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FACTORING IDEALS AND
STABILITY IN INTEGRAL DOMAINS

A. MIMOUNI

ABSTRACT. In an integral domain R, a nonzero ideal
is called a weakly ES-stable ideal if it can be factored
into a product of an invertible ideal and an idempotent
ideal of R; and R is called a weakly ES-stable domain
if every nonzero ideal is a weakly ES-stable ideal. This
paper studies the notion of weakly ES-stability in various
contexts of integral domains such as Noetherian and Mori
domains, valuation and Prüfer domains, pullbacks and more.
In particular, we establish strong connections between this
notion and well-known stability conditions, namely, Lipman,
Sally-Vasconcelos and Eakin-Sathaye stabilities.

1. Introduction. Throughout, all rings are assumed to be integral
domains. There are several closely related ideas of stability in the
literature. Some of the first were those of L-stable ideals and L-stable
domains due to Lipman [26]. Recall that an ideal I of a domain R said
to be L-stable if the zero cohomology ring

RI :=
∪
n≥0

(In : In)

of I coincides with its endomorphism ring (I : I); and the domain R is
said to be L-stable provided that every ideal is L-stable. Lipman used
this notion to characterize Arf rings in the context of one-dimensional
Noetherian rings.

Later, Sally and Vasconcelos [33, 34] introduced the notion of stable
ideals (or SV -stable ideals) as ideals I that are projective in their
endomorphism rings. (Note that, in the case of integral domains, this
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264 A. MIMOUNI

is equivalent to saying that I is invertible in its endomorphism ring
(I : I)). Originally, L-stability and SV -stability were studied only
in Noetherian rings. The notion of stability (i.e., SV -stability) was
first considered beyond the Noetherian settings in [1] by Anderson,
Huckaba, and Papick. In [13], Eakin and Sathaye extended the results
of Sally and Vasconcelos and defined the so-called ES-stable ideals and
ES-stable domains. A nonzero ideal is an ES-stable ideal if I2 = JI
for some invertible subideal J of I, and a domain R is ES-stable if
every ideal is ES-stable.

Since then, different kinds of stability, such as local, finite, etc.,
have been defined and studied. The importance of the notion of
stability (in the sense of Lipman and Sally-Vasconcelos) resides in its
wide connection to other notions in commutative algebra in Noetherian
and non-Noetherian settings, namely, the notions of the 2-generator
property, the Warfield duality, Clifford regularity and the Ratliff-Rush
closure. We refer the reader to [27, 28, 29, 30] for more details.

This paper is concerned with factorization of ideals of an integral
domain into products of invertible fractional ideals and idempotent
fractional ideals. Our objective is to show that the issue here is closely
related to different versions of stability of ideals, which is a relativized
version of invertibility. Precisely, we aim at answering the following
two questions:

(1) Given an integral domain R, which ideals I of R can be factored
as a product of an invertible ideal J and an idempotent ideal E?

(2) Which integral domains have the property that every ideal can
be factored as a product of an invertible ideal and an idempotent ideal?

In Section 2, we define the notions of weakly ES-stable ideals and
weakly ES-stable domains, and we collect preliminary results that are
useful. We also put these notions in the stability perspective (see the
diagram in Figure 1).

In Section 3, we prove that the notions of weakly ES-stable domains
and Eakin-Sathaye stability coincide in the context of Noetherian
domains (Theorem 3.1) and some particular classes of Mori domains
(Theorem 3.3).

Section 4 deals with Prüfer and valuation domains. We start with a
characterization of weakly ES-stable domain in the context of integrally
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closed domains. This leads to a new characterization of Prüfer domains,
that is, a domain R is Prüfer if and only if R is integrally closed
and every finitely generated ideal of R is a weakly ES-stable ideal
(Theorem 4.1). Also, we prove that the notion of weakly ES-stable
domains coincides with Eakin-Sathaye and Sally-Vasconcelos stabilities
for strongly discrete Prüfer domains (Theorem 4.8).

Section 5 deals with pullback constructions in order to provide larger
classes of weakly ES-stable domains.

2. General results. We begin this section with the following defi-
nition.

Definition 2.1. Let R be an integral domain.

(i) A nonzero ideal I of R is said to be a weakly ES-stable ideal if
there is an invertible fractional ideal J and an idempotent fractional
ideal E of R such that I = JE, and R is said to be a weakly ES-stable
domain if every nonzero ideal of R is a weakly ES-stable ideal.

(ii) A nonzero ideal I of R is said to be an almost weakly ES-stable
ideal if some power of I is a weakly ES-stable ideal, and R is said to
be an almost weakly ES-stable domain (respectively, a finitely weakly
ES-stable domain) if every ideal (respectively, every finitely generated
ideal) of R is almost weakly (respectively, a weakly) ES-stable ideal.

Strongly stable ideals, i.e., I is principal in (I : I), and ES-stable
ideals are clearly weakly ES-stable ideals; however, stable ideals are
not necessarily weakly ES-stable ideals. Indeed, it is well known that
non-divisorial ideals of a valuation domain V are of the form aM
where M is the maximal ideal of V and M is idempotent. Such ideals
constitute a source of weakly ES-stable ideals that are neither stable
nor ES-stable. The diagram in Figure 1 places the notion of weakly
ES-stable ideals and weakly ES-stable domains, respectively, in the
stability perspective.

The next proposition and remark illustrate the diagram in Figure 1
and show that the class of weakly ES-stable ideals properly stands
between the classes of L-stable and ES-stable ideals.
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Strongly stable ideal, I=a(I : I)

(resp., R strongly stable)

Stable ideal, I(I : I2)=(I : I)

(resp., R stable)r

r

r

Invertible ideal, II−1=R

(resp., R Dedekind)

ES-stable ideal, I2=IJ , JJ−1=R

and J⊆I (resp., R ES-stable)

weakly ES-stable ideal, I=JE,

JJ−1=R and E=E2 (resp., R

weakly ES-stable domain)

L-stable ideal, RI =
∪
n≥0

(In : In)=(I : I)

(resp., R L-stable)

I regular, I = I2(I : I2)

(resp., R Clifford regular)

Figure 1.

Proposition 2.2. Let R be an integral domain and I a nonzero ideal
of R. Then:

(i) If I is a weakly ES-stable ideal, then I is L-stable.

(ii) I is a weakly ES-stable ideal if and only if I2 = JI for some
invertible ideal J of R.

(iii) I is ES-stable if and only if I = JE where J is invertible,
E = E2 and J ⊆ I ⊆ E.

Proof.

