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A NOTE ON RATIONAL NORMAL SCROLLS

MARGHERITA BARILE

ABSTRACT. We give a general upper bound for the
arithmetical rank of the ideals generated by the 2-minors
of scroll matrices with entries in an arbitrary commutative
unit ring.

Introduction. Given a field K, consider the integer d ≥ 2 and the

positive integers n1, . . . , nd. Set N = d− 1 +
∑d

i=1 ni. The projective

variety Sn1,...,nd
of PN

K defined by the vanishing of all 2-minors of the
matrix of indeterminates

A =

(
X1,0 X1,1 · · · X1,n1−1 · · · Xd,0 Xd,1 · · · Xd,nd−1

X1,1 X1,2 · · · X1,n1 · · · Xd,1 Xd,2 · · · Xd,nd

)
is called a rational normal scroll. It is irreducible, and its dimension is
equal to d. In [1], Badescu and Valla show that the arithmetical rank of
each of these varieties, i.e., the least number of homogeneous equations
needed to define this variety set-theoretically, is equal to N − 2. In
their paper, they explicitly give N − 2 defining equations Fi = 0,
i = 1, . . . , N − 2, where F1, . . . , FN−2 are homogeneous polynomials
of K[X1,0, . . . , X1,n1 , . . . , Xd,0, . . . , Xd,nd

], and they show that the set
of points of PN

K where all F1, . . . , FN vanish is Sn1,...,nd
. If K is

an algebraically closed field, from Hilbert’s Nullstellensatz, we know
that this statement is equivalent to the equality between the following
two ideals of K[X1,0, . . . , X1,n1 , . . . , Xd,0, . . . , Xd,nd

]: one is the ideal
generated by all 2-minors of A, (which coincides with the defining ideal
of Sn1,...,nd

, i.e., the ideal generated by all homogeneous polynomials
vanishing at all its points), the other is the radical of the ideal generated
by F1, . . . , FN−2.

In the present paper, we give a ring-theoretical generalization of this
result. We show that the two ideals still coincide when the algebraically
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closed field K is replaced by any commutative unit ring R. This, which,
of course, remains true if the indeterminates are replaced by arbitrary
elements of R, means that the arithmetical rank of the first ideal is
always at most N − 2. In this way, we also obtain an alternative proof
of [1, Theorem 4.1].

1. Preliminary results. Let R be a commutative unit ring.Given d
positive integers n1, . . . , nd, let D = Dn1,...,nd

be the ideal of R
generated by the 2-minors of the following matrix of indeterminates
over R:

A =

(
X1,0 X1,1 · · · X1,n1−1 · · · Xd,0 Xd,1 · · · Xd,nd−1

X1,1 X1,2 · · · X1,n1 · · · Xd,1 Xd,2 · · · Xd,nd

)
.

For all indices i = 1, . . . , d, every 2-minor of the submatrix(
Xi,0 Xi,1 · · · Xi,ni−1

Xi,1 Xi,2 · · · Xi,ni

)
will be called an (i)-minor. The set of (i)-minors is empty whenever
ni = 1. All these minors will be called pure. For all indices i, j such
that 1 ≤ i < j ≤ d, every non-pure 2-minor of the submatrix(

Xi,0 Xi,1 · · · Xi,ni−1 Xj,0 Xj,1 · · · Xj,nj−1

Xi,1 Xi,2 · · · Xi,n1 Xj,1 Xj,2 · · · Xj,nj

)
will be called an (i, j)-minor.

It is well known, see [2], that, for every index i, the radical of the
ideal Ii of S generated by the set of all (i)-minors is equal to the
radical of an ideal of S generated by ni − 1 elements Fi,1, . . . , Fi,ni−1

(if ni = 1, we set Ii = (0)). For all indices i, j such that 1 ≤ i < j ≤ d,
let Bni,nj be the bridge introduced in [1, page 1648]. We recall its
definition. Set mi,j = lcm (ni, nj), and let pi,j and qi,j be integers such
that mi,j = pi,jni = qi,jnj . For all integers α such that 0 ≤ α ≤ mi,j ,
let c, r, e and f be integers such that α = cpi,j + r = eqi,j + f , with
0 ≤ r < pi,j , 0 ≤ f < qi,j . Finally, set

