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ON THE LOEWY LENGTH OF MODULES
OF FINITE PROJECTIVE DIMENSION

TONY J. PUTHENPURAKAL

ABSTRACT. Let (A,m) be a Gorenstein local ring, and
let M be an A module of finite length and finite projective
dimension. We prove that the Loewy length of M is greater
than or equal to the order of A.

1. Introduction. Let (A,m) be a Gorenstein local ring of dimen-
sion d and embedding dimension c. Let M be a finitely generated
A-module, and let λ(M) denote its length. The order of A is given by
the formula

ord(A) = min

{
n ∈ N

∣∣∣∣ λ(A/mn+1) <

(
n+ c

n

)}
if A is singular and if A is a regular set ordA = 1. Note that, if A
is singular, then ord(A) ≥ 2. The Loewy length of an A-module M is
defined to be the number

ℓℓ(M) = min{i ≥ 0 | miM = 0}.

Notice that ℓℓ(M) is finite if and only if λ(M) is finite.

Let
G(A) =

⊕
n≥0

mn/mn+1

be the associated graded ring of A, and let G(A)+ denotes its irrelevant
maximal ideal. Let Hi(G(A)) be the ith-local cohomology module of
G(A) with respect to G(A)+. The Castelnuovo-Mumford regularity of
G(A) is

regG(A) = max{i+ j | Hi(G(A))j ̸= 0}.
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In the very nice paper [2, subsection 1.1] the authors proved that,
if G(A) is Cohen-Macaulay, then for each non-zero finitely generated
A-module M of finite projective dimension,

ℓℓ(M) ≥ regG(A) + 1 ≥ ord(A).

We should note that the real content of their result is the first inequality.
The second inequality is elementary, see [2, subsection 1.6]. The
hypothesis G(A) is Cohen-Macaulay is quite strong, for instance, G(A)
need not be Cohen-Macaulay even if A is a complete intersection, see
[10, subsection 2.3]. In this short paper, we show

Theorem 1.1. Let (A,m) be a Gorenstein local ring, and let M be a
non-zero finitely generated module of finite projective dimension. Then

ℓℓ(M) ≥ ord(A).

The proof of Theorem 1.1 uses invariants of Gorenstein local rings
defined by Auslander and studied by Ding. We also introduce a new
invariant ϑ(A) which is useful in the case G(A) is not Cohen-Macaulay.

In Section 2, we recall the notion of index of a local ring. In Section 3,
we introduce our invariant ϑ(A). In Section 4, we prove Theorem 1.1.

2. The index of a Gorenstein local ring. Let (A,m) be a
complete Gorenstein local ring, and let M be a finitely generated A-
module. Let µ(M) denote the minimal number of generators of M . In
this section, we recall the definition of the delta invariant of M and the
definition of the index of A. A good reference for this topic is [5].

2.1. A maximal Cohen-Macaulay approximation of M is a short
exact sequence

(∗) 0 −→ YM −→ XM
f−→ M −→ 0,

where XM is a maximal Cohen-Macaulay A-module and projdimYM <
∞. If f can only be factored through itself by way of an automorphism
of XM , then the approximation is said to be minimal. Any module
has a minimal approximation, and minimal approximations are unique
up to non-unique isomorphisms. Suppose now that (∗) is a minimal
approximation. Let

XM = XM ⊕ F
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whereXM has no free summands and F is free. Then the delta invariant
of M , denoted by δA(M), is defined to be the rank of F .

We give some alternate definitions of the delta invariant.

2.2. It can be shown that δA(M) is the smallest integer n such
that there is an epimorphism X ⊕An → M with X a maximal Cohen-
Macaulay module with no free summands, see [14, subsection 4.2].
This definition of the delta invariant is used by Ding [3].

The stable CM-trace of M is the submodule τ(M) of M generated
by the homomorphic images in M of all MCM modules without a free
summand. Then δA(M) = µ(M/τ(M)), see [14, subsection 4.8]. This
is the definition of the delta invariant in [2].

We collect some properties of the delta invariant that we need.

2.3. Let M and N be finitely generated A-modules.

(1) If N is an epimorphic image of M then δA(M) ≥ δA(N).
(2) δA(M ⊕N) = δA(M) + δA(N).
(3) δA(M) ≤ µ(M).
(4) If projdimM < ∞ then δA(M) = µ(M).
(5) Let x ∈ m be A⊕M regular. Then δA(M) = δA/(x)(M/xM).
(6) If A is zero-dimensional Gorenstein local ring and I is an ideal in

A then δA(A/I) ̸= 0 if and only if I = 0.
(7) If A is not regular then δA(m

s) = 0 for all s ≥ 1.
(8) δA(k) = 1 if and only if A is regular.
(9) δA(A/mn) ≥ 1 for all n ≫ 0.