(i) Assume that I is a weakly ES-stable ideal, and set I = JE where
JJ−1 = R and E = E2. If x ∈ (I : I), then xJE = xI ⊆ I = JE.
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Since JJ−1 = R, xE = xJJ−1E ⊆ JJ−1E = E and so x ∈ (E : E).
Conversely, if xE ⊆ E, then xI = xJE ⊆ JE = I, and thus,
x ∈ (I : I). Hence, (I : I) = (E : E). Now, let n be any positive
integer, and let x ∈ (In : In). Since E is idempotent, En = E, and
thus, xJnE = xIn ⊆ In = JnE. Since J is invertible, we easily obtain
xE ⊆ E, and thus, x ∈ (E : E) = (I : I). Hence, (In : In) = (I : I) for
every positive integer n, and therefore, I is L-stable.

(ii) Assume that I is a weakly ES-stable ideal, and set I = JE
where JJ−1 = R and E = E2. Then I2 = J2E2 = J2E = J(JE) =
JI. Conversely, if I2 = JI for some invertible ideal J of R, then
I = J(J−1I) and clearly J−1I is idempotent, as desired.

(iii) Assume that I is ES-stable. Then I2 = JI for some invertible
sub-ideal J of I. Set E = J−1I. Then I = JE and E2 = (J−1)2I2 =
(J−1)2JI = J−1I = E since JJ−1 = R. Now, since J ⊆ I, I−1 ⊆ J−1,
and thus, I ⊆ II−1 ⊆ IJ−1 = E, therefore J ⊆ I ⊆ E as desired. The
converse is clear. �

Remark 2.3.

(i) If I is a weakly ES-stable ideal and I = JE with JJ−1 = R and
E = E2, then the ideal J is not necessarily a sub-ideal of I. Thus, the
definition of weakly ES-stable ideal can be viewed as a weaker condition
of Eakin-Sathaye stability where J is supposed to be a sub-ideal of I.

(ii) An almost weakly ES-stable ideal is not necessarily an L-
stable ideal. Indeed, let Q be the field of rational numbers, X an
indeterminate over Q, and let R = Q+XQ(

√
2,
√
3)[[X]] = Q+M be

the PV D domain issued from the valuation domain

V =Q(
√
2,
√
3)[[X]]=Q(

√
2,
√
3)+XQ(

√
2,
√
3)[[X]]=Q(

√
2,
√
3)+M,

where M = XV . By [7, Theorem 2.1], R is a Noetherian local domain.

Set W = Q +
√
2Q +

√
3Q, and let I be the ideal of R given by I =

X(W +M). It is easy to check that, for every n ≥ 2, Wn = Q(
√
2,
√
3)

and (W : W ) = Q. Then (I : I) = (W : W ) +M = Q+M = R, and,
for every n ≥ 2,

In = Xn(Wn +M) = Xn(Q(
√
2,
√
3) +M) = XnV = Mn.

Thus, for every n ≥ 2, In is strongly stable and a fortiori a weakly
ES-stable ideal. Hence, I is an almost ES-stable ideal which is not
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a weakly ES-stable ideal since I is not strongly stable. Moreover, for
every positive integer n ≥ 2, (In : In) = (Mn : Mn) = V , and thus,

RI :=
∪
n≥0

(In : In) = V.

However, (I : I) = R, and hence, I is not L-stable.

(iii) It is clear that, if R is a weakly ES-stable domain, then RM is
a weakly ES-stable domain for each maximal ideal M of R. However,
the converse is not true. Indeed, let

V = Q[[X]] = Q+M

where M = XV and R = Z+M . By [7, Theorem 2.1], every maximal
ideal of R is of the form pZ+M = pR for some positive prime integer p
and RpR = Zp+M . Let I be an ideal of RpR. IfM $ I, then I = A+M
where A is an ideal of Zp. Thus, A is principal and so is I.

Assume that I ⊆ M . If I is an ideal of V , then I is principal in
V and therefore, I is strongly stable. If I is not an ideal of V , then
I = a(W +M) where Zp ⊆ W $ Q. But, then, W is a fractional ideal
of Zp (since Zp is a valuation domain and thus a conducive domain,
[12]). Hence, W = fZp, and thus, I = afRpR. Therefore, RpR is a
weakly ES-stable domain (in fact a strongly stable domain). However,
by Corollary 2.6, R is not a weakly ES-stable domain since R is not
of finite character (M is contained in infinitely many maximal ideals of
R).

The next lemma is crucial. It presents important information about
weakly ES-stable ideals, and we often use it as a key for many proofs
of our results.

Lemma 2.4. Let R be an integral domain and I an (integral) ideal
of R.

(i) If I is a weakly ES-stable ideal and I = JE where JJ−1 = R
and E = E2, then (I : I) = (E : E) and E = I(I : I2).

(ii) If I is a finitely generated weakly ES-stable ideal, then It ( R;
and, if, R is a weakly ES-stable domain, then At $ R for every
(integral) ideal A of R.
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(iii) If R is a weakly ES-stable domain and T is an overring of R
which is a fractional ideal of R, then T is a weakly ES-stable domain.

(iv) If R is a weakly ES-stable domain, then every finitely generated
ideal is ES-stable (in particular R is finitely stable).

Proof.

(i) (I : I) = (E : E) follows from the proof of Proposition 2.2.

It suffices to prove that E = I(I : I2). Since I2 = JI and
J is invertible, J−1I2 = I, and thus, J−1 ⊆ (I : I2). Hence,
E = J−1I ⊆ I(I : I2). Conversely, let x ∈ (I : I2). Then xI2 ⊆ I
implies that xJ2E ⊆ JE. Since J is invertible, xJE ⊆ E. Hence,
xJ ⊆ (E : E), and thus, xI = xJE ⊆ E(E : E) = E. Therefore,
I(I : I2) ⊆ E and I(I : I2) = E as desired.

(ii) Assume that I is finitely generated, and suppose that It = R.
Then (I : I) = I−1 = R. Set I = JE where JJ−1 = R and E = E2.
By (i), (E : E) = (I : I) = R. Since E2 = E, E ⊆ (E : E) = R, and
thus, I = JE ⊆ J . Hence, J−1 ⊆ I−1 = R, and thus, R = JJ−1 ⊆ J .
Then, I ⊆ IJ = I2, and thus, I = I2, which is a contradiction since I
is finitely generated ([25, Theorem 76]).

Now assume that R is a weakly ES-stable domain. If A is an integral
ideal such that At = R, then there is a finitely generated sub-ideal B
of A such that Bt = Bv = R, which is absurd since B is a finitely
generated weakly ES-stable ideal. Hence, At ( R, as desired.

(iii) Let T be an overring of R which is a fractional ideal of R, and
let I be a nonzero ideal of T . Then I is a (fractional) ideal of R, and
thus, I = JE where JJ−1 = R and E = E2. Set A = JT and F = ET .
Then, clearly, A(T : A) = T , F = F 2 and I = AF , as desired.

