed in B[N], and
(iii) B is reduced or M = N.

The next result, which is immediate from (1.2), gives the exact
conditions when (i) = (ii) in Question 1.1.

Corollary 1.3. Let A C B be an extension of rings and M C N an
extension of positive monoids such that A is subintegrally closed in B
and M is subintegrally closed in N.

(i) If B is reduced or M = N, then A[M] is subintegrally closed in
B[N].

(ii) Conversely, if A[M] is subintegrally closed in B[N] and N is
affine, then B is reduced or M = N.

Let A be a seminormal ring with Q C A and M a positive seminormal
monoid. Then [4, Theorem 8.42] proved that Pic(4) = Pic(A[M]).
This result is due to Anderson [2, Theorem 1] in the case where A[M]
is an almost seminormal integral domain, see [2, Definition]. As an
application of our result Theorem 1.2 (c¢), we deduce a special case of
this result, see Remark 3.5.
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Sadhu and Singh [8, Theorem 2.6] studied the relationship between
the two groups Z(A, B) and Z(A[Z4], B[Z]), when A is not subinte-
grally closed in B. Using our Theorem 1.2, we generalize their result
[8, Theorem 2.6] to the monoid algebra situation in a straightforward
manner.

Theorem 1.4. Let A C B be an extension of rings, and let A denote
the subintegral closure of A in B. Assume that M is a positive monoid.
Then,

(i) the diagram:

.
l— AN — ~ 74, B 2D

I(A,B) —=1
\LG(A,tl) 0(A,B) PVW:)
1 — T(A[M], A[M]) — T(A[M], B[M]) — Z(‘A[M], B[M]) — 1

18 commutative with exact rows.
(ii) If Q C A, then Z(A[M],TA[M)]) = Z|M] &7 Z(A,A).

2. Preliminaries.

Definition 2.1.

(i) Let A C B be an extension of rings. The extension A C B is
called elementary subintegral if B = A[b] for some b with b2,b® € A.
If B is a union of subrings obtained from A by a finite succession of
elementary subintegral extensions, then the extension A C B is called
subintegral. The subintegral closure of A in B, denoted by g'A, is
the largest subintegral extension of A in B. We say A is subintegrally
closed in B if gTA = A. A ring A is called seminormal if it is reduced
and subintegrally closed in PQF(R) := [], QF(R/p), where p runs
through the minimal prime ideals of R and QF(R/p) is the quotient
field of R/p, see [4, page 154].

(ii) Let A € B and A’ C B’ be two ring extensions. A morphism
¢ between the pairs (4, B) — (A, B’) is a ring homomorphism ¢ :
B — B’ with ¢(A) € A’. For a ring extension A C B, if Z(A, B)
denotes the multiplicative group of invertible A-submodules of B, then
7 is a functor from the category of ring extensions to the category
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of abelian groups. Let Z(¢) denote the group homomorphism which
is induced by the morphism ¢ of a ring extension. If B C B’ and
A C A’, then the inclusion map i : B — B’ defines a morphism of pairs
(A,B) — (A, B’). We will denote Z(i) by 0(A, B). For basic facts
pertaining to ring extensions and the functor Z, we refer the reader to
[6].

(iii) Let M C N be an extension of monoids. The extension M C N
is called elementary subintegral if N = M U aM for some z with
22,23 € M. If N is a union of submonoids which are obtained from
M by a finite succession of elementary subintegral extensions, then the
extension M C N is called subintegral. The subintegral closure of M
in N, denoted by x"M, is the largest subintegral extension of M in N.
We say M is subintegrally closed in N if y*M = M. Let ¢(M) denote
the group of fractions of the monoid M. We say M is seminormal if it
is subintegrally closed in ¢(M).

(iv) For a monoid M, let U(M) denote the group of units of M.
If U(M) is a trivial group, then M is called positive. If M is finitely
generated, then M is called affine.

For basic definitions and facts pertaining to monoids and monoid
algebras, we refer the reader to [4, Chapters 2, 4]).

Notation 2.2. For a ring A, Pic(A) denotes the Picard group of A,
U(A) denotes the multiplicative group of units of A and nil(A) denotes
the nil radical of A.

Now, we give some results for later use.

The next result, which follows with repeated applications of [8,
Corollary 1.6], is due to Sadhu and Singh.