Bni,nj
(Xi,0, . . . , Xi,ni

, Xj,0, . . . , Xj,nj
)

=

mi,j∑
α=0

(−1)α
(
mi,j

α

)
X

pi,j−r
i,ni−cX

r
i,ni−c−1X

qi,j−f
j,e Xf

j,e+1.
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When using this notation, which is taken from [1], we will always

assume that i < j. For any monomial π = Xℓ1
i,k1

· · ·Xℓs
i,ks

in the entries

of the ith block of A we will call w(π) =
∑s

i=1 kiℓi the weight of π.
Given an integer s > 0, and indices i1 < i2 < · · · < is, if πih is a
monomial in the entries of the ihth block of A, and π = πi1πi2 · · ·πis ,
then w(π) =

∑s
h=1 w(πih) is called the weight of π. Moreover,

degih(π) = deg(πih) will be called the ih-degree of π.

Lemma 1.1. Let i1 and i2 be integers such that 1 ≤ i1 < i2 ≤ d.
Two monomials of S in the entries of the blocks with indices i1, i2 are
congruent modulo the ideal generated by the 2-minors of the submatrix
formed by these blocks if and only if they have the same weight and the
same ik-degree for k = 1, 2.

Proof. Every (i)-minor of A is the difference of two quadratic mono-
mials of i-degree 2, and every (i, j)-minor of A is the difference of two
quadratic monomials of i-degree 1 and j-degree 1. In view of this, the
only if part of the claim is easy.

We prove the if part. In order to simplify our notation, we denote
the indeterminates of the i1th block by X0, . . . , Xni1

and those of the
i2th block by Y0, . . . , Yni2

. We call I the ideal generated by the 2-
minors of the submatrix of A formed by these two blocks. Let µ and
µ′ be monomials in the first set of variables, ν and ν′ monomials in the
second set of variables. Let w1, w

′
1, w2 and w′

2 be the weights of µ, µ′,
ν and ν′, respectively. Suppose that λ = µν and λ′ = µ′ν′ have the
same weight w = w1 + w2 = w′

1 + w′
2 and that deg(µ) = deg(µ′) and

deg(ν) = deg(ν′). We prove that the monomials λ and λ′ are congruent
modulo I. We proceed by induction on w. If w = 0, then λ and λ′

are the same monomial of the form Xi
0Y

j
0 . So assume that w > 0, and

suppose the claim true for all monomials fulfilling the same assumption,
but with smaller w. Then, up to exchanging the blocks, we have one of
the following cases: either w1 > 0 and w′

1 > 0, or w1 > 0 and w′
2 > 0.

In the first case, µ and µ′ are not pure powers of X0; hence, Xh divides
µ and Xh′ divides µ′ for some h, h′ ≥ 1. If h = h′, then induction
applies to λ/Xh and to λ′/Xh, which are thus congruent modulo I.
Hence, the same holds for λ and λ′.

Now assume that h ̸= h′. Let λ = Xh−1λ/Xh and λ
′
= Xh′−1λ/Xh′ .

Then w(λ) = w(λ
′
) = w−1. Hence induction applies to the monomials
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λ and λ
′
so that these are congruent modulo I. We thus have

Xh−1λ/Xh ≡ Xh′−1λ
′/Xh′ (mod I),

which implies that

Xh′Xh−1λ ≡ Xh′−1Xhλ
′ (mod I).

On the other hand, since Xh′Xh−1 ≡ Xh′−1Xh (mod I), we also have

Xh′Xh−1λ ≡ Xh′−1Xhλ (mod I),

so that, finally

Xh′−1Xhλ ≡ Xh′−1Xhλ
′ (mod I).

Since I is a prime ideal generated in degree 2, this implies that λ ≡ λ′

(mod I), as claimed.

Now consider the second case, i.e., assume that w1 > 0 and w′
2 > 0.