(iv) Let I be a finitely generated ideal, and set I = JE where
JJ−1 = R and E = E2. Set T = (I : I). By (iii), T is a weakly
ES-stable domain and, by (i), E = I(T : I) is an idempotent (integral)
ideal of T . Suppose that E is a proper ideal of T . Since E = IJ−1 is a
finitely generated (fractional) ideal of R, it is a fortiori a finitely gen-
erated ideal of T . On the other hand, (T : E) = (E : E) = (I : I) = T .
Hence, EtT = EvT = T (where tT and vT are the t- and v-operations
with respect to T ), which contradicts (ii) since T is a weakly ES-stable
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domain. Hence, E = T , and thus, I = JT . Therefore, J ⊆ I, and
therefore, I is ES-stable by Proposition 2.2. �

Corollary 2.5. Let R be an integral domain and I a nonzero ideal of
R. Then I is ES-stable if and only if I is stable and weakly ES-stable.

Proof. Assume that I is both stable and weakly ES-stable, and set
I = JE where JJ−1 = R and E = E2. By Lemma 2.4, E = I(I : I2),
and, since I is stable, E = I(I : I2) = (I : I). Thus, I = J(I : I) and
hence, J ⊆ I ⊆ E. Therefore, I is ES-stable, as desired. �

Recall that an integral domain R is said to be Clifford regular
if its class semigroup S(R) = F (R)/P (R) is von Neumann regular,
where F (R) is the semigroup of all nonzero fractional ideals of R and
P (R) is its subgroup of principal fractional ideals (see [8, 9]). Clifford
regularity has well-known links with stability conditions, for instance,
see [8, 9, 10, 24].

Our next corollary shows that a weakly ES-stable domain must be
Clifford regular. Recall that a domain is of finite character if every
nonzero nonunit element is contained in a finitely many maximal ideals.
Equivalently, for each nonzero proper ideal I of R, the set Max(R, I) of
all maximal ideals of R containing I is finite. Clifford regular domains
are of finite character [10, Theorem 4.7].

Corollary 2.6. Let R be an integral domain. If R is a weakly ES-
stable domain, then R is Clifford regular. In particular, R has finite
character.

Proof. Assume that R is a weakly ES-stable domain, and let I be
an ideal of R. Then I = JE, where JJ−1 = R and E = E2. By
Lemma 2.4, E = I(I : I2). Hence, I2(I : I2) = IE = JE2 = JE = I.
Thus, I is regular in S(R) [8, Lemma 1.1], and therefore, R is Clifford
regular. �

Corollary 2.7. Let R be an integral domain. The following statements
are equivalent.

(i) R[X] (respectively, R[[X]]) is a weakly ES-stable domain;
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(ii) R[X] (respectively, R[[X]]) is an almost weakly ES-stable do-
main;

(iii) R[X] (respectively, R[[X]]) is an almost finitely weakly ES-
stable domain;

(iv) R is a field.

Proof. It suffices to prove (iii) ⇒ (iv). Assume that R[X] (respec-
tively, R[[X]]) is an almost finitely weakly ES-stable domain, and sup-
pose that R is not a field. Let d be a nonzero nonunit element of R, and
let I be the ideal of R[X] (respectively, R[[X]]) given by I = (d,X).
Then I is a proper finitely generated ideal and I−1 = (I : I) = R[X]
(respectively, I−1 = (I : I) = R[[X]]). Hence, I−n = (In : In) = R[X]
(respectively, I−n = (In : In) = R[[X]]) for every positive integer n.
Thus, (In)t = R[X] (respectively, (In)t = R[[X]]), which is a contra-
diction by Lemma 2.4 since some power of I is supposed to be a weakly
ES-stable ideal. It follows that R is a field, as desired. �

3. Noetherian-like settings. Our first theorem characterizes Noe-
therian weakly ES-stable domains in terms of stability. It turns out
that, in the Noetherian context, the notion of weakly ES-stability and
Eakin-Sathaye stability coincide.

Theorem 3.1. Let R be a Noetherian domain and I an ideal of R.
Then I is a weakly ES-stable ideal if and only if I is ES-stable. In
particular, R is a weakly ES-stable domain if and only if R is ES-
stable.

Proof. Let I be a weakly ES-stable ideal of R, and set I = JE
where JJ−1 = R, E = E2; in addition, set T = (I : I). By Lemma 2.4,
E = I(T : I), E is a trace (integral) ideal of T which is idempotent.
But, since T is Noetherian, necessarily E = T , hence, I = JT . Thus,
J ⊆ I and therefore I is ES-stable. �

Recall that an integral domain R is said to be a strong Mori domain
if R satisfies the acc on w-ideals. Noetherian domains are strong Mori
domains, and strong Mori domains are Mori domains.

The next corollary shows that ‘strong Mori’ and ‘Noetherian’ coin-
cide in class of weakly ES-stable domains.
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Corollary 3.2. A strong Mori which is a weakly ES-stable domain is
Noetherian.

Proof. Let M be a maximal ideal of R. By Lemma 2.4, M is a
t-maximal ideal of R and, by [14, Theorem 1.9], RM is Noetherian.
But, since RM is a weakly ES-stable domain, by Theorem 3.1, RM is
an ES-stable domain and so dimRM = 1. Thus, dimR = 1, and again
by [14, Corollary 1.10], R is Noetherian. �

The next theorem shows that, for some classes of Mori domains, the
notion of weakly ES-stable domains coincides with the Eakin-Sathaye
stable domains.

Theorem 3.3. Let R be a Mori domain such that (I : I) is a Mori
domain for each nonzero ideal I of R. Then, R is a weakly ES-stable
domain if an only if R is ES-stable.

Proof. Let I be a nonzero ideal of R, and set I = JE where JJ−1 =
R and E = E2. By hypothesis and Lemma 2.4, T = (I : I) = (E : E)
is a Mori domain and, since E2 = E, E ⊆ (E : E) = T . Thus, E is an
idempotent integral ideal of T . Since

(T : E)=((E : E) : E)=(E : E2)=(E : E)=T, EtT =EvT = T,

where tT and vT are the t- and v-operations with respect to T . By
Lemma 2.4, E = T , and therefore, I = JT . Thus, J ⊆ I, and hence, I
is ES-stable. �

In [31], Olberding proved that there is a one-dimensional local “bad”
stable domain R which is not Noeherian and, with normalization V ,
a DV R. In [21, Theorem 2.34], or [19, Theorem 2.17], Gabelli and
Roitman proved that a one-dimensional stable domain must be a Mori
domain. This result shows that the local one-dimensional domains
that are stable and not Noetherian constructed by Olberding [31] are
in fact Mori domains. Moreover, such domains are strongly stable by
[28, Lemma 3.1]. It follows that a strongly stable Mori domain is not
necessarily a Noetherian domain.

Theorem 3.4. Let R be a Mori domain which is a weakly ES-stable
domain. Then:
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(i) Every v-ideal of R is ES-stable.

(ii) Every nonzero prime ideal of R is divisorial.

