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ULRICH IDEALS OF GORENSTEIN
NUMERICAL SEMIGROUP RINGS
WITH EMBEDDING DIMENSION 3

TAKAHIRO NUMATA

ABSTRACT. The notion of Ulrich ideals was introduced
by Goto et al. [3]. They developed an interesting theory on
Ulrich ideals. In particular, they gave a characterization of
Ulrich ideals of Gorenstein numerical semigroup rings that
are generated by monomials. Using this result, in this paper,
we investigate Ulrich ideals of Gorenstein numerical semi-
group rings with embedding dimension 3 that are generated
by monomials. In particular, we completely determine when
such Ulrich ideals are existent in those rings.

1. Introduction. Throughout this paper, let N and Z denote the
set of nonnegative integers and integers, respectively. A numerical
semigroup is a subset of N which is closed under addition, contains the
zero element and whose complement in N is finite. Every numerical
semigroup H is finitely generated and has the unique minimal system
of generators a1, . . . , ar ∈ N, that is,

H = ⟨a1, . . . , ar⟩ := {λ1a1 + · · ·+ λrar | λ1, . . . , λr ∈ N},

where gcd(a1, . . . , ar) = 1. The Frobenius number of H, denoted by
F(H), is the maximal integer which does not belong to H. A numerical
semigroup H is symmetric if, for any integers x ∈ Z, either x ∈ H or
F(H)− x ∈ H. Let k be a field and t be an indeterminate over k. The
ring

k[[H]] := k[[ta1 , . . . , tar ]] ⊂ k[[t]]

is called the semigroup ring associated to H = ⟨a1, . . . , ar⟩. A semi-
group ring k[[H]] is a one-dimensional Cohen-Macaulay local ring with
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the maximal ideal m = (ta1 , . . . , tar ). It is well known that k[[H]] is
Gorenstein if and only if H is symmetric.

Our purpose in this paper is to investigate Ulrich ideals of Gorenstein
numerical semigroup rings that are generated by monomials. The
notion of Ulrich ideals was introduced recently by Goto, et al. [3].

Definition 1.1 ([3]). Let (R,m) be a Cohen-Macaulay local ring with
d = dimR ≥ 0 and I an m-primary ideal of R. Suppose that I contains
a parameter ideal Q = (a1, . . . , ad) of R as a minimal reduction. Then I
is called an Ulrich ideal of R if the following two conditions are satisfied:

(1) I2 = QI, and
(2) R/I-module I/I2 is free.

By definition, any parameter ideal of R is Ulrich. For convenience,
in this paper, we except parameter ideals whenever we refer to Ulrich
ideals. We put R = k[[H]], and let χg

R denote the set of Ulrich ideals
of R which are generated by monomials in t. Then it is shown that
χg
R is finite in [3] (but, the number of Ulrich ideals not generated by

monomials depends on the field k).

When H is a numerical semigroup generated by 2-elements, the set
χg
R is completely described in [3]. Therefore, in Section 3, we consider

the case where H is symmetric and generated by 3-elements, and then
we completely determine when χg

R is empty or not. We state the main
theorem by using the next lemma.

Lemma 1.2 ([4, 8]). Let H = ⟨a, b, c⟩ be a numerical semigroup
generated by 3-elements. Then following assertions are equivalent.

(1) H is symmetric.
(2) Changing the order of a, b and c, if necessary, we can write a = a′d

and b = b′d, where gcd(a, b) = d > 1 and c ∈ ⟨a′, b′⟩, c ̸= a′, b′.

In this case, we denote H = ⟨d ⟨a′, b′⟩ , c⟩.

The main result of this paper is the following.

Theorem 1.3 (Theorem 3.11). Let H = ⟨a, b, c⟩ be a symmetric
numerical semigroup and assume that H = ⟨d ⟨a′, b′⟩ , c⟩. We put
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R = k[[H]], H1 = ⟨a′, b′⟩ and R1 = k[[H1]]. Then the following
assertions hold true.

(1) If d and c are odd, then

χg
R = {(tdα, tdβ) | α, β ∈ H1 such that (tα, tβ) ∈ χg

R1
}.

In particular, #χg
R = #χg

R1