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HENSEL’S LEMMA AND
THE INTERMEDIATE VALUE THEOREM
OVER A NON-ARCHIMEDEAN FIELD

LUIGI CORGNIER, CARLA MASSAZA AND PAOLO VALABREGA

ABSTRACT. This paper proves that all power series
over a maximal ordered Cauchy complete non-Archimedean
field satisfy the intermediate value theorem on every closed
interval. Hensel’s lemma for restricted power series is the
main tool of the proof.

1. Introduction. It is well known that, over a complete Archimedean
field, i.e., the field R of real numbers, the intermediate value theorem
holds for every function continuous on a closed interval. The proof
is strongly based on the Archimedean property, or better, on the di-
chotomy procedure, which is a consequence of it.

Over a non-Archimedean field K the theorem is false for the class
of all continuous functions, see [5, Example 4.1], even in the event
that K is maximal ordered and Cauchy complete. Nevertheless, it was
proven long ago for polynomials and rational functions defined over a
maximal ordered, not necessarily complete, non-Archimedean field, see
[2, Section 2, Proposition 5].

In [5], we proved that, when K is maximal ordered, the theorem can
be extended to any power series which is algebraic over the field K(X)
of rational functions, with a direct proof that makes use of the theorem
for polynomials.

In the present paper, we investigate the intermediate value theorem
for an arbitrary power series over a non-Archimedean maximal ordered
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and complete field K. In order to attain the result we use Hensel’s
lemma, in its strong version, for the ring of restricted power series. In
fact, we apply it to the valuation ring of all elements of K which are
not infinitely large with respect to Q (or to any other subfield L with
which K is non-comparable). Since the maximal ideal of infinitesimals
may contain no topologically nilpotent element, we need the stronger
version of Hensel’s lemma proved in [22].

We want to point out that, if we consider separately the cases of the
maximal ideal with or without topologically nilpotent elements, two
proofs that are quite different can be given. With topologically nilpo-
tent elements the Bourbaki version of Hensel’s lemma for restricted
power series is the right tool, while the theorem in the other case can
be proved without use of the Hensel lemma; this approach is based
on the construction of a Cauchy sequence of roots of the partial sums
which converges to one root of the series.

Since such a proof fails when there are topologically nilpotent ele-
ments, we also show (in general, with or without nilpotents) that each
root of odd order of a power series is the limit of a sequence of roots of
the partial sums (the order, or multiplicity, being defined in [5, The-
orem 3.11]). The even order behaves quite differently; in fact, it may
occur, and sometimes does, that the root of the series is only the limit
of a sequence of extremes of the partial sums.

In regards to the above proofs, we also want to emphasize the
following fact: the approach when there are no topologically nilpotent
elements shows that, for every change in sign, at least one root of
the series is the limit of a suitable sequence of roots of the partial
sums, while the general approach based on Hensel’s lemma as stated in
[22] shows that all the roots in the interval are the roots of a suitable
polynomial which is a factor of the series but gives, to our knowledge,
no information about their approximation by roots of the partial sums.

It is worth observing, in [5] we proved that algebraic power series
satisfy the intermediate value theorem on a closed interval of a maximal
ordered field, here we prove that the intermediate value theorem holds
for general power series over a maximal ordered and complete field.



HENSEL’S LEMMA AND A NON-ARCHIMEDEAN FIELD 187

We show that, if the intermediate value theorem holds true in K for
every power series, then K must be Cauchy complete.

As for the cardinality of the set of zeros, we show that, on the whole
field K, infinitely many roots may occur, but they shrink to finitely
many on the subring of the elements that are not infinitely large with
respect to a subfield with which K is non-comparable.

Standard corollaries of the intermediate value theorem are Rolle’s
theorem, the mean value theorem and the extreme value theorem. Here,
we briefly review them for a general power series.

We want to recall that the theory of non-Archimedean ordered fields
goes back to the 19th century and was introduced by Veronese and
Levi-Civita, see [11, 12], and also [1, 21]. As for the intermediate
value theorem on the Levi-Civita field of functions from Q to R with
left-finite support, a proof is given in [20], while in [10, 18], a quite
different point of view is considered.

2. Notation and general facts. Unless otherwise stated, K is a
non-Archimedean, maximal ordered, complete field (for ordered fields
and completions in general, we refer the reader to [2, 9, 23]). We recall
that K is called maximal ordered if every ordered algebraic extension
of K coincides with K ([2, Section 2, Definition 4]) and that K is
maximal ordered if and only if every positive element of K is a square
and moreover every odd degree polynomial over K has a root in K ([2,
Section 2, Theorem 3]).

We assume throughout that the order topology has a countable basis
for the neighborhoods of 0 (see [8, page 50, Chapter I] and [13, page
335, X]). An element x ∈ K is topologically nilpotent if limn→∞ xn = 0,
see [7, page 19].

The following cases may occur, see [5, Section 3]:

(1) there is a topologically nilpotent element ϵ ∈ K;
(2) there is a sequence (ϵ0 > ϵ1 > ϵ2 > · · · ), converging to 0, such that,

for all n, ϵn > 0 and for all n and i, ϵin > ϵn+1. We always choose
ϵ0 = 1.

In case (1), The sets Un = {x ∈ K, |x| < ϵn} give a basis for the
neighborhoods of 0, while, in case (2), we need the sets Un = {x ∈
K, |x| < ϵn}.
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For every non-Archimedean ordered field L, L denotes the ordered

closure and L̂ the Cauchy completion.

If S(X) =
∑

anX
n is a power series over K, we denote the nth

partial sum
∑n

i=0 aiX
i by Sn(X).

If L ⊂ K is a subfield such that K contains at least one element x
larger than every a ∈ L, we say that K is non-comparable with L, or
non-Archimedean over L. For instance, K is non-comparable with Q.

An element x ∈ K is called infinitely large with respect to L if |x| > a
for all a ∈ L+ (the set of all positive elements). An element y ∈ K,
y ̸= 0, is called infinitely small (or infinitesimal) with respect to L if
|y| < a for all a ∈ L+. If x is infinitely large, then 1/x is infinitely
small, and conversely. When L = Q, we simply say that x is infinitely
large and y is infinitely small or infinitesimal. If x ∈ K is algebraic over
the subfield L, then x is neither infinitely large nor infinitely small with
respect to L, see [2, page 57, Exercise 14]. The same is true for every

y ∈ L̂ (as a consequence of the definition of order in the completion,
see [23, page 67]).