(iii) If R satisfies the acc on fractional overrings that are v-ideals,
e.g., if (R : R) ̸= (0), where R is the complete integral closure of R,
then dimR ≤ 1.

Proof.

(i) Similar to the proof of Theorem 3.3, (I : I) is a Mori domain for
every v-ideal I of R.

(ii) Assume that R is a weakly ES-stable domain, and let P be a
nonzero prime ideal of R. By [32, Proposition 26.1], or [5, Theorem
3.1], P is divisorial if htP = 1; and, if htP ≥ 2, then either P−1 = R
or P is strongly divisorial, i.e., P = Pv = PP−1. But, since Pv = Iv
for some finitely generated subideal I of P and It $ R (Lemma 2.4),
P is strongly divisorial.

(iii) Suppose that dimR ≥ 2. Without loss of generality, we may
assume that R is local with maximal ideal M and dimR = htM ≥ 2.
Note that every prime ideal P of R is divisorial and, by Theorem 3.3,
P is strongly stable. Indeed, as in [28], set R0 = R, M0 = M ,
R1 = M−1 = (M : M) and M = aR1 for some a ∈ M . By [28,
Lemma 4.1], R1 is integral over R, and thus, dimR1 = dimR ≥ 2.
Moreover, R1 is a Mori domain which is a weakly ES-stable domain.
Since R $ R1 (as M is divisorial), and, by [28, Proposition 4.2], if R1

has two or three maximal ideals, then each is principal. Since M = aR1

and these maximal ideals are minimal over M , they must be of height 1
by [3, Proposition 3.4] (or [5, Theorem 3.7]). This contradicts the fact
that dimR1 ≥ 2. Hence, R1 must be a local domain with maximal ideal
M1. Applying the same process (for the Mori local weakly ES-stable
domain R1), we obtain that

R1 $ R2 = (R1 : M1) = (M1 : M1)

is a local Mori weakly ES-stable domain with maximal ideal M2 and
dimR2 = dimR1 = dimR ≥ 2. Thus, we construct a chain of
proper local Mori overrings {(Ri,Mi)}i of R that are weakly ES-stable
domains with dimension greater than 2. But, since, for each i ≥ 0,

Ri+1 = (Ri : Mi) = (R : MM1 · · ·Mi),
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all of these overrings are (fractional) divisorial ideals of R. Therefore,
the chain must stabilizes, which yields a contradiction. �

Recall that a domain R is seminormal if x ∈ R, for each x ∈ qf(R)
with x2, x3 ∈ R, equivalently x ∈ R for every x ∈ qf(R), xn ∈ R for
n ≫ 0.

The next result shows that a seminormal Mori domain R which is a
weakly ES-stable domain is a one-dimensional domain.

Corollary 3.5. Let R be a seminormal Mori domain. If R is a weakly
ES-stable domain, then dimR ≤ 1.

Proof. Without loss of generality, we may assume that R is local
with maximal ideal M . If htM ≥ 2, then T = M−1 = (M : M) is
a Mori domain which is a weakly ES-stable domain by Lemma 2.4.
By Theorem 3.4, every prime ideal of T is divisorial, which contradicts
[6, Lemma 2.5] since T must contain a nondivisorial prime ideal that
contracts to M . �

4. Valuation and Prüfer case. Our first result in this section is
a new characterization of Prüfer domains in the context of weakly ES-
stable domains. First, recall that an integral domain R is a PVMD
if every finitely generated ideal is t-invertible, i.e., (II−1)t = R,
equivalently RM is a valuation domain for every t-maximal ideal M
of R. Prüfer domains are exactly the PVMDs where every maximal
ideal is t-maximal.

Theorem 4.1. Let R be an integral domain. The following are
equivalent.

(i) R is an integrally closed domain which is a finitely weakly ES-
stable domain;

(ii) R is an integrally closed domain which is an almost finitely
weakly ES-stable domain;

(iii) R is a Prüfer domain.

Proof.

(i) ⇒ (ii) and (iii) ⇒ (i) are trivial.
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(ii) ⇒ (iii). Let I be a finitely generated ideal of R. Since R is
integrally closed, (Is : Is) = R for every positive integer s. Assume
that In is a weakly ES-stable ideal. Then I2n = JIn for some invertible
ideal J of R. Further,

(R : In) = ((In : In) : In) = (In : I2n)

= (In : JIn) = ((In : In) : J) = (R : J) = J−1.

Hence, (In)t = (In)v = Jv = J . Thus, (In)tI
−n = JJ−1 = R, and

therefore, In is t-invertible. But since InI−n ⊆ II−1, I is t-invertible
and so R is a PVMD. By Lemma 2.4, Mt $ R for every maximal ideal
M of R. Thus, M = Mt, and hence, R is Prüfer as desired. �

Recall that a domain R is a pseudo-Dedekind, respectively pseudo-
principal, domain if every v-ideal is invertible, respectively principal.
From the proof of Theorem 4.1, one can deduce that, if (I : I) = R and
I is a weakly ES-stable ideal, then Iv is invertible. Thus, a completely
integrally closed domain which is a weakly ES-stable domain is pseudo-
Dedekind. In [17, Theorem 7.4.6], it was proved that an integral
domain R is quasi-Prüfer, i.e., the integral closure R′ of R is a Prüfer
domain, if and only if every (nonzero) finitely generated ideal is SV -
prestable.

Our next corollary and example show that a finitely weakly ES-
stable domain is quasi-Prüfer but that a quasi-Prüfer domain need not
be a finitely weakly ES-stable domain.

Corollary 4.2. Let R be an integral domain. If R is a finitely weakly
ES-stable domain, then R is quasi-Prüfer.

Proof. Let J be a finitely generated ideal of the integral closure R′

of R, and set

J =

n∑
i=1

biR
′.

Then

I =
n∑

i=1

biR
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is a finitely generated fractional ideal of R, and thus, I = AE where
AA−1 = R and E = E2. Set B = AR′ and F = ER′. Clearly,
J = IR′ = AER′ = BF and F 2 = F . Moreover, A−1 = (R : A) ⊆
(R′ : AR′) = (R′ : B), and thus, R = AA−1 ⊆ A(R′ : B) ⊆ B(R′ : B).
Hence, R′ = B(R′ : B), and therefore, J is a weakly ES-stable ideal of
R′. By Theorem 4.1, R′ is Prüfer as desired. �

The next example shows that a quasi-Prüfer domain need not be a
finitely weakly ES-stable domain.

Example 4.3. Let V = Q(
√
2,
√
3)[[X]] = Q(

√
2,
√
3) + M and

R = Q + M . Clearly R′ = V is a valuation domain. However,
R is not a finitely weakly ES-stable domain since the ideal I =
X(Q+

√
2Q+

√
3Q+M) is a finitely generated ideal of R which is not

a weakly ES-stable ideal as it is shown in Remark 2.3.