Proofs and references. For (1), (2), (4), (8) and (9), see [2, subsec-
tion 1.2]. Notice that item (3) follows easily from the second definition
of the delta invariant. Assertion (5) is proved in [1, subsection 5.1].
For item (6), note that A/I is maximal Cohen-Macaulay. Assertion (7)
is due to Auslander. Unfortunately, this paper by Auslander is un-
published. However, there is an extension of the delta invariant to all
Noetherian local rings due to Martsinkovsky [6]; he proves [7, Theo-
rem 6] that δA(m) = 0. We prove by induction that δA(m

s) = 0 for all
s ≥ 1. For s = 1, this is true. Assume it is true for s = j. We prove it
for s = j + 1. Let

mj+1 = ⟨a1b1, a2b2, . . . , ambm⟩,
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where ai ∈ mj and bi ∈ m. Let

Ii = aim for i = 1, . . . ,m.

Note that Ii ⊆ mj+1, and the natural map

ϕ :

m⊕
i=1

Ii −→ mj+1

is surjective. By assertions (1) and (2) it is enough to show that
δA(Ii) = 0 for all i. But this is clear as Ii is a homomorphic image
of m.

2.4. The index of A is defined by Auslander to be the number

index(A) = min{n | δA(A/mn) ≥ 1}.

It is positive by subsection 2.3 (4) and finite by subsection 2.3 (9). It
equals 1 if and only if A is regular, see subsection 2.3 (8).

2.5. By [2, subsection 1.3], we have that, if projdimM is finite,
then

ℓℓ(M) ≥ index(A).

3. The invariant ϑ(A). Throughout this section, (A,m) is a Cohen-
Macaulay local ring of dimension d. We assume that k, the residue field
of A, is infinite. In this section, we define an invariant ϑ(A). This will
be useful when G(A) is not Cohen-Macaulay.

3.1. Let a be a non-zero element of A. Then there exists n ≥ 0 such
that

a ∈ mn \mn+1.

Denote the image of a in mn/mn+1 by a∗ and consider it as an element
in G(A). Also set 0∗ = 0. If a ∈ m is such that a∗ is G(A)-regular then
G(A/(a)) = G(A)/(a∗).

3.2. Recall that x ∈ m is said to be A-superficial if there exists an
integer c > 0 such that, for n ≫ 0, we have

(mn+1 : x) ∩mc = mn−1.

Superficial elements exist if d > 0 as k is an infinite field. Since A
is Cohen-Macaulay, it is easily shown that a superficial element is a
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non-zero divisor of A. Furthermore, we have

(mn+1 : x) = mn for all n ≫ 0.

This enables the definition of the following two invariants of A and x:

ϑ(A, x) = inf{n | (mn+1 : x) ̸= mn},
ρ(A, x) = sup{n | (mn+1 : x) ̸= mn}.

Note in [9, page 163] we defined an invariant ρm(A, x). It is easily
verified that ρm(A, x) = ρ(A, x) + 1.

3.3. Notice that (mn+1 : x) = mn for all n ≥ 0 if and only if x∗ is
G(A)-regular. Therefore,

ϑ(A, x) = +∞ and ρ(A, x) = −∞.

If depthG(A) > 0, then x∗ is G(A)-regular, see [4, subsection 2.1].
Thus, in this case,

ϑ(A, x) = +∞ and ρ(A, x) = −∞.

If depthG(A) = 0, then (mn+1 : x) ̸= mn for some n. In this case,

0 ≤ ϑ(A, x) ≤ ρ(A, x) < ∞.

By [9, subsections 2.7 and 5.1], we have

ρ(A, x) ≤ regG(A)− 1.

3.4. A sequence
x = x1, . . . , xr in m

with r ≤ d is said to be anA-superficial sequence if xi isA/(x1,. . . , xi−1)-
superficial for i = 1, . . . , r. As the residue field of A is infinite, super-
ficial sequences exist for all r ≤ d. Since A is Cohen-Macaulay, it can
easily be shown that superficial sequences are regular sequences, see
[12, page 10].

3.5. Let
x = x1, . . . , xd

be a maximal A-superficial sequence. Set A0 = A and

Ai = A/(x1, . . . , xi) for i = 1, . . . , d.
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Define
ϑ(A,x) = inf{ϑ(Ai, xi+1) | 0 ≤ i ≤ d− 1}.