Given L ⊂ K such that K is non-comparable with it, we set:

AL = {x ∈ K, x is not infinitely large with respect to L},
ML = {x ∈ K, x is infinitely small with respect to L}.

Then AL is a subring of K [2, page 53, Exercise 1] and ML is a maximal
ideal of AL [2, page 57, Exercise 11 b)]. Moreover, AL is a valuation
ring, since either x or 1/x belongs to AL for all x ∈ K\{0} [4, Chapter 6,
Theorem 1].

Remark 2.1. Let us assume that there is a sequence (ϵn) converging
to 0 but not a single ϵ such that limn→∞ ϵn = 0.

(a) Given a subfield L over which K is non-Archimedean, we can
assume that all the ϵn’s (except ϵ0 = 1) are infinitesimal with respect
to L (by possibly discarding finitely many of them).

It follows that every ωn = 1/ϵn, n ≥ 1, is infinitely large with respect
to L.

(b) It follows that ϵ1ϵn > ϵn+1, since ϵ1 > ϵn implies ϵ1ϵn > ϵ2n >
ϵn+1 (this inequality actually follows from case (2) above).
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(c) It is easy to see that each ϵi+1 is transcendental over L (ϵ1, ϵ2, . . . ,
ϵi) ⊂ K, since algebraic elements cannot be infinitesimal.

Remark 2.2. If there is a topologically nilpotent ϵ, then ϵ does not
belong to every L with which K is non-comparable. In fact, ϵ ∈ L
implies ϵn ∈ L for all n, in contradiction with the non-Archimedean
assumption on K (choose x ∈ K infinitely small with respect to L,
hence less than every ϵn, and x must be 0).

A local ring (A,M) is called Henselian if the following property
holds. Let P (X) ∈ A[X] be a polynomial such that its canonical image
P (X) into the quotient ring (A/M)[X] is the product Q(X)T (X) of a
monic polynomial Q(X) and another polynomial T (X), the two factors
being coprime. Then P (X) = Q(X)T (X), where Q(X) is a monic
polynomial that lifts Q(X), and T (X) is a polynomial that lifts T (X).
Moreover, P (X) and Q(X) are uniquely determined and coprime.

Hensel’s lemma states that a complete local ring is Henselian, see
[17, page 103, Chapter V, Section 30]. There is a wide class of
Henselian rings, see for instance, [6].

A monic polynomialXr+· · ·+c1X+c0 is anN -polynomial if c0 ∈ M ,
c1 /∈ M . A local ring is Henselian if and only if every N -polynomial
has a root in M ([17, page 179, Chapter V, Section 43] and also [6,
Theorem 5.11]).

If S(X) is defined over a topological ring A with a linear topology,
i.e., with a basis of the neighborhoods of 0 formed with ideals, S(X) is
called restricted if limn→∞ an = 0, see [7, page 18].

Hensel’s lemma can also be given for a restricted power series (see
[3, Chapter 3, Section 4, Theorem 1] and [7, page 19, Theorem 3.7]).

Lemma 2.3 (Hensel’s lemma for a restricted power series). Let A
be a complete, separated ring with respect to a linear topology, M
a closed ideal whose elements are topologically nilpotent, S(X) a re-
stricted power series such that its canonical image S(X) into the topo-
logical quotient ring (A/M){X} is the product P (X)T (X) of a monic
polynomial P (X) and a restricted series T (X), the two factors being
coprime. Then S(X) = P (X)T (X), where P (X) is a monic polyno-
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mial that lifts P (X), and T (X) is a restricted series that lifts T (X).
Moreover, P (X) and T (X) are uniquely determined and coprime.

3. Non-comparable subfields and some topology. In this sec-
tion, we investigate some topological properties of the valuation ring
of non-infinitely large elements that follow from the ordering of the
field K, with special focus on topologically nilpotent elements.

Lemma 3.1. Let Y be the set of all subfields L ⊂ K with which K is
non-comparable. If there is a topologically nilpotent element ϵ, then Y
contains a maximal element, which is both maximal ordered and Cauchy
complete.

Proof. Y is not empty and can be ordered by inclusion. First of all
we show that, if F is a subset of Y , then L′ = ∪F belongs to Y . In order
to prove this property let us recall (Remark 2.2 above) that no L ∈ Y
can contain ϵ. As a consequence, ϵ /∈ L′ so that K is non-comparable
with L′.

Therefore, by Zorn’s lemma, Y has a maximal element L. Such
a subfield is both maximal ordered and complete, since the ordered
closure and the completion of an ordered field are comparable with
it. �

Proposition 3.2. If K contains a topologically nilpotent element ϵ
and L is maximal as above, then every element of ML is topologically
nilpotent.

Proof. Let x be in ML. Put y = 1/x, and observe that |y| > |h| for
all h ∈ L so that y /∈ L, which implies that y is transcendental over L
(every algebraic element over L is comparable with L). Let us assume
that y > 0, and consider the field L(y) ⊂ K. Since L is maximal with
the property that K is non-comparable with it, L(y) is comparable with
K, i.e., every k ∈ K is neither infinitely large nor infinitely small with
respect to L(y), so that there is a rational function P (y)/Q(y) which
is larger than ω = 1/ϵ. However, in the unique ordering of L(y), see
[16, Section 3], every rational function is less than some power of ym,
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so that ω < ym for some m ≥ 1. Therefore,

lim
n→∞

xn = lim
n→∞

1

ym
= 0. �

Remark 3.3. Observe that K is a topological field and every subring
is a topological ring.

Let L be any subfield with which K is non-comparable. In all cases,
with or without topologically nilpotent elements, the ring AL, equipped
with the topology induced by the ordering ofK, is a topological ring, i.e.,
the functions (x, y) → (x+y), (x, y) → xy and x → −x are continuous.
Moreover, it is Hausdorff since, if |x| ≤ ϵn, respectively ϵn, for all n,
then x = 0, see [7, page 2].