Recall that a domain R is said to be conducive if (R : T ) ̸= (0) for
each overring T of R with T $ qf(R), equivalently, (R : V ) ̸= (0) for
some valuation overring V of R [12, Theorem 3.2]). Combined with
Corollary 2.6, the next corollary shows that a conducive domain which
is a weakly ES-stable domain must be semi-local (i.e., has only finitely
many maximal ideals).

Corollary 4.4. Let R be a conducive domain which is a weakly ES-
stable domain. Then R is semi-local.

Proof. Let R′ be the integral closure of R. Notice that R′ is
a conducive domain, and since, for every Q ∈ Max(R), there is
N ∈ Max(R′) such that Q = N ∩ R, it suffices to show that Max(R′)
is finite. By Corollary 4.2, R′ is a Prüfer domain and by Lemma 2.4,
R′ is a weakly ES-stable domain (since (R : R′) ̸= (0)). Thus, without
loss of generality, we may assume that R is a conducive Prüfer domain
which is a weakly ES-stable domain. Now, let M ∈ Max(R) and
set Q = (R : RM ). We may assume that R is not local. Then, Q
is a proper ideal, and, by [12, Lemma 2.10], Q is a prime ideal of
both R and RM . Let N be any maximal ideal of R with M ̸= N ,
and let a ∈ N \ M . Then, for each x ∈ Q, x/a ∈ QRM = Q. Thus,
x ∈ aQ ⊆ QN ⊆ N . Therefore, Q ⊆ N and, since Q ⊆ M , we obtain
Q ⊆ P for each maximal ideal P of R. Hence, Max(R) = Max(R,Q)
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which is finite since R has finite character (Corollary 2.6). It follows
that R is semi-local. �

The next theorem characterizes weakly ES-stable ideals in a valua-
tion domain. Such a characterization provides weakly ES-stable ideals
that are not stable. Recall that a domain R has the trace property (or
is a TP domain) if, for every ideal I of R, either II−1 = R or II−1 is
a prime ideal of R, see [18]. Valuation domains are TP -domains. Also
recall that the maximal ideal of a valuation domain is either principal
or idempotent.

Theorem 4.5. Let V be a valuation domain, and I a nonzero ideal
of V . Then, I is a weakly ES-stable ideal if and only if either I is
strongly stable or I = aP for some 0 ̸= a ∈ qf(V ) and an idempotent
prime ideal P of V .

Proof. Let I be a weakly ES-stable ideal of V , and set I = JE
where JJ−1 = V and E = E2. Necessarily, J = aV for some
0 ̸= a ∈ qf(V ), and thus, I = aE. Let P = Z(V, I) be the prime ideal
of V consisting of all zero-divisors of V modulo I. Then (I : I) = VP .
Assume that I is not strongly stable. Since VP is a TP -domain,
I(VP : I) = QVP = Q for some prime ideal Q of V with Q ⊆ P .
Thus, (V : I) ⊆ (VP : I) = (Q : I) ⊆ (V : I), and therefore,
(V : I) = (VP : I) = (Q : I). Hence, I(V : I) = I(VP : I) = Q. By [1,
Theorem 2.8], VP = (I : I) = VII−1 = VQ, and thus, Q = P . Hence, P
is a trace ideal of both V and VP . Therefore, P , as the maximal ideal
of VP , is not divisorial; thus, it is idempotent. By Lemma 2.4,

E = I(I : I2) = I((I : I) : I) = I(VP : I) = P,

and hence, I = aE = aP as desired. �

Recall that a domain R is said to be divisorial if every nonzero ideal
of R is a v-ideal; and R is totally divisorial provided that every overring
of R is divisorial [11]. Also, a valuation (respectively, Prüfer) domain
is strongly discrete if P 2 ( P for every nonzero prime ideal P . A
combination of [11, Proposition 7.6] and [28, Lemma 3.1] yields that
a valuation domain V is strongly stable if and only if V is ES-stable,
stable, strongly discrete and totally divisorial. On the other hand, it
is well known that, in a valuation domain V , non-divisorial ideals of V
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are of the form aM where M , the maximal ideal of V , is idempotent.
Thus, non-divisorial ideals of V are weakly ES-stable.

Our next corollary concentrates on divisorial ideals.

Proposition 4.6. Let V be a valuation domain. Then V is weakly
ES-stable if and only if every divisorial ideal of V is either principal
or of the form aP for some non-maximal idempotent prime ideal P .

Proof. Let I be a divisorial ideal of V , and suppose that I is not
principal. Set II−1 = P . Since I is weakly ES-stable, I = aE for some
idempotent fractional ideal E of R. By Lemma 2.4, VP = (I : I) =
(E : E), and thus, E is an idempotent integral ideal of VP . Hence, E is
a prime ideal of VP . Set E = QVP where Q is a prime ideal of V with
Q ⊆ P . Then, VP = (E : E) = (QVP : QVP ) = VQ, and thus, Q = P .
Hence, E = QVP = PVP = P . Therefore, P is an idempotent prime
ideal of V and I = aE = aP . Now, if P = M , then M = M2, and thus,
Mv = V . It follows that aM = I = Iv = aMv = aV , a contradiction.
Hence, P is not maximal as desired. �

In the case of one-dimensional valuation domain V , if V is divisorial,
then it is a DV R. If V is not divisorial, from Proposition 4.6, V is
weakly ES-stable if and only if every divisorial ideal is principal.

We obtain the following corollary (the equivalence (ii) ⇔ (iii) can
be found in [2, page 327]).

Corollary 4.7. Let V be a one-dimensional valuation domain. The
following conditions are equivalent.

(i) V is a weakly ES-stable domain.

(ii) V is a pseudo-principal domain.

(iii) The value group of V is isomorphic to a complete subgroup of
the real numbers.

Before stating our next theorem, we recall that, if I is a nonzero
(integral) ideal of a Prüfer domain R, then a representation of End(I)
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as a sub-intersection of R is given by

End(I) = (I : I) =

( ∩
M⊇I

RG(M)

)
∩ C(I),

where G(M) = Z(RM , IRM ) ∩ R is the unique prime ideal of R such
that (IRM : IRM ) = RG(M) for every maximal ideal M containing I;
and

C(I) =
∩

I*M

RM ,

see [17]. Also we note that, if A and B are R-submodules of qf(R)
and I is an ideal of R, then I(A ∩ B) = IA ∩ IB. Moreover, if R
has finite character, then IC(I) = C(I). Finally, a Prüfer domain is
strongly discrete if every nonzero prime ideal is not idempotent.

Theorem 4.8. Let R be a strongly discrete Prüfer domain. Then, R
is a weakly ES-stable domain if and only if R is ES-stable if and only
if R is stable.