Lemma 2.3. Let A C B be an extension of rings. Then A is
subintegrally closed in B if and only if A[Z'] is subintegrally closed
in B[Z ] for any integer r > 0.

The next result is obtained [4, Theorem 4.79] by observing that
snp(A) (the seminormalization of A in B) and is the same as gtA (the
subintegral closure of A in B) in our notation.
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Lemma 2.4. Let A C B be an extension of reduced rings and M C N
an extension monoid. Then gTA[N Nsn(M)] is the subintegral closure
of A[M] in B[N], where sn(M) is the seminormalization (subintegral
closure) of M in ¢p(M).

3. Main results. The next result is motivated from ([1], Lemma
5.7).

Lemma 3.1. Let R = Ry Ri1 ®--- and S = So H S1 P ---
be two positively graded rings with R C S and R; C S; for all
i > 0. If the canonical map O(R,S) : Z(R,S) — Z(R[X], S[X]) is an
isomorphism, then the canonical map (R, So) : Z(Ro, So) = I(R, S)
18 an isomorphism.

Proof. This result uses Swan and Weibel’s homotopy trick. Let
j: (Ro,S0) — (R, S) be the inclusion map and 7 : (R,S) — (Ro,So)
the canonical surjection defined as 7(sg + s1 + -+ + s,) = Sp, where
S0+ 81+ -+ 8. €85 Then nj = Idg, s, Applying the functor
I, we get that I(’/T)G(Ro,SO) = IdI(Ro,SO)7 where 0(R07SO) = I(])
Hence, the canonical map 0(Rg, Sp) is injective. So we must prove that
0(Ro, Sp) is surjective.

Let eg,e1 : (R[X],S[X]) — (R,S) be two evaluation maps defined
as X — 0, X — 1, respectively, and i the inclusion map from
(R,S) — (R[X],S[X]). Then, we obtain that eyi = eji. Let w :
(R,S) — (R[X], S[X]) be amap defined as w(s) = so+s1 X+ -+, X",
where s = sg+ 81+ -+ s € S. It is easy to see that w is a ring
homomorphism from S — S[X], and moreover, w is a morphism of ring
extensions, i.e., w(R) C R[X]. It is easy to see that eqw = jm---(a).

Since egi = e1i = Id(g,g), we obtain that Z(eg)0(R,S) = Z(e1)0(R,

S) = IdZ(R ) (recall that 0(R,S) = Z(i)). Therefore, Z(eo) and
Z(e1) are inverses of the canonical isomorphism 6(R, S) Hence,
Z(ep) = Z(e1). By (a), we have Z(eg)Z(w) = 0(Ry, So)Z(m). Hence,
I(el) ( ) = 0(R07SO)I(7T) Note that I(el)I(w) = IdI(R,S) =

0(Ro, So)Z(m). Therefore, we obtain that §(Rg, So) is surjective. This
completes the proof. O

The next result is [4, Theorem 4.79] when the ring extension is
reduced. We use the same arguments as in [4, Theorem 4.42, 4.79]
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to prove the following result. For an alternate proof of the following
result, see Remark 3.3.

Lemma 3.2. Let A C B be an extension of rings and M an affine
monoid. Assume that A is subintegrally closed in B. Then, A[M] is
subintegrally closed in B[M].

Proof. Tt is easy to see that A[¢p(M)] N B[M] = A[M]. Hence, it
is enough to prove that A[¢(M)] is subintegrally closed in B[¢p(M)].
Since M is affine, p(M) = Z" for some integer r > 0. Hence, we must
prove that A[Z"] is subintegrally closed in B[Z"]. Since subintegrality
commutes with localization, see [4, Theorem 4.75d], we only have to
prove that A[Z ] is subintegrally closed in B[Z']. This is indeed the
case because of (2.3). O

3.1. Proof of Theorem 1.2.

Proof.

(a) Since N is positive affine, N has a positive grading by [4,
Proposition 2.17 f]. Since M is a submonoid of N, it has a positive
grading induced from N. Therefore, both A[M] and B[N] have positive
gradings. Hence, we can write

AIM|=Ay A1 ®---
and
B[N|=By® B, & ---

with Ag = A and By = B. We define R := A[M], S := B[N] and
Ry := A, Sy := B. By the hypothesis, R is subintegrally closed in S;
hence, by ([8, Theorem 1.5], Z(R, S) = Z(R[X], S[X]). Therefore, by
Lemma 3.1, we obtain that Z(A, B) = Z(A[M], B[N]).