Lemma 3.4. For every subfield L such that K is non-comparable with
it, the topology of AL is linear, i.e., there is a basis of the neighborhoods
of 0 whose elements are ideals of AL.

Proof.

Case 1. There is a sequence of infinitesimal elements (respectively,
ϵn, n ∈ N) and no nilpotent element. Set Un = {x ∈ AL, |x| < ϵn},
Vn = ϵnAL. It is enough to show that

Un+1 ⊂ Vn+1 ⊂ Un for all n.

Step 1. Un+1 ⊂ Vn+1. Assume that x ∈ Un+1. This means that
a = x/ϵn+1 ∈ AL; thus, x ∈ Vn+1.

Step 2. Vn+1 ⊂ Un. Let x be in Vn+1, i.e., x = aϵn+1 for some
a ∈ AL, and set ω1 = 1/ϵ1. Since |a| < ω1 for all a ∈ AL, see
Remark 2.1 (a), it follows that |x| < ϵn+1ω1 < ϵn by our choice of
the infinitesimals, which proves the claim.

Case 2. There is a topologically nilpotent element ϵ.

The proof above works if we replace ϵn by ϵn for all n ∈ N (and use
Remark 2.2). �

Proposition 3.5. For every subfield L that is non-comparable with K,
the following hold true:

(i) AL is closed in K and Cauchy complete.
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(ii) ML is closed in AL.

Proof.

(i) It is enough to prove that AL is complete. Let (cn) be any Cauchy
sequence with cn ∈ AL for all n. Hence, there is a c ∈ K such that
c = limn→∞ cn. This implies that, for every infinitesimal h, the open
interval ]c− h, c+ h[ contains at least one element cN , i.e., c− cN = η,
with η infinitely small and thus belonging to ML ⊂ AL. We obtain that
c− cN = η ∈ AL, i.e., that c = cN + η ∈ AL.

(ii) Choose d ∈ AL such that every open neighborhood of infinitesi-
mal radius h of d ∈ AL contains some x ∈ ML, x ̸= d. This means that
|x− d| < h, i.e., x− d ∈ ML; thus, d ∈ ML. �

We will consider the special case L = Q, since we know that Q is a
subfield with which K is non-comparable. The ring A = {x ∈ K, x is
not infinitely large over Q} is a valuation ring, as we have already seen,
and M = {x ∈ A, x is infinitely small over Q} is its maximal ideal.

4. Changing the interval and transforming S(X) into a re-
stricted power series over A. We want to show that every power
series converging in some closed interval can be transformed into a re-
stricted power series over the ring of non-infinitely large elements, the
simple tools being a linear change of variable and the multiplication by
a suitable element in K. The series so acquires a few good properties
which are useful in what follows.

Proposition 4.1. Let S(X) be a power series defined over a set
DS ⊂ K containing the closed interval [a, b]. Then there is a linear
change of variable X = hZ + k such that

(i) [a, b] is mapped one-to one onto [1, 2], and X = a corresponds to
Z = 1, X = b corresponds to Z = 2,

(ii) S(hZ+k) = T (Z) is a power series whose domain contains [1, 2].
Moreover, there are d ∈ K and N ∈ N, such that:

(iii) dT (Z) is a restricted power series over the ring A of non-infinitely
large elements and daN = 1, daN+h ∈ M for all h ≥ 1.
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Proof.

(i) and (ii) We set X = (b − a)Y , obtaining a series in the variable
Y , say

U(Y ) =
∑

an(b− a)nY n.

U(Y ) is convergent at least on [a/(b− a), b/(b− a)].

Now, we set k = (2a− b)/(b− a) and operate the translation Y =
Z + k. This translation is allowed if U(k) is a converging series,
see [5], Theorem 3.7. This holds true since U(Y ) is convergent
both at a/(b− a) and at b/(b− a), thus also at 2a/(b− a) and at
2a/(b− a)− b/(b− a), see [5, Theorem 3.3]. Hence,

T (Z) = S((b− a)Z + (2a− b)) = U(Y )

is convergent on [1, 2], see [5, Theorem 3.7], and S(a) = T (1), S(b) =
T (2), so that (ii) is fulfilled with h = b− a, k = 2a− b.

(iii) Set T (Z) =
∑

tnZ
n. We have limn→∞ tn = 0 because the series

is convergent at Z = 1 (see [5, General facts, Theorem 2.1] and [13,
page 335, XII]), and thus, only finitely many coefficients lie outside of
A, since A contains all of the infinitely small elements.

Now let |th| = a be the largest among all of the absolute values |tn|.
Then, bn = tn/a is not infinitely large, and thus,

H(X) =
S(X)

a
=

∑
bnX

n

is a power series over A such that limn→∞ bn = 0 (it is convergent at 1).
Therefore, H(X) ∈ A{X} is a ring of restricted power series over A.
Observe that |bh| = 1 implies H(X) /∈ M{X} (restricted series with
all coefficients in M). In this event, there is the largest integer, say N ,
such that bN /∈ M . As a consequence, bN is invertible in A, and we can
consider the following series:

V (X) =
H(X)

bN
=

∑
cnX

n,

which is still restricted over A and has cN = 1, cn ∈ M for all n > N .
Therefore, d = 1/abN . �
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Remark 4.2.

(i) If [a, b] is any interval, we can transform S(X) into another series
T (Z) converging in [1, 2] and then we can replace T (Z) by dT (Z).
Observe that T (1)T (2) < 0 if and only if S(a)S(b) < 0.

(ii) It is worth pointing out that there is a one-to-one correspondence
between the zeros of S(X) in [a, b] and the zeros of T (Z) in [1, 2].

(iii) Obviously, the above proof works if [1, 2] is replaced by any
interval whose endpoints are neither infinitely large nor infinitely small.

5. Hensel’s lemma for restricted power series. In the present
section, K is maximal ordered and complete, with the exception of
the following Proposition 5.1, which holds true for a maximal ordered
field K. We choose a subfield L ⊂ K such that K is not comparable
with it, for instance, L = Q. We want to show that Hensel’s lemma
for restricted power series [7, page 19] holds on the local ring A of
elements which are non-infinitely large with respect to L, even if there
is no topologically nilpotent element in the maximal ideal M . By [22,
Theorem 5], it is enough to show that (A,M) is a Henselian pair.