Proof. Assume that R is a weakly ES-stable domain. By Corol-
lary 2.6, R has finite character. Let I be a nonzero (integral) ideal
of R, and set Max(R, I) = {M1, . . . ,Mn}. For every maximal ideal
Mi ∈ Max(R, I), RMi is a strongly discrete valuation domain which is
a weakly ES-stable domain. By Theorem 4.5, IRMi is strongly stable.
Set IRMi = aiRG(Mi) for some ai ∈ I. Now, let

J =
n∑

i=1

aiR.

Then J ⊆ I and, for each i ∈ {1, . . . , n}, JRG(Mi) = IRMi . Two cases
are then possible.

Case 1. Max(R, I) = Max(R, J). Then C(I) = C(J), and

I =

( n∩
i=1

IRMi

)
∩ C(I) =

n∩
i=1

JRG(Mi) ∩ C(J)

=
n∩

i=1

JRG(Mi) ∩ JC(J) = J

( n∩
i=1

RG(Mi) ∩ C(J)
)
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= J

( n∩
i=1

RG(Mi) ∩ C(I)
)

= J(I : I).

Hence, I2 = JI, and therefore, I is an ES-stable ideal.

Case 2. Max(R, I) $ Max(R, J). Set Max(R, J) = {M1, . . . ,Mn,
Mn+1, . . . ,Ms}, and let

a ∈ I \
s∪

j=n+1

Mj .

Set A = J + aR. Then, A ⊆ I, and it is easy to check that
Max(R, I) = Max(R,A), and IRMi = ARG(Mi) for each i ∈ {1, . . . , n}.
Thus, as in the first case, I = A(I : I). Hence, I2 = AI, and therefore,
I is ES-stable as desired. �

In [28, Theorem 3.3], Olberding proved that a domain is stable if
and only if it is locally stable with finite character. A Prüfer domain
that is locally weakly ES-stable need not be weakly ES-stable (Remark
2.3 (iii)). Similarly, if R is an almost Dedekind domain which is not
Dedekind, clearly RM is a DV R, and thus, R is locally strongly stable.
However, R is not weakly ES-stable. Indeed, let M be a non-invertible
maximal ideal of R. Then, M−1 = (M : M) = R. If M is weakly
ES-stable, then M2 = JM for some invertible ideal J of R. Thus,

R = (R : M2) = (R : JM) = ((R : M) : J) = (R : J),

and therefore, J = J(R : J) = R. Hence, M2 = M , a contradiction.

It follows that an almost Dedekind is a weakly ES-stable domain
if and only if it is a Dedekind domain. We are not able to prove or
disprove whether a locally weakly ES-stable domain of finite character
is weakly ES-stable or not.

5. Pullbacks. The purpose of this section is to investigate the
transfer of the notion of weakly ES-stable domains to classical pullback
constructions. Our work is motivated by an attempt to generate new
families of weakly ES-stable domains.

First, let us fix the notation for the rest of this section and recall
some useful properties of classical pullbacks. Let T be a domain, M a
maximal ideal of T , K = T/M its residue field and D a subring of K.
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Let R be defined by the pullback diagram:

R −→ D
↓ ↓
T −→

ϕ
K = T/M.

We assume that R ( T , and we refer to this diagram as a diagram
of type (�); furthermore, if qf(D) = T/M , we refer to the diagram
as a diagram of type (�∗). The case where T = V is a valuation
domain is crucial, and we refer to this case as a classical diagram of
type (�). Recall that (R : T ) = M is a prime ideal of R as R/M ≃ D,
and if T is local, every ideal of R is comparable (under inclusion) to
M , and R is local if and only if T and D are local. For more details
on general pullbacks, we refer the reader to [15, 16, 20] and [7] for
classical “D+M” constructions.

Now we are ready to state the main theorem of this section.

Theorem 5.1.

(i) For the diagram of type (�), if R is a weakly ES-stable domain,
then T is a weakly ES-stable domain, D is a semi-local domain which
is a weakly ES-stable domain and [K : qf(D)] ≤ 2.

(ii) For the classical diagram of type (�)∗, assume that D is con-
ducive. Then, R is a weakly ES-stable domain if and only if T is a
weakly ES-stable domain and D is a semi-local weakly ES-stable do-
main.

The proof of this theorem involves the following preparatory lemmas.

Lemma 5.2. For the diagram of type (�) assume that there is a
(nonzero) D-submodule W of K such that (W : W 2) = 0. Then, R
has an ideal which is not a weakly ES-stable ideal.

Proof. Let W be a D-submodule of K such that (W : W 2) = 0, and
let I be the ideal of R given by I = aϕ−1(W ) for some nonzero element
a ∈ M . Suppose that I is a weakly ES-stable ideal, and write I = JE
where JJ−1 = R and E = E2. Then,

(I : I2) = (aϕ−1(W ) : a2ϕ−1(W 2))
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= a−1ϕ−1(W : W 2)

= a−1ϕ−1(0) = a−1M.

By Lemma 2.4, E = I(I : I2) = aϕ−1(W )a−1M = M . Thus, M = M2,
and so,

aM = IM = JEM = JM2 = JM = I = aϕ−1(W ).

Hence, M = ϕ−1(W ) and so W = 0, which is absurd. It follows that I
is not a weakly ES-stable ideal. �

Lemma 5.3. For the diagram of type (�) assume that R is an almost
weakly ES-stable domain (respectively, a weakly ES-stable domain).
Then, K is algebraic over k (respectively, [K : k] ≤ 2).

Proof. Assume that R is an almost weakly ES-stable domain, and
suppose that K is not algebraic over k = qf(D). Let λ ∈ K be
transcendental over k, and set W = k + kλ. Let 0 ̸= a ∈ M , and
set I = aϕ−1(W ).

Claim 1. (W s : W s) = k for every positive integer s. Indeed, let
f ∈ (W s : W s). Since 1 ∈ W s = k+ kλ+ · · ·+ kλs, f ∈ W s. We write
f = α0 + α1λ+ · · ·+ αsλ

s for some α0, . . . , αs ∈ k. Since λ ∈ W s,

α0λ+ · · ·+ αsλ
s+1 = fλ ∈ W s.

Hence, αs = 0, otherwise, λ would be algebraic over k, a contradiction.
Thus,

f = α0 + α1λ+ · · ·+ αs−1λ
s−1.

Again, since λ2 ∈ W s, α0λ + · · · + αs−1λ
s+1 = fλ2 ∈ W s; hence,

αs−1 = 0. Iterating this process, we obtain

αs = αs−1 = · · · = α1 = 0.

Hence, f = α0 ∈ K, and therefore, (W s : W s) = k. It follows that
(W s : W 2s) = ((W s : W s) : W s) = (k : W s) = 0, and by Lemma 5.2,
Is is not a weakly ES-stable ideal for all s, which is a contradiction.
It follows that K is algebraic over k.

Assume that R is a weakly ES-stable domain.