Then Xh divides µ and Yk′ divides ν′ for some h, k′ ≥ 1. Set

λ = Xh−1λ/Xh and λ
′
= Yk′−1λ

′/Yk′ . Then the monomials λ and

λ
′
fulfill the assumption, and their weight is w − 1. Hence induction

applies to them, which allows us to conclude that they are congruent
modulo I. Thus

Xh−1Yk′λ ≡ XhYk′−1λ
′ (mod I).

On the other hand we have that XhYk′−1 ≡ Xh−1Yk′ (mod I), which
implies that

XhYk′−1λ
′ ≡ Xh−1Yk′λ′ (mod I).

Hence
Xh−1Yk′λ ≡ Xh−1Yk′λ′ (mod I),

which, as above, implies that λ ≡ λ′ (mod I), as claimed. This
completes the proof. �

Corollary 1.2. Let i and j be indices such that 1 ≤ i < j ≤ d. Then
Bni,nj belongs to the ideal of S generated by the (i)-minors, the (j)-
minors and the (i, j)-minors.

Proof. In view of Lemma 1.1, it suffices to note that all monomials
of Bni,nj have the same weight mi,j , the same i-degree pi,j and the
same j-degree qi,j , and that the sum of their coefficients is zero. �
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Lemma 1.3. Let i and j be indices such that 1 ≤ i < j ≤ d. Let M
be a (i, j)-minor. Set m = lcm (ni, nj). Then

Mm ∈ (Bni,nj ) + Ii + Ij .

Proof. We first introduce some notation that will simplify our argu-
mentation. Consider the following matrix of indeterminates over R:

A′ =

(
X0 X1 · · · Xa−1 Y0 Y1 · · · Yb−1

X1 X2 · · · Xa Y1 Y2 · · · Yb

)
.

Let I and J be the ideals of R[X0, . . . , Xa, Y0, . . . , Yb] generated by
the (1)-minors and the (2)-minors of A′, respectively. Further, let
m = lcm (a, b), and let p, q be such that m = pa = qb. Then, for
all α = 0, . . . ,m, let α = cp + r = eq + f , where 0 ≤ r < p and
0 ≤ f < q. Finally, let

Ba,b = Ba,b(X,Y ) =
m∑

α=0

(−1)α
(
m
α

)
Xp−r

a−cX
r
a−c−1Y

q−f
e Y f

e+1.

We show that, for all indices i, u such that 0 ≤ i ≤ a−1, 0 ≤ u ≤ b−1,

(1.1) (Xi+1Yu −XiYu+1)
m

≡ Xpi
a Xm−pi−p

0 Y qu
b Y m−qu−q

0 Ba,b (mod I + J).

This will imply the claim. In order to prove (1.1) it suffices to show
that, for all α = 0, . . . ,m,

Xα
i X

m−α
i+1 ≡ Xpi

a Xm−pi−p
0 Xp−r

a−cX
r
a−c−1 (mod I)(1.2)

Y m−α
u Y α

u+1 ≡ Y qu
b Y m−qu−q

0 Y q−f
e Y f

e+1 (mod J).(1.3)

Now the monomials in (1.2) both have degreem and weightm(i+1)−α;
the monomials in (1.3) both have degree m and weight mu+α. In view
of Lemma 1.1, this shows that relations (1.2) and (1.3) are true, which
completes the proof. �

Lemma 1.4. Let i, j, k be indices such that 1 ≤ i < j ≤ d and k is
different from i, j (say, it is greater than both). Then for every index h
such that 0 ≤ h ≤ nk, Xk,hBni,nj belongs to the ideal generated by all
(i, k)-minors and all (j, k)-minors.



26 MARGHERITA BARILE

Proof. We refer to the notation introduced in the proof of Lemma 1.3.
Consider the following matrix of indeterminates over R:

A′′ =

(
X0 X1 · · · Xa−1 Y0 Y1 · · · Yb−1 Z0 Z1 · · · Zg−1

X1 X2 · · · Xa Y1 Y2 · · · Yb Z1 Z2 · · · Zg

)
.