Proposition 5.1. Let (A,M) be a valuation ring of a maximal ordered,
not necessarily complete, field K. Then (A,M) is a Henselian pair.

Proof. Since A is a local ring, it is enough to prove that every N -
polynomial P (X) = Xr + cr−1X

r−1 + · · ·+ c1X + c0 ∈ A[X], i.e., with
c0 ∈ M, c1 /∈ M , has a root in M , see Section 2 and [22, Section 1].

First we observe that, if the polynomial has degree r = 1, then
P (X) = X + c0 has root −c0 ∈ M .

Then, we consider the case of a degree 2 polynomial. If P (X) = X2+
2bX + c is any N -polynomial, then it has two roots in K(i) (algebraic

closure of K, see [2, Section 2, Theorem 3]): a = −b +
√
b2 − c,

a′ = −b−
√
b2 − c. Since b /∈ M , c ∈ M , b2−c is positive, the two roots

actually belong to K (which is maximal ordered), and hence, also to A,
which is integrally closed as a valuation ring [4, Chapter 6, Section 1,
Corollary 1]. Therefore, there is no irreducible degree 2 N -polynomial.
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Now we point out that, if an N -polynomial p(X) = Xm + · · · +
p1X + p0 is the product of two factors q(X) = Xs + · · · + q1X + q0,
r(X) = Xh + · · · + r1X + r0, then one and only one between the two
factors is an N -polynomial. In fact, we have q0r0 = p0 ∈ M so that one
factor must belong to M , say q0. In this event, q0r1 + q1r0 = p1 /∈ M ;
thus, neither q1 nor r0 can belong to M . Therefore, q(X) is an N -
polynomial while r(X) is not. This implies, in particular, that a degree
two N -polynomial has exactly one root in M .

Now assume that r ≥ 3. Since K is maximal ordered, P (X) is the
product of linear factors, say P1(X), . . . , Ph(X), and irreducible second
degree factors, say Q1(X), . . . , Qs(X), see [2, Section 2, Proposition 9].
Since A is integrally closed, all factors have coefficients in A, see [3,
Chapter 5, Section 1, Proposition 11]. Therefore, we obtain that one
and only one among the linear factors which is an N -polynomial, since
the second degree irreducible factors cannot be N -polynomials. Such
a factor has the required root. �

Corollary 5.2. A satisfies Hensel’s lemma for restricted power series.

Proof. This is [22, Theorem 5] since A is complete and Hausdorff
with respect to a linear topology, M is closed and (A,M) is a Henselian
pair. �

Corollary 5.3. Let S(X) =
∑∞

n=0 anX
n be a restricted power series

over A such that the partial sum SN (X) is a monic polynomial for
some N , and moreover, aN+h ∈ M for all h ≥ 1. Then, S(X) =
P (X)B(X), where P (X) is a monic polynomial such that P (X) =
SN (X) mod M and B(X) ∈ 1 +M{X} is a restricted power series.

Proof. The proof is essentially [19, Theorem 10]. In fact, the proof
of this theorem only makes use of Hensel’s lemma for restricted power
series, applied to the decomposition (mod M) : S(X) = SN (X) · 1.
Corollary 5.3 states that such a lemma holds without topologically
nilpotent elements. �

Corollary 5.4. Let S(X) =
∑∞

n=0 anX
n be a power series defined in

the closed interval [a, b]. Then, S(X) has only finitely many zeros.
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Proof. Due to Proposition 4.1, we may assume that the partial sum
SN (X) is a monic polynomial for some N , while aN+h ∈ M for all
h ≥ 1. By Corollary 5.3, we obtain S(X) = P (X)B(X), where P (X)
is a polynomial and B(X) ∈ 1 +M{X} cannot have roots; therefore,
S(X) vanishes where a polynomial vanishes. �

Remark 5.5. In the above results, any field L such that K is non-
comparable with it works. We obtain Corollary 5.3 with A is the ring
of elements that are not infinitely large with respect to L.

6. The intermediate value theorem.

Theorem 6.1. Let S(X) be a power series over K converging at least
in [a, b] and such that S(a)S(b) < 0. Then there is c ∈ ]a, b[ such that
S(c) = 0.

Proof. Due to Proposition 4.1, we may assume that

(i) a = 1, b = 2;

(ii) S(X) is a power series over the local ring (A,M), where A = AL
is the ring of elements that are not infinitely large over any subfield
L ⊂ K, with which K is non-comparable, whileM = ML is the maximal
ideal of all elements that are infinitely small over L;

(iii) S(X) is restricted because it is convergent at X = 1, which
implies limn→∞ an = 0;

(iv) S(X) has a coefficient aN = 1 with the property that am ∈ M
for all m > N .

Therefore, by Corollary 5.3, S(X) = P (X)B(X), where P (X) is a
monic polynomial over A such that P (X) = S(X), B(X) =

∑
bnX

n is
the restricted power series over A belonging to 1+M{X}. If x ∈ [a, b],
then B(x) > 0, since B(x) = 1+m for a suitable infinitesimal m ∈ M .

Now assume that S(a)S(b) < 0. Since Q(x) > 0 everywhere in the
interval, we must have P (a)P (b) < 0, and so, by the intermediate value
theorem for polynomials, there is a c ∈ ]a, b[ such that P (c) = 0. This
implies S(c) = 0. �
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Remark 6.2. In the proof above, any L such that K is non-comparable
with it can work, in particular, L = Q. WhenK contains a topologically
nilpotent element ϵ, the proof of the intermediate value theorem may be
based upon Hensel’s lemma as stated in [7, page 19], provided that we
choose a maximal subfield L with which K is non-comparable. It is, in
fact, enough to observe that Hensel’s lemma for restricted power series
holds true, since A is equipped with a linear topology, see Lemma 3.4,
and it, along with the maximal ideal M (Lemma 3.5), is Hausdorff
and complete, while every element of M is topologically nilpotent
(Lemma 3.2). Therefore, the proof based upon the decomposition
modM works.