Step 1. For every λ ∈ K, [k(λ) : k] ≤ 2. Indeed, by the first part of
the proof, K is algebraic over k. Suppose that there is a λ ∈ K such
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that [k(λ) : k] = n ≥ 3. Then 1, λ, . . . , λn−1 is a basis of k(λ) as a
k-vector space. Set

W = k + kλ+ · · ·+ kλn−2 and I = aϕ−1(W )

for some 0 ̸= a ∈ M .

Claim 2. (W : W ) = k. Indeed, let f ∈ (W : W ) ⊆ W , since 1 ∈ W ,
and write

f = α0 + α1λ+ · · ·+ αn−2λ
n−2,

where αi ∈ k for all i. Since λ ∈ W ,

α0λ+ α1λ
2 + · · ·+ αn−2λ

n−1 = fλ ∈ W.

Then αn−2 = 0, and thus,

f = α0 + α1λ+ · · ·+ αn−3λ
n−3.

Again, λ2 ∈ W implies that

α0λ
2 + α1λ

3 + · · ·+ αn−3λ
n−1 ∈ W.

Then αn−3 = 0. Iterating this process, we obtain

αn−2 = αn−3 = · · · = α1 = 0.

Hence, f = α0 ∈ k as desired. Therefore, (W : W 2) = ((W : W ) :
W ) = (k : W ) = 0, and by Lemma 5.2, I is not a weakly ES-stable
ideal, which is a contradiction. Thus [k(λ) : k] ≤ 2 for every λ ∈ K.

Step 2. [K : k] ≤ 2. We state the contradiction. Assume that
[K : k] ≥ 3, and let 1, λ, µ be a free system of K as a k-vector space.
Set W = k + kλ+ kµ and I = aϕ−1(W ) for some 0 ̸= a ∈ M .

Claim 3. (W : W ) = k. Indeed, let f ∈ (W : W ) ⊆ W , and
write f = α0 + α1λ + α2µ for some α0, α1 and α3 in k. By Step 1,
[k(λ) : k] = [k(µ) : k] = 2. Then,

λ2 = β0 + β1λ and µ2 = γ0 + γ1µ,

where β0, β1 and γ0, γ1 are in k with β0γ0 ̸= 0 (for instance, if β0 = 0,
λ2 = β1λ and so λ = β1 ∈ k, which is absurd). Since λ ∈ W ,

α0λ+ α1λ
2 + α2λµ = fλ ∈ W.

Thus,
β0α1 + (α0 + α1β1)λ+ α2λµ ∈ W,
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and so, α2λµ ∈ W . Hence, α2 = 0 for, if not, we obtain λµ ∈ W . But,
since

k(λ) = k + kλ ⊆ W and k(µ) = k + kµ ⊆ W,

k(λ, µ) ⊆ W . Then, 4 = [k(λ, µ) : k] ≤ [W : k] = 3, a contradiction.
Therefore, α2 = 0, and hence, f = α0 + α1λ. Similarly, since µ ∈ W ,

α0µ+ α1λµ = fµ ∈ W,

and thus, α1 = 0. Hence, f = α0 ∈ k, as desired. Thus, (W : W 2) =
((W : W ) : W ) = (k : W ) = 0. Again, by Lemma 5.2, I is not a
weakly ES-stable ideal, and this yields a contradiction. It follows that
[K : k] ≤ 2. �

Proof of Theorem 5.1.

(i) Assume that R is a weakly ES-stable domain. By Lemma 2.4,
T is a weakly ES-stable domain, and by Lemma 5.3, [K : qf(D)] ≤ 2.
By Corollary 2.6, R is of finite character, and since, for every maximal
ideal q of D, Q = ϕ−1(q) is a maximal ideal of R containing M and
Max(R,M) is finite, D must be semi-local. It remains to prove that D
is a weakly ES-stable domain. Let A be a nonzero ideal of D, and set
I = ϕ−1(A). Then, I is an ideal of R containing M , and thus, I = JE
where JJ−1 = R and E = E2. Since M $ I, IT = T . In addition,
since E2 = E,

E ⊆ (E : E) = (I : I) = (ϕ−1(A) : ϕ−1(A))

= ϕ−1(A :K A) ⊆ ϕ−1(K) = T.

By Lemma 2.4, E = I(I : I2), and thus, I ⊆ E ⊆ T . Therefore,
T = IT ⊆ ET ⊆ T , and hence, IT = ET = T . Therefore,
JT = JET = IT = T . Thus, IT = JT = ET = T , and hence,
M ( J and M ( E. Therefore, J = ϕ−1(B), and E = ϕ−1(F ) for
some nonzero fractional ideals B and F of D. Thus, B is invertible
(since JJ−1 = ϕ−1(B(D : B)), F = F 2 and clearly A = BF as desired.

(ii) Assume that D is conducive. If R is a weakly ES-stable domain,
the conclusion follows from (i). Conversely, assume that V is a weakly
ES-stable domain and D is a semi-local weakly ES-stable domain. Let
I be a nonzero ideal of R. If M ( I, then I = ϕ−1(A) for some nonzero
ideal A of D. Since D is a weakly ES-stable domain, A = BF where
B(D : B) = D and F = F 2. Now it is easy to see that I = JE where



STABILITY IN INTEGRAL DOMAINS 285

J = ϕ−(B) is invertible, and E = ϕ−1(F ) is idempotent as desired.
Assume that I ⊆ M . If I is an ideal of V , then I is a weakly ES-stable
ideal of V and, a fortiori, a weakly ES-stable ideal of R. Finally, if I
is not an ideal of V , then I = aϕ−1(W ) where W is a D-submodule
of K with D ⊆ W $ K. But, since D is conducive, W is a fractional
ideal of D, and thus, W = BF where B(D : W ) = D and F = F 2.
Set J = aϕ−1(B) and E = ϕ−1(F ). Clearly JJ−1 = R, E = E2 and
I = JE, as desired. �

The next example shows that Theorem 5.1 (ii) cannot be extended
to a classical diagram of type (�).

Example 5.4. Let V = Q(i)[[X]] = Q(i) +M , where i is the complex
number with i2 = −1, and setR = Z2+M . LetW be the Z2-submodule
of Q(i) given by W = Z2 + iQ. We claim that (W : W 2) = (0).
Indeed, (W : W ) = Z2. To see this, let f ∈ (W : W ). Since 1 ∈ W ,
f ∈ W . We write f = a + ib for some a ∈ Z2 and b ∈ Q. Suppose
that b ̸= 0, and let 0 ̸= c ∈ Q \ Z2. Then i(c/b) ∈ W , and thus,
−c+a(c/b)i = f(i(c/b)) ∈ W . Thus, −c ∈ Z2, which is a contradiction.
Hence, b = 0, and so, f = a ∈ Z2. Thus, (W : W ) = Z2, and hence,

(W : W 2) = ((W : W ) : W ) = (Z2 : W ) = (Z2 : Z2 + iQ)

= (Z2 : Z2) ∩ (Z2 : iQ) = Z2 ∩ (0) = (0).