Note that G(A) is Cohen-Macaulay if and only if x∗
1, . . . , x

∗
d is a G(A)-

regular sequence, see [4, subsection 2.1]. It follows from subsection 3.3
that

ϑ(A,x) = +∞ if and only if G(A) is Cohen-Macaulay.

Lemma 3.1. With hypotheses as above, if G(A) is not Cohen-
Macaulay then ϑ(A,x) ≤ regG(A)− 1.

Proof. Suppose depthG(A) = i < d. Then x∗
1, . . . , x

∗
i is G(A)-

regular, see [4, subsection 2.1]. Furthermore,

G(Ai) = G(A)/(x∗
1, . . . , x

∗
i ).

Thus, depthG(Ai) = 0. (Note that the case i = 0 is also included.)

By subsection 3.3, we obtain that

ϑ(Ai, xi+1) ≤ reg(G(Ai))− 1.

It remains to note that, as x∗
1, . . . , x

∗
i is a regular sequence of elements

of degree 1 in G(A), we have

regG(Ai) ≤ regG(A). �

3.6. We define

ϑ(A) = sup{ϑ(A,x) | x is a maximal superficial sequence in A}.

Note that, if G(A) is not Cohen-Macaulay, then

ϑ(A) ≤ regG(A)− 1,

see subsection 3.1. If G(A) is Cohen-Macaulay, then

ϑ(A) = +∞.

3.7. Let A be a singular ring, and let x ∈ m be an A-superficial
element. Let t = ord(A). The following fact is well known (for instance,
see [11, page 295])

(mi+1 : x) = mi for i = 0, . . . , t− 1.
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It follows that
ϑ(A, x) ≥ ord(A)

for any superficial element x of A.

Notice that ord(A/(x)) ≥ ord(A) for any superficial element x of A
(for instance, see [11, page 296]). Thus, if x = x1, . . . , xd is a maximal
A-superficial sequence, we have that

ϑ(Ai, xi+1) ≥ ord(Ai) ≥ ord(A) for all i = 0, . . . , d− 1.

It follows that

(3.1) ϑ(A,x) ≥ ord(A).

Strict inequality in equation (3.1) can hold.

Example 3.2. Let (A,m) be a one-dimensional stretched Gorenstein
local ring, i.e., there exists an A-superficial element x such that, if n
is the maximal ideal of B = A/(x), then n2 is principal. For such
rings, ord(B) = 2. So, ord(A) = 2. However, for stretched Gorenstein
rings of dimension 1, (m3 : x) = m2; see [13, subsection 2.5]. (Note
that (mi+1 : x) = mi for i ≤ 1 for any Cohen-Macaulay ring A.) Thus,
ϑ(A, x) ≥ 3.

See [13, Example 3] for an example of a one-dimensional stretched
Gorenstein local ring A with G(A) not Cohen-Macaulay.

The following result is crucial in the proof of our main result. We
denote the multiplicity of A with respect to m by e(A).

Lemma 3.3. Let (A,m) be a d-dimensional Cohen-Macaulay local ring
with infinite residue field. Let

x = x1, . . . , xd

be a maximal superficial sequence. Assume G(A) is not Cohen-
Macaulay. Let s ≤ ϑ(A,x). Then

ms * (x).



298 TONY J. PUTHENPURAKAL

Proof. Assume mn ⊆ (x) for some n ≤ ϑ(A,x). Set Ad = A/(x)
and Ad−1 = A/(x1, . . . , xd−1). Let n be the maximal ideal of Ad−1. By
definition, n ≤ ϑ(Ad−1, xd).

We have an exact sequence

0 −→ (nn : xd)

nn−1
−→ Ad−1

nn−1

α−→ Ad−1

nn
−→ Ad−1

(nn, xd)
−→ 0.

Here, α(a+ nn−1) = axd + nn. Note that, as mn ⊆ (x), we have

Ad−1/(n
n, xd) = Ad.

Recall that (ni+1 : xd) = ni for all i < ϑ(Ad−1, xd). In particular, we
have (nn : xd) = nn−1. Thus, we have obtained

λ(nn−1/nn) = λ(Ad).