7. An alternative proof without topologically nilpotent el-
ements and without Hensel’s lemma. K is, as usual, maximal
ordered and complete. We assume that K contains no nilpotent ele-
ment but has a countable basis for the neighborhoods of 0, i.e., there
is a sequence B = (ϵ0 = 1 > ϵ1 > ϵ2 > · · · ), where ϵi, i > 0, is infin-
itesimal (see Notation and [15, page 704]). We also recall (see end of
Section 3) that A is the ring of all elements of K that are not infinitely
large with respect to Q.

From now on, for all i ∈ N+ = N− \{0}, we set:

Ai = {x ∈ K, |x| < ϵ
−1/n
i for all n ∈ N+},

Mi = {x ∈ K, |x| < ϵ
1/n
i for some n ∈ N+}.

It is easy to see that Ai is a ring for all i ∈ N+. Indeed, if x, y ∈ Ai, then

|xy| < ϵ
−1/n−1/m
i for all n,m, and thus, |xy| < ϵ

−1/p
i for all p, since,

given any p ≥ 1, there are n,m such that 1/n+1/m < 1/p. Moreover,
x + y ∈ Ai. In fact, we can assume that 0 < x ≤ y, obtaining that
x + y ≤ 2y. Now we can apply the property of the product already
proved.

The ring Ai is, for every i, a valuation ring since, if x /∈ Ai, then
1/x ∈ Mi ⊂ Ai. Moreover, Mi is its maximal ideal.

Observe that the following inclusions hold true:

Ai ⊂ Ai+1,Mi+1 ⊂ Mi for all i ∈ N+.
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As a consequence, for all i ≥ 1 and for all h ≥ 1, Mi+h = Mi+h ∩Ai is
a prime ideal of Ai.

Since ∪∞
i=0Ai = K, for every closed interval [a, b] ⊂ K, there is an

i ∈ N such that [a, b] ⊂ Ai.

Moreover, the ideals Mj ’s define the topology of K and also of every
Ai. In fact, set Vi = {x ∈ K, |x| < ϵi}. Then, it is easy to see that
Vi+1 ⊂ Mi+1 ⊂ Vi.

Lemma 7.1. The following hold true:

1. for all i ∈ N+, Ai is complete and Mi is closed ;

2. for all i ∈ N+, Ai/Mi is maximal ordered and complete.

Proof.

1. Assume that limn→∞ an = a, where a ∈ K, an ∈ Ai, and choose

any r ∈ N. In order to show that |a| < ϵ
−1/r
i for all r ∈ N+, it is

sufficient to select n such that |a− an| < ϵi. In fact, we obtain:

|a| ≤ |a− an|+ |an| < ϵi + |an| < ϵ
−1/r
i

(Ai is a ring and contains the sum of its elements ϵi and |an|).
In a similar manner, we show that Mi is closed.

2. The order in the quotient field is defined as follows: x +Mi > 0
if and only if x > 0, x /∈ Mi. Now, observe that every positive
x + Mi is a square. In fact, x = y2, where y ∈ K, and thus,
y ∈ Ai since it is integral over the valuation ring Ai. Therefore,
x + Mi = (y + Mi)

2. Moreover, let P (X) = a0 + · · · + Xn ∈ Ai[X]
be a monic polynomial of odd degree that lifts the monic polynomial
P (X) = a0 + · · · + Xn ∈ (Ai/Mi)[X]. Then, P (X) has a root z
belonging to K, and thus, to Ai. Hence, z is the required root. Thus,
Ai/Mi is maximal ordered, see Section 2.

Since Ai is complete and Mi is closed, the quotient is complete. �

Remark 7.2. Due to Proposition 4.1 and Remark 4.2, in order to
prove the intermediate value theorem, we can assume that a = 1, b = 2
and that S(X) ∈ A{X}. As a consequence, S(X) ∈ Ai{X} for all
i ≥ 1.
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Remark 7.3. If S(a)S(b) < 0, then Sn(a)Sn(b) < 0 for n large
enough, as a consequence of the definition of the partial sums: S(x) =
limn→∞ Sn(x) for all x ∈ [a, b]. It follows that, for n large enough,
Sn(x) has a root in [a, b] because of the intermediate value theorem for
polynomials [2, Section 2, Proposition 5].

Remark 7.4. If ]a, b[ contains a sequence C = (cn) such that Sn(cn) =
0 for all n ∈ N, n ≥ n0 (for some n0) and, moreover, C contains
a subsequence which is Cauchy, then there is a c ∈ ]a, b[ such that
S(c) = 0. In fact, the subsequence converges to a limit c and continuity
implies that S(c) = 0.

Lemma 7.5. Let A ⊂ K be a subring, and let I be a prime ideal of A.
Moreover, let

F =
{
Pn(X) =

k(n)∑
j=0

anjX
j , n ∈ N

}
any subset of A[X] such that :

(i) anj − an′j ∈ I for all n, n′ and j;
(ii) each Pn(X) has at least one root in K.

Then there are a subsequence

F ′ = (Pnh
, h ∈ N) ⊂ F

and a sequence (ch) of elements of A such that Pnh
(ch) = 0, and

moreover, ch − ck ∈ I for all h, k.

Proof. We consider the (unique) polynomial P (X) = Pn(X)(mod I)
∈ (A/I)[X]. Each root cn of Pn(X) (existing by hypothesis) equals,
mod I, a root of P (X). Since P (X) has all its coefficients in the
quotient field of the integral domain A/I, it has finitely many roots
so that there is at least one root, say c, which is the image of infinitely
many roots. These roots form the required sequence (ch) and the Pnh

’s
(of which they are roots) form the corresponding subset F ′. �

Theorem 7.6. Let S(X) be a power series converging on the closed
interval [a, b]. If S(a)S(b) < 0, then there is an n ∈ N such that
for all n ≥ n, each partial sum has at least one root cn in [a, b],
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and moreover, there is a subsequence of C = (cn) which is a Cauchy
sequence converging to a root c of S(X).

Proof. We have already seen by Remark 7.3 that there is an n such
that Sn(a)Sn(b) < 0 for all n ≥ n, and thus, there exists a cn ∈ ]a, b[
such that Sn(cn) = 0.

We want to show that there is a subsequence (cnh
) of C = (cn)

which is a Cauchy sequence. Recall that S(X) ∈ A1{X} and that C is
a sequence in A1, see Remarks 7.2 and 7.3.

First, we observe that, since S(X) is restricted and M1,M2, . . . form
a basis of the neighborhoods of 0, there is an increasing sequence
(nh) = (n0, n1, · · · ) of natural numbers, such that

(i) nh ≥ n for all h,
(ii) for all n ≥ n0, an ∈ M1 (observe that S(X) ∈ A1{X}),
(iii) for all h ≥ 1, if n ≥ nh, then Sn(X) = S(X) ∈ (A1/M1+h)[X].

Now we show that, for each h ≥ 0, there is a Cauchy subsequence

C(h) = (c
(h)
n ) ⊂ C such that:

• two elements of C(h) differ by an element of M1+h,
• C(h) ⊂ C(h−1).

We proceed with a recursive construction. Define F0 as the set of
all partial sums {Sn(X)}, n ≥ n0, and set C(0) = (cn, n ≥ n0). As for
C(1), it is built as follows.

Since Sn(X) = S(X) ∈ (A1/M2)[X] for all n ≥ n1 and M2 a prime
ideal in A1, there is, by Lemma 7.5, a countable subset F1 ⊂ F0 of
partial sums, each element of which has at least one root chosen in the
countable set C(0) lying on the same root mod M2. Therefore, C(1)

is the set of such roots.

Now assume that C(m) is defined, for every m ≤ h, in such a way
that the two properties above are satisfied. Then, define C(h+1), h ≥ 1,
as a subset of C(h). As we have just seen, for all n ≥ nh+1, S(X) and
Sn(X) lie on the same polynomial in (Ai/M2+h)[X]. Hence, a suitable
countable subset C(h+1) ⊂ C(h) contains only roots differing from one
another by an element of M2+h.
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Therefore, we have a sequence C(0), C(1), . . . of countable sets such
that C(h+1) ⊂ C(h) for all h ≥ 0, and such that two elements of C(h)

differ by an element of M1+h.

Now, we choose in each countable set C(h) its first element ch, so
obtaining the required Cauchy sequence. Such a sequence converges,
in the complete ring A1, to some element c, which is a root of S(X),
see Remark 7.4.

Remark 7.7. The proof of Theorem 7.6 is based upon the following
fact. There is a basis of the neighborhoods of 0 whose elements are
prime ideals of the ringA, see Lemma 7.5. This condition is not satisfied
if K contains a topologically nilpotent element. �

8. The set of zeros of a power series: Accumulation and
cardinality. The following theorem and corollary hold both in the
Archimedean and in the non-Archimedean cases.

Theorem 8.1. Let S(X) be a power series such that S(a)S(b) < 0.
Then, at least one among the zeros of S(X) in [a, b] is an accumulation
point for the set Z = ∪Zn, where Zn = {z ∈ [a, b], Sn(z) = 0}.
Therefore, at least one zero is the limit of a sequence of zeros of partial
sums.

Proof. Let (c1 < c2 < · · · < ck) be the finitely many zeros of S(X)
in the interval.

Assume S(a) < 0, S(b) > 0 and that c1 is not an accumulation point.
Then, there is an interval I = [c1 − r, c1 + r] containing no element of
the set Z, no zeros of S(X) except c1 and neither a nor b. This implies
that the partial sum Sn(X) has no root in I and that Sn(x) is either
> 0 or < 0 for all x ∈ I. Since S(x) = limn→∞ Sn(x) for all x ∈ I,
there is an n0 such that n > n0 implies Sn(x) < 0 for all x ∈ I, x < c1;
as a consequence, Sn(x) < 0 for all x ∈ I.

We conclude that, if c1 is not an accumulation point, then there is
a suitable r > 0 such that S(c1 + r) < 0. Now shrink [a, b] to the
subinterval [c1+ r, b] so that the smallest zero of S(X) becomes c2. We
repeat the argument and assume that c2 is not an accumulation point.
After finitely many steps, we find that, if no zero is an accumulation
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point, then there is an s such that S(ck − s) < 0 and S(ck + s) < 0.
But, S(b) > 0 implies that there is a zero between ck + s and b, which
is a contradiction.

If c is an accumulation point of a sequence, then it is obvious that
it is the limit of a suitable subsequence. �

Remark 8.2. By [5, Theorem 3.11], it is easy to define the concept
of order (or multiplicity) of a power series at c ∈ K: if S(X) =
(X − c)sq(X), where q(c) ̸= 0, s is the order. Therefore, we may
use the terms odd order and even order. It is clear that S(X) has odd
order at c if and only if there is an α > 0 such that S(a)S(b) < 0 for
all a ∈ (c− α, c) and b ∈ (c, c+ α).

Observe that, by using [5, Theorem 3.11], it is easy to prove that,
if a given zero is of even order, then it is either a local minimum or a
local maximum for the series.

Corollary 8.3. Every zero of S(X) whose order is odd is an accumu-
lation point for the set Z.

Proof. If c is a zero whose order is 2r+1, there is an open neighbor-
hood, and thus, by possibly shrinking it, also a closed neighborhood
J = [c − δ, c + δ] where S(x) < 0 for all x < c, S(x) > 0 for all x > c
(or conversely). Therefore, c is the only zero of S(X) in J . Now apply
the proof of the above theorem. �

Theorem 8.4. Let c be a v of even order of S(X) (thus, it is a local
extreme). Then, c is an accumulation point of local extremes of the
partial sums, c and the extremes having the same type.

Proof. We know that c is a zero of odd order of the derivative S′(X);
as a consequence, it is an accumulation point for the set of zeros of the
partial sums (S′(X))n = S′

n+1(X), each of which is a local extreme of
Sn+1(X).