By Lemma 5.2, R has an ideal I which is not a weakly ES-stable ideal,
as desired.

The next example illustrates Lemma 5.2 and shows how to construct
a classical pullback of type (�)∗ which has an ideal of the form I =
aϕ−1(W ) where W is a D-submodule of K satisfying (W : W 2) = (0).
Thus, I is not a weakly ES-stable ideal.

Example 5.5. Let V = Q[[X]] = Q + M and R = Z + M , where
M = XV is the maximal ideal of V . Let W be the Z-submodule of Q
given by

W =
∑

p prime

1

p
Z,
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and consider the ideal I = X(W +M). We claim that (W : W ) = Z
and (Z : W ) = (0). Indeed, since (1/p)Z ⊆ W for every prime p,
(Z : W ) ⊆ (Z : (1/p)Z) = pZ, and thus,

(Z : W ) ⊆
∩

p prime

pZ = (0).

It follows that (Z : W ) = (0). Clearly, Z ⊆ (W : W ). Suppose that
Z $ (W : W ), and let f ∈ (W : W ) \ Z. Since 1 ∈ W , (W : W ) ⊆ W ,
and thus, f ∈ W . We write

f =

n∑
i=1

ai
pi

for some a1, . . . , an ∈ Z and some prime integers p1, . . . , pn. Without
loss of generality, we may assume that ai /∈ piZ for all i. For, if
ai1 ∈ pi1Z, . . . , ais ∈ pisZ for some i1, . . . , is ∈ {1, . . . , n}, then

g =
s∑

j=1

aij
pij

∈ Z ⊆ W,

and thus,

h = f − g =
∑
i ̸=ij

ai
pi

∈ W

with ai /∈ piZ for all i /∈ {i1, . . . , is}.

Now set

λ =
n∏

i=1

pi

and for each i ∈ {1, . . . , n}, set

λi =
∏
j ̸=i

pj .

Then, piλi = λ, and thus, f = a/λ where

a =
n∑

i=1

aiλi.
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Note that a /∈ piZ for each i since aiλi /∈ piZ. Since 1/p1 ∈ W ,
1/p1f ∈ W . We write

a

p1λ
=

1

p1
f =

r∑
j=1

bi
qj

=
b

µ

for some b ∈ Z and µ =
∏r

j=1 qj with qj distinct prime integers. Then,

aµ = p1bλ ∈ λZ =
n∩

i=1

piZ,

and, since a /∈ piZ,
r∏

j=1

qj = µ ∈ piZ for each i.

Necessarily s ≥ n and, for each i ∈ {1, . . . , n}, pi = qj for some
j ∈ {1, . . . , s}.

Suppose that s > n, and, without loss of generality, assume that
pi = qi for each i = 1, . . . , n. Then

µ = λ
s∏

j=n+1

qj .

It then follows that

aλ
s∏

j=n+1

qj = aµ = p1bλ,

and thus,

a

s∏
j=n+1

qj = p1b ∈ p1Z.

But, since a /∈ p1Z,
s∏

j=n+1

qj ∈ p1Z,

and thus, q1 = p1 = qj for some j ∈ {n + 1, . . . , s}, which is a
contradiction. Hence, s = n, and therefore, µ = λ. Thus, aλ = aµ =
p1bλ, and so, a = p1b ∈ p1Z, which is absurd. Hence, (W : W ) = Z.
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Therefore,

(W : W 2) = ((W : W ) : W ) = (Z : W ) = 0,

and, by Lemma 5.2, I = X(W +M) is not a weakly ES-stable ideal.

Corollary 5.6. Let A ( B be an extension of integral domains, X an
indeterminate and R = A +XB[X] (respectively, R = A +XB[[X]]).
If R is a weakly ES-stable domain, then B = K is a field, A is a semi-
local domain which is a weakly ES-stable domain and [K : qf(A)] ≤ 2.

Proof. Since XB[X] ⊆ (R : B[X]), by Lemma 2.4, B[X] is a
weakly ES-stable domain, and, by Corollary 2.7, B = K is a field.
Now, by Theorem 5.1, A is a semi-local weakly ES-stable domain and
[K : qf(A)] ≤ 2. The proof is similar for R = A+XB[[X]]. �

Recall from [23] that R is a pseudo-valuation domain if R is local
and shares its maximal ideal with a valuation overring V . In view of
[4, Proposition 2.6], R is a pullback determined by the diagram of
canonical homomorphisms:

R = ϕ−1(k) � k
↓ ↓
V �

φ
K := V/M,

where M is the maximal ideal of V and k is a subfield of K. A fortiori,
M is the maximal ideal of R with residual field k.

The next corollary characterizes PV D domains that are weakly ES-
stable domains.

Corollary 5.7. Let R be a PV D, V its associated valuation overring,
M its maximal ideal, and set K = V/M and k = R/M . Then, R is a
weakly ES-stable domain if and only if V is a weakly ES-stable domain
and [K : k] ≤ 2.

Proof.

⇒. This follows immediately from Theorem 5.1.
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⇐. Let I be a nonzero ideal of R. If I is an ideal of V , then I is a
weakly ES-stable ideal of V and, a fortiori, a weakly ES-stable ideal
of R.

Assume that I is not an ideal of V . Then, as in [7, Theorem 2.1],
I = aϕ−1(W ) where k ⊆ W ( K. (Note here that if a ∈ I and α ∈ V
such that aα /∈ I, then it is easy to check that IV = aV . Next, set

W = {λ ∈ K | if λ = ϕ(x), then xa ∈ I},

and easily check that I = aϕ−1(W )). Now, since [K : k] ≤ 2, W = k,
and thus, I = aR, as desired. �

Acknowledgments. I would like to thank the referee for his/her
comments and suggestions that improved the paper.

REFERENCES

1. D.D. Anderson, J. Huckaba and I. Papick, A note on stable domains, Houston
J. Math. 13 (1987), 13–17.

2. D.D. Anderson and B.G. Kang, Pseudo-Dedekind domains and divisorial
ideals in R[X]T , J. Algebra 122 (1989), 323-336.

3. D.F. Anderson, V. Barucci and D. Dobbs, Coherent Mori domains and the
principal ideal theorem, Comm. Algebra 15 (1987), 1119-1156.

4. D.F. Anderson and D.E. Dobbs, Pairs of rings with the same prime ideals,

Canad. J. Math. 32 (1980), 362–384.

5. V. Barucci, Mori domains, Non-Noetherian commutative ring theory, Kluwer,
Dordrecht, 2000.

6. V. Barucci and E. Houston, On the prime spectrum of a Mori domain, Comm.
Algebra 24 (1996), 3599–3622.

7. E. Bastida and R. Gilmer, Overrings and divisorial ideals of rings of the form
D +M , Michigan Math. J. 20 (1992), 79–95.
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