Let JXZ and JY Z be the ideals of R[X0, . . . ,Xa, Y0, . . . , Yb, Z0, . . . , Zg]
generated by the (1, 3)-minors and by the (2, 3)-minors of A′′, respec-
tively. Let h be an index such that 0 ≤ h ≤ g. We show that
ZhBa,b ≡ 0 (mod JXZ+JY Z). Note that all monomial terms in Ba,b are
of the form µν, where µ is a monomial in the entries of the first block
of A′′, ν is a monomial in the entries of the second block of A′′, respec-
tively, µ has degree p, ν has degree q, and w(µν) = w(µ) + w(ν) = m.

On the other hand, the sum of the integer coefficients in Ba,b is 0.
Hence it suffices to show that all monomials of the form Zhµν, with
µ and ν fulfilling the above properties, are pairwise congruent modulo
JXZ + JY Z . We show this by proving that all of these monomials are
congruent to ZhX

p
0Y

q
b modulo JXZ + JY Z . Let λ = Zhµν be such

a monomial. First assume that h < g. In this case we proceed by
ascending induction on w = w(µ). If w = 0, then the constraints
on weight and degree imply that λ = ZhX

p
0Y

q
b , so that the claim is

trivially true. Now assume that w(µ) > 0, and suppose that the claim
is true whenever the weight of µ is smaller. Let µ = Xs1

i1
Xs2

i1−1 and

ν = Y t1
j1
Y t2
j1+1. Then µ is not a power of X0. Hence we may assume

that i1 > 0 and s1 > 0. Set µ′ = Xs1−1
i1

Xs2+1
i1−1 , which, like µ, is a

monomial of degree p. Since ZhXi1 −Zh+1Xi1−1 ∈ JXZ , we have that
Zhµ ≡ Zh+1µ

′ (mod JXZ), so that λ ≡ Zh+1µ
′ν (mod JXZ). Now

w(µ) > 0 implies that w(ν) < m. It follows that ν is not a power of
Yb. Hence we may assume that t1 > 0. Set ν′ = Y t1−1

j1
Y t2+1
j1+1 , which

is a monomial of degree q. Since Zh+1Yj1 − ZhYj1+1 ∈ JY Z , we have
that Zh+1ν ≡ Zhν

′ (mod JY Z), so that Zh+1µ
′ν ≡ Zhµ

′ν′ (mod JY Z).
Set λ′ = Zhµ

′ν′. It follows that λ ≡ λ′ modulo JXZ + JY Z . Now
w(µ′) = w(µ) − 1 and w(ν′) = w(ν) + 1, whence w(µ′) + w(ν′) =
w(µ) +w(ν) = m. Since µ′ has degree p and ν′ has degree q, it follows
that induction applies to λ′, so that λ ≡ ZhX

p
0Y

q
b (mod JXZ+JY Z), as

desired. The case where h = g can be treated similarly, by descending
induction on w(µ). This completes the proof. �
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For all s = 3, . . . , 2d− 1 let

Gs =
∑

i+j=s

Bcij
ni,nj

,

where the positive integers cij are those defined in [1, page 1651], in the
following way. For all k = 3, . . . , 2d− 1, let rk = lcm {pi,j + qi,j |i+ j =
k}, and, whenever i+ j = k, set ci,j = rk/(pi,j + qi,j).

In order to define Bni,nj even in the case where i or j is greater
than d, we imagine that the matrix A is prolonged, to the right, by
addition of a suitable number of blocks formed by two 0 columns. This
will also allow us to consider the (i)-minors and the (i, j) minors for
the same values of i and j.

2. Main theorem. We can now prove our main result.

Theorem 2.1. Let L be the ideal of S generated by all elements Fi,h

and Gs. Then D =
√
L.

Proof. It suffices to show that every minor of A belongs to the radical

of the ideal J =
∑d

i=1 Ii + (G3, . . . , G2d−1). This is certainly true for
the pure minors, since, for all i = 1, . . . , d, every (i)-minor belongs to
Ii.

Now we show the claim for the non-pure minors. Let i, j be indices
such that 1 ≤ i < j ≤ d, and set ℓ = i + j. We show that every

(i, j)-minor M belongs to the radical of Jℓ =
∑d

i=1 Ii + (G3, . . . , Gℓ).
We proceed by double induction on ℓ and i. Note that G3 = Bn1,n2

.