(b) First, assume that N is affine. Since B is reduced, by (2.4),
the subintegral closure of A[M] in B[N] is gtA[N Nsn(M)]. Note
that sn(M) =4(ar) TM in our notation. It is easy to see that y™M =
N Ngary ™. By hypothesis, g"A = A and y*M = M. Hence, A[M]
is subintegrally closed in B[N]. Therefore, by (a), we obtain that
Z(A, B) = Z(A[M], B[N]).
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Now we will discuss the case when N is not affine. Let A := {N; :
i € I} be the set of all affine submonoids of N. Then A forms a directed
set by defining N; < Nj if IV; is a submonoid of N;. Let M; := M N Nj,
where N; € A. Since M is subintegrally closed in NV, it is easy to see
that M; is subintegrally closed in N;. Then,

N =Un,;eaN; and M =UM,;.

If N; < Nj, then there exists a morphism of ring extension ¢;; :
(A[M;], B[Ni]) — (A[M;], B[N;]) induced from the inclusion map
BIN]| — BIN;]. Hence, ({(A[M;], BIN:)bv,ear {655} n,<n,) forms a
directed system in the category of ring extensions. Then the direct limit
of this system is ((A[M], B[N]),{¢:}), where ¢; : (A[M;], B[N;]) —
(A[M], B[N]), i.e., lims (A[M;], B[Ni]) = (A[M], BIN]).

Similarly, as in the above paragraph, one may see that
(Z(A[M;], BIN:])N,en)s {Z(dij) fni< ;)
forms a directed system in the category of abelian groups.

We want to prove that
limy (Z(A[M;], B[N:])) = Z(lim (A[M;], BIN;])) = Z(A[M], B[N]).
For each N;, we have a map
Z(j) : Z(A[M;], B[N;]) — Z(A[M], B[N])

induced by the inclusion map j : B[N;] — B[N]. Hence, by the
universal property of the direct limit, there exists a map

¢ - ima (Z(A[M], B[Ni])) — Z(A[M], B[N]).

We claim that ¢ is an isomorphism. For surjectivity, let I €
Z(A[M], B[N]). Hence, there exists N, € A such that I € T(A[Mj],
B[Ng]). Taking the image of I inside @AI(A[Mi], B[N,]), we obtain
that ¢ is surjective. Since the natural inclusion j : B — B[N;] induces
an isomorphism Z(j) : Z(A, B) = Z(A[M;], B[N;]) for each N;, we ob-
tain that Z(A, B) = impZ(A[M;], B[N;]). Now, it is easy to see that ¢
is injective. Therefore, we obtain that Z(A, B) = Z(A[M], B[N]).

(¢) Asin (b), we can assume that M = N is affine. Then, by (3.2),
A[M] is subintegrally closed in B[M]. Hence, as in the proof of (b), we
obtain that Z(A, B) = Z(A[M], B[M]).
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(d) (i) In order to prove that A is subintegrally closed in B, let
b € B with b, € A. Let m € M. Let I := (b?,1 — bm) and
J = (b*,1 + bm) be two A[M]-submodules of B[N]. Note that
IJ C A[M] and (1 — bm)(1 + bm)(1 + b?m?) = 1 — b*m* € IJ.
Hence, 1 = b*m* + 1 — b*m* € IJ, ie., IJ = A[M]. Therefore,
I € Z(A[M], B[N]). Let 7 be the natural surjection from B[N| — B
sending N — 0. Then Z(w)(I) = A. By hypothesis, Z(r) is an
isomorphism; hence, I = A[M]. Therefore, b € A. Hence, A is
subintegrally closed in B.