Notice that e(A) = e(Ad−1) = e(Ad) = λ(Ad), cf., [8, Corollary 11].
Furthermore, for all i ≥ 0, we have

λ(ni/ni+1) = e(Ad−1)− λ(ni+1/xdn
i),

cf., [8, Proposition 13]. For i = n − 1, our result implies that
nn = xdn

n−1. It follows that nj = xdn
j−1 for all j ≥ n. In particular,

we have (nj : xd) = nj−1 for all j ≥ n. As n ≤ ϑ(Ad−1, xd), we obtain
that (nj : xd) = nj−1 for all j ≤ n. It follows that x∗

d is G(Ad−1)-
regular. So depthG(Ad−1) = 1. By Sally descent, see [8, Theorem 8],
we obtain that G(A) is Cohen-Macaulay. This is a contradiction. �

4. Proof of Theorem 1.1. In this section, we prove our main
theorem. We will use the invariant ϑ(A) which is defined only when
the residue field of A is infinite. We first show that, in order to prove
our result, we can assume that the residue field of A is infinite.

4.1. If the residue field of A is finite, then we consider the A-flat
extension B = A[X]mA[X]. Note that n = mB is the maximal ideal of
B and B/n = k(X) is an infinite field. Let M be a finitely generated
A-module. The following facts can easily be proved:

(1) λB(M ⊗A B) = λA(M).
(2) mi ⊗B = ni for all i ≥ 1.
(3) λB(B/ni+1) = λA(A/m

i+1) for all i ≥ 0.
(4) ord(B) = ord(A).
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(5) projdimA M = projdimB M ⊗A B.
(6) miM = 0 if and only if ni(M ⊗A B) = 0.
(7) ℓℓA(M) = ℓℓB(M ⊗A B).

The next result is due to Ding, see [3, subsections 1.5, 2.2, 2.3].

Lemma 4.1. Let (A,m) be a Noetherian local ring and s an inte-
ger. Suppose that x ∈ m \ m2 is A-regular and the induced map
x : mi−1/mi → mi/mi+1 is injective for 1 ≤ i ≤ s. Then

(1) A/ms is an epimorphic image of (ms, x).
(2) There is an A-module decomposition

(ms, x)

x(ms, x)
∼=

A

(ms, x)
⊕ (ms, x)

(x)
.

We now give

Proof of Theorem 1.1. By subsection 4.1, we may assume that the

residue field of A is infinite. Also note that ord(A) = ord(Â) and

ℓℓA(M) = ℓℓÂ(M̂). Thus, we may assume that A is complete.

If G(A) is Cohen-Macaulay, then the result holds by [2, Theo-
rem 1.1]. So assume that G(A) is not Cohen-Macaulay. We prove
index(A) ≥ ϑ(A). By 2.5 and (3.1), the result is implied.

Let x = x1, . . . , xd be an A-superficial sequence with ϑ(A) = ϑ(A,x).
Assume that index(A) < ϑ(A,x). By definition, δA(A/m

s) ≥ 1 for
some s < ϑ(A,x). Set A0 = A and Ai = A/(x1, . . . , xi) for 1 ≤ i ≤ d.
Let mi be the maximal ideal of Ai. We prove by descending induction
that

δAi(Ai/m
s
i ) ≥ 1 for all i, 0 ≤ i ≤ d.

For i = 0, this is our assumption. Now assume that this is true for i, and
we will prove it for i+1. We first note that s < ϑ(A,x) ≤ ϑ(Ai, xi+1).

Therefore, (mj+1
i : xi+1) = mj

i for all j ≤ s. So, by Lemma 4.1,
we obtain that Ai/m

s
i is an epimorphic image of (ms

i , xi+1). Thus,
δAi((m

s
i , xi+1)) ≥ 1. We also have an Ai-module decomposition

(†) (ms
i , xi+1)

xi+1(ms
i , xi+1)

∼=
Ai

(ms
i , xi+1)

⊕ (ms
i , xi+1)

(xi+1)
.
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By subsection 2.3 (5), we have that

δAi+1

(
(ms

i , xi+1)

xi+1(ms
i , xi+1)

)
= δAi((m

s
i , xi+1)) ≥ 1.

Also note that

δAi+1

(
(ms

i , xi+1)

(xi+1)

)
= δAi+1(m

s
i+1) = 0,

by subsection 2.3 (7). By (†) and subsection 2.3 (2), it follows that

1 ≤ δAi+1

(
Ai

(ms
i , xi+1)

)
= δAi+1

(
Ai+1

ms
i+1

)
.

This proves our inductive step. So we have δAd
(Ad/m

s
d) ≥ 1. By

subsection 2.3 (6), we have that ms
d = 0. It follows that ms ⊆ (x). This

contradicts Lemma 3.3. �
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