Hence J3 =
∑d

i=1 Ii + (Bn1,n2). If ℓ = 3, then i = 1 and j = 2, and by

Lemma 1.3 it thus follows that M ∈
√
J3, which proves the induction

basis.

Now suppose that ℓ > 3 and that the claim is true for all smaller
values of ℓ. First let i = 1, j = ℓ− 1. From Lemma 1.3 we know that
Mm+1 ∈ (MBn1,nℓ−1

) + I1 + Iℓ−1. Hence

(2.1) M ∈
√
(X1,hBn1,nℓ−1

, X1,kBn1,nℓ−1
) + I1 + Iℓ−1

for some indices h, k. Let u, v be indices such that u < v, u + v = ℓ
and (1, ℓ− 1) ̸= (u, v). Then 1 < u and 1 < v < ℓ− 1. But, according
to Lemma 1.4, X1,hBnu,nv and X1,kBnu,nv belong to the ideal of S



28 MARGHERITA BARILE

generated by all (1, u)-minors and all (1, v)-minors. Since 1 + u and
1 + v are both less than ℓ, by induction we have that this ideal is
contained in the radical of Jℓ. It follows that

X1,hB
c1ℓ−1
n1,nℓ−1

= X1,hGℓ −
∑

u+v=ℓ
(u,v)̸=(1,ℓ−1)

X1,hB
cuv
nu,nv

∈
√
Jℓ,

X1,kB
c1ℓ−1
n1,nℓ−1

= X1,kGℓ −
∑

u+v=ℓ
(u,v)̸=(1,ℓ−1)

X1,kB
cuv
nu,nv

∈
√
Jℓ,

and this, together with (2.1), implies that

M ∈
√
Jℓ.

This shows that all (1, ℓ − 1)-minors belong to
√
Jℓ. Since, according

to Corollary 1.2, Bn1,nℓ−1
belongs to the ideal generated by all the (1)-

minors, (ℓ− 1)-minors and (1, ℓ− 1)-minors, it follows that Bn1,nℓ−1
∈√

Jℓ. Hence ∑
u+v=ℓ
1<u<v

Bcuv
nu,nv

= Gℓ −Bc1ℓ−1
n1,nℓ−1

∈
√
Jℓ.

Now let u and v be indices such that 1 < u < v and u + v = ℓ, and
suppose that, for all indices i, j such that i < j, i + j = ℓ, and i < u,
all (i, j)-minors belong to

√
Jℓ. Then, by Corollary 1.2, for all these

indices i, j, we have that Bni,nj ∈
√
Jℓ, so that

(2.2) Huv :=
∑

i+j=ℓ
i<u

Bcij
ni,nj

∈
√
Jℓ.

We show that all (u, v)-minors belong to
√
Jℓ. Let M be such a minor.

Then, by Lemma 1.3,

(2.3) M ∈
√

(Xu,hBnu,nv , Xu,kBnu,nv ) + Iu + Iv,

for some indices h and k. On the other hand,

(2.4) Xu,hB
cuv
nu,nv

= Xu,hGℓ −Xu,hHuv −
∑

i+j=ℓ
u<i<j

Xu,hB
cij
ni,nj

,
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and

(2.5) Xu,kB
cuv
nu,nv

= Xu,kGℓ −Xu,kHuv −
∑

i+j=ℓ
u<i<j

Xu,kB
cij
ni,nj

.

Now let i, j be such that i+ j = ℓ and u < i < j. Then, by Lemma 1.4,
Xu,hBni,nj belongs to the ideal generated by all (u, i)-minors and all
(u, j)-minors. Moreover, u+ i < u+ j = u+ ℓ− i < u+ ℓ− u = ℓ and
u+ j < i+ j = ℓ. By induction on ℓ it follows that all (u, i)-minors and
all (u, j)-minors belong to

√
Jℓ, so that Xu,hBni,nj , Xu,kBni,nj ∈

√
Jℓ.

In view of (2.2), (2.3), (2.4) and (2.5), this implies that M ∈
√
Jℓ and

completes the induction step. �
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