(ii) Let g € B[N] be such that g2, g3 € A[M]. Let I := (¢, 1+g+g?)
and J := (g%,1 — g + g%) be two A[M]-submodules of B[N]. Then

(I+g9+)(1-g+g)=010+g"+g") elJ
= 1+g°cl]=1
=g'+(1+¢*)(1-g*) el

Note that IJ C A[M], hence, IJ = A[M]. Therefore, I €
Z(A[M],B[N]). Let w(9) = b € B (m as defined in (i)). Then
I(m)(I) = (b*,1 — b+ b?). Since ¢g2,¢9°> € A[M], we obtain that
b2, b3 € A. However, A is subintegrally closed in B by (i). Hence,
we obtain that b € A. Therefore, Z(m)(I),Z(m)(J) are contained in A
and Z(m)(I) = A = I = A[M]. Hence, g € A[M]. This proves that
A[M] is subintegrally closed in B[N].

(iii) Note the commutative diagram

I(A, B) o T(A/nil(A), B/ nil(B))

¢2L ifﬁs
A[M B[N
Z(A[M], BIN)) o I(nﬂ(L)HM}, nﬂu%)HN])’

where ¢; are natural maps for all i. By (i), we obtain that A is
subintegrally closed in B; hence, by [8, Lemma 1.2], nil(B) C A.
Hence, nil(B) = nil(A). Therefore, by [6, Proposition 2.6], we get that
¢1 is an isomorphism. Since N is a cancellative torsion-free monoid,
by [4, Theorem 4.19], nil(B[N]) = nil(B)[N]. By (c), we obtain that
¢3 is an isomorphism. Hence, ¢ is an isomorphism if and only if ¢4
is an isomorphism. By [6, Proposition 2.7], ¢4 is an isomorphism if
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and only if (1 + nil(B)[N])/(1 + nil(A)[M]) is a trivial group. Since
nil(B) = nil(A), this is equivalent to nil(B) = 0, i.e., B is reduced, or
M = N. U

Remark 3.3. If A is subintegrally closed in B and M = N, then
we obtain Z(A, B) = Z(A[M], B[M]) from the arguments, as in (1.2)
(d) (iii), without using Lemma 3.2. Hence, using Theorem 1.2 (d) (ii),
we obtain that A[M] is subintegrally closed in B[M]. This gives an
alternate proof of Lemma 3.2 without the hypothesis that M is affine.

Corollary 3.4. Let A C B be an extension of reduced rings such that
A is subintegrally closed in B. Then,

IZ(A,B) 2 T(A[X1,..., Xm], B[ X1, ..., X, Y1, ..., Y2 )).
Proof. Observe that the submonoid generated by (Xi,...,X,,) i

subintegrally closed in the monoid generated by (X1, ...,Xm,Y1,...,Yn
Hence, we obtain the result using Theorem 1.2 (b).

»n

N g

O

In the next remark, we give an application of the result Theorem
1.2 (c).

Remark 3.5 (cf., [8, Remark 1.8]). Let A be a seminormal ring
which is Noetherian or an integral domain. Let M be a positive
seminormal monoid. Let K be the total quotient ring of A. Then,
K is a finite product of fields; hence, Pic(K) is a trivial group. By
[3, Corollary 2], Pic(K[M]) is a trivial group. By [4, Proposition
4.20], U(K) = U(K[M]) and U(A) = U(A[M]). Now, using the
same arguments as in [8, Remark 1.8], one can easily deduce that
Pic(A) = Pic(A[M]) from (1.2).

3.2. Proof of Theorem (1.4).

(i) Following the arguments of [8, Theorem 2.6], we observe that
we have only to prove that the maps ¢(A, TA, B) and ¢(A[M], TA[M],
B[M]) are surjective. Since TA is subintegrally closed in B, (1A, B) is
surjective by (1.2) (c). Therefore, we need only show that ¢(A, TA, B)
is surjective. However, this follows from [7, Proposition 3.1] by taking
C =TA.
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(ii) If A C B is a subintegral extension of Q-algebras, then a natural
isomorphism g4 : B/A — I(A, B) is defined in [6]. As in [6, Lemma
5.3], this yields a commutative diagram

£+A/A

tA/A T(A,*A)

jl i@(A,*A)

TAM]/AIM] —= Z(A[M], TA[M]),

where & := &apar)/apm)- Both 1474 and & are isomorphisms by ([6],
main Theorem 5.6 and [5, Theorem 2.3]). Now Z(A[M], TA[M]) &
TAM|/AM) 2 Z[M] @z TAJA = Z[M] @7 (A, TA). O
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