Now, we observe that S(X) = (X − c)2pT (X) where 2p is the even
order of the zero and T (c) ̸= 0, see [5, Theorem 3.11]. Therefore, see
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[5, Theorem 3.7],

S(X)

(X − c)2p
= S(2p)(c) + r(X − c),

where limX→c r(X − c) = 0. It follows that the sign of S(X) around c
is the same as the sign of S(2p)(c), which implies that c is a maximum
(minimum) if and only if T (c) < 0 (> 0) or if and only if S(2p)(c) < 0
(> 0). In order to see that a maximum is an accumulation point of
maxima and a minimum of minima, it is now sufficient to observe that,

for n large enough, (S(2p)(c))n = S
(2p)
n−2p(c) has the same sign as S(2p)(c)

since S(2p)(c) = limn→∞ S
(2p)
n (c). �

The next example shows that a double zero of a series is approxi-
mated by extremes but not always by roots of the partial sums. As
usual, ϵ is topologically nilpotent in K = Q[ϵ].

Example 8.5. Let

F (X) =

∞∑
n=0

bnX
n

be any power series, c any element of K, and set:

T (X) = (x− c)2F (X).

Then, a straightforward computation on the partial sums Tn(X), Fn(X)
shows that Tn(X) = (x− c)2Fn−1(X) + xn(c2bn − xbn−1).

Now, choose c = 1, F (X) = 2−
∑∞

n=1 ϵ
n+1Xn = 2−(ϵ2X)/(1− ϵX).

Then both F (X) and T (X) converge between 1/2 and 2, and moreover,
F (x) > 1 for every x such that 1 ≤ x ≤ 2, since it is the difference
between 2 and an infinitesimal element. Therefore, Fn(x) > 1/2 for n
large enough. Hence, we obtain the following inequality:

Tn(x) ≥
(x− 1)2

2
+ xn(−ϵn+1 + xϵn),

where also the second term is strictly positive. Therefore, Tn(X) has
no root converging to 1.

Remark 8.6. The set of zeros belonging to A of the power series S(X)
is finite, see Corollary 5.4. However, there is a power series whose
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domain is K and has infinitely many zeros, as the next two examples
show.

Example 8.7. Let K be a maximal ordered, complete field having a
topologically nilpotent element ϵ (the sets Un = {x ∈ K, |x| < ϵn, n ∈
N} form a basis for the neighborhoods of 0). Set

S(X) =
∞∑

n=0

(−1)nϵn
2

Xn.

Since limn→∞(ϵn
2

)1/n = 0, the domain DS of S(X) is the whole K, see
[5, Notation] and [14, page 137, (IV)]. We want to show that:

S(ϵm) < 0 if m = −4l − 2, l ∈ N

and

S(ϵm) > 0 if m = −4l, l ∈ N.

To this end, we observe that

S(ϵ−4l) =
∑

(−1)nϵn
2−4ln,

where ϵn
2−4ln is finite for n = 0 and n = 4l, infinitesimal for n > 4l and

infinitely large for 0 < n < 4l. Since the maximum of ϕ(n) = 4ln− n2

is attained at n = 2l, the largest term of the series is ϵ−4l2 with positive
sign, and it forces the series to attain a positive value.

An analogous argument shows that

S(ϵ−4l−2) =
∑

(−1)nϵn
2−4ln−2n

contains finitely many non-infinitesimal terms among which−ϵ−4l2−4l−1

is infinitely large and most negative, so that it forces the series to at-
tain a negative value. As a consequence, S(X) vanishes infinitely many
times, with one root at least between ϵ−4l−2 and ϵ−4l for all l ∈ N+,
due to the intermediate value theorem.

Example 8.8. Let K be a maximal ordered, complete field having no
topologically nilpotent element, but a decreasing sequence of infinites-
imal elements (1 = ϵ0 > ϵ1 > ϵ2 > · · · ) such that the sets

(Un = {x ∈ K, |x| < ϵn, n ∈ N}
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form a basis for the neighborhoods of 0. We assume (Section 2) that
ϵin > ϵn+1 for all n ∈ N and for all i ∈ N. As a consequence, the
following holds: ϵni > mϵi+1 for all n, i,m ∈ N.

Now set

S(X) =

∞∑
n=0

(−1)nϵnX
n.

The domain DS of S(X) contains at least X = 1; thus, it is the whole
K, see [14, page 137, (IV)] and [5, Notation].

We now compute S(ϵ−1
h ):

S(ϵ−1
h ) = 1− ϵ1ϵ

−1
h + ϵ2ϵ

−2
h − ϵ3ϵ

−3
h + · · ·

+ (−1)hϵhϵ
−h
h + (−1)h+1ϵh+1ϵ

−(h+1)
h

+ (−1)h+2ϵh+2ϵ
−(h+2)
h · · · .

Observe that

(i) ϵh+1ϵ
−(h+2)
h is infinitesimal with respect to Q since ϵh+1ϵ

−(h+2)
h <

1/n for all n is equivalent to nϵh+1 < ϵh+2
h .

(ii) ϵh+1ϵ
−(h+1)
h > ϵh+2ϵ

−(h+2)
h since this is equivalent to ϵh+1ϵh >

ϵh+2; moreover, we know that ϵh > ϵh+1, and hence, ϵh+1ϵh >
ϵ2h+1 > ϵh+2.

As a consequence (if u ∈ N and u ≥ 1), we obtain∣∣∣(−1)h+1ϵh+1ϵ
−(h+1)
h +(−1)h+2ϵh+2ϵ

−(h+2)
h + · · ·+(−1)h+uϵh+uϵ

−(h+u)
h

∣∣∣
< uϵh+1ϵ

−(h+1)
h .

From the inequality u < ϵ−1
h , for all u ∈ N , we obtain Rh+1 <

ϵh+1ϵ
−(h+2)
h where Rh+1 is the remainder of order (h+1) of the series.

Therefore, Rh+1 is infinitesimal.

Now we consider the first h+ 1 terms of the series, where h ≥ 2:

Sh(ϵ
−1
h ) = 1− ϵ1ϵ

−1
h + ϵ2ϵ

−2
h + · · ·+ (−1)hϵhϵ

−h
h .

All terms, except the first, are infinitely large and

mϵiϵ
−i
h < ϵ1−h

h , i < h, for all m ∈ N,
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since this is equivalent to mϵi < ϵh+i−1
h . It follows that

|Sh−1(ϵ
−1
h )| < ϵhϵ

−h
h .

Hence, we see that the sign of the series coincides with the sign of
(−1)hϵhϵ

−h
h . Therefore, we have:

S(ϵ−1
h ) > 0, if h is even S(ϵ−1

h ) < 0, if h is odd (> 1).

As a consequence, S(X) vanishes infinitely many times due to the
intermediate value theorem.

9. The mean value, Rolle’s and extreme value theorems.
Once the intermediate value theorem is established, the mean value
theorem, Rolle’s theorem and the extreme value theorem are formal
consequences of it, see [5, Section 4]. We give a brief sketch below,
since the proofs given in [5, Section 4] hold in the present, more general
case.

In what follows, S(X) is a power series defined on a closed inter-
val [a, b] having coefficients in a non-Archimedean, maximal ordered,
Cauchy complete field K.

(1) Rolle’s theorem. Assume that S(X) vanishes both at a and at
b. Then the equation S′(X) = 0 has at least one root x ∈ K,
a < x < b.

(2) The mean value theorem. There is a c ∈ ]a, b[ such that S(b) −
S(a) = (b− a)S′(c).

(3) Monotonic functions.
(a) S(X) is strictly increasing (decreasing) at x ∈ [a, b] if S′(x) > 0

(S′(x) < 0), where the derivative at a (b) is the right-hand
derivative (left-hand derivative).

(b) If S(X) is increasing (decreasing) at x ∈ [a, b], then S′(x) ≥ 0
(S′(x) ≤ 0).

(c) S(X) is increasing (decreasing) in [a, b] if and only if S′(x) ≥ 0
(S′(x) ≤ 0) for all x, a ≤ x ≤ b.

(d) At a local maximum or a local minimum x ∈ ]a, b[, the
derivative S′(x) vanishes.

(The arguments for proving (a), (b) and (d) do not depend
upon the intermediate value theorem; rather, they depend upon the
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definition of the derivative as a limit, while (c) requires the mean
value theorem which follows from the intermediate value theorem).

(4) Absolute maxima and minima.
(a) S(X) is bounded above and below.
(b) S(X) attains both its absolute maximum value and its absolute

minimum value.

Remark 9.1. In order to prove (4) (as in [5, Section 4]) we need the
following property: the set of zeros of S′(X) is finite, see Corollary 5.4.

10. The intermediate value theorem and completeness. In
this section, we consider an arbitrary ordered field K. If S(X) is a
power series with coefficients in K whose partial sums form a Cauchy

sequence at x ∈ K, then S(X) converges at x to S(x) ∈ K̂, so that

S(X) can be considered as a function K → K̂.

We say that K has the intermediate value property for power series
(IVPPS) if the following property holds true:

(IVPPS) For every power series S(X) with coefficients in K, if
S(a)S(b) < 0 for some a, b ∈ K, a < b, then there is a c ∈ K, a < c < b,
such that S(c) = 0.

In order to prove the main result of this section, i.e., that (IVPPS)
implies completeness, we need the next preliminary result.

Theorem 10.1. Assume that c ∈ K̂. Then there is a power series
T (X) with coefficients in K such that :

(i) T (c) = 0.
(ii) T ′(c) ̸= 0; hence, T (X) is strictly monotone at c.

Proof. Assume first that c belongs to K. Then T (X) = X− c fulfills
both conditions.

Now, assume that c is in K̂−K. We want to show that it is enough to
prove the statement for every c such that 0 < c < 1. In fact, if c < 0,
we replace c by −c. If we prove that there is a T (X) =

∑∞
0 tnX

n

satisfying (i) and (ii) at −c, then T (X) =
∑∞

0 (−1)ntnX
n satisfies (i)

and (ii) at c. We should only observe that T ′(−c) = −T
′
(c) so that, if

T (X) is increasing, then T (X) is decreasing and conversely. If c > 1,
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we replace c by c/a where a ∈ K, a > c (this is allowed because K̂ is
comparable with K). If we prove that there is a

T (X) =
∞∑
0

tnX
n

satisfying (i) and (ii) at c/a, then

T (X) =
∞∑
0

1

an
tnX

n

satisfies (i) and (ii) at c (again use the derivative, observing that
the type of monotonicity is preserved). Therefore, we can assume
that 0 < c < 1, which implies that limn→∞ dnc

n = 0 whenever
limn→∞ dn = 0.

We consider two cases.

Case A. There is a nilpotent element ϵ ∈ K. Accordingly, choose
an ∈ K, n ∈ N \ {0} recursively as follows. When n = 1, we choose as
a1 any positive element in K such that 1/c− ϵ < a1 < 1/c.

For n > 1, assume that

Sn−1 =

n−1∑
1

aic
i

has been chosen in such a way that

1− ϵn−1cn−1 < Sn−1 < 1

(observe that 1 − ϵc < S1 < 1, i.e., in the case n = 2 the inequalities
hold true). Then, select an ∈ K, an > 0 such that 1 − ϵncn < Sn < 1,
i.e., such that

1− ϵncn − Sn−1

cn
< an <

1− Sn−1

cn
.

Then a sequence of positive coefficients (a1, a2, . . .) is defined, and thus,
is the series

S(X) =
∞∑

n=1

anX
n.
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Moreover, for all n ≥ 1, we obtain

1− ϵncn < Sn < 1.

Therefore, Sn converges to 1, and the series

T (X) = S(X)− 1 =
∞∑
1

anX
n − 1

vanishes exactly at c. Since an > 0 for all n ≥ 1, T (X) is increasing at
c and thus negative when x < c, positive when x > c.

Case B. There is no nilpotent element, and the topology is defined
by the sequence (ϵ0 = 1 > ϵ1 > e2 > · · · ) (see Notation). By replacing
ϵn by ϵn, the proof holds. �

Corollary 10.2. Let K be an ordered field with (IVPPS). Then K is
both maximal ordered and complete.

Proof. First, observe that the intermediate value property for poly-
nomials is enough to ensure that K is maximally ordered, see [2, Sec-
tion 2, Theorem 3].

We now discuss completeness. Let c be any element of K̂. By
Theorem 10.1, there is a power series T (X) ∈ K[[X]], monotonic at
c and such that T (c) = 0. This means that, in a suitable interval
[a, b] ⊂ K containing c, T (a)T (b) < 0 and T (X) vanishes only at c.
Therefore, by (IVPPS), c is forced to belong to K, and we obtain:

K = K̂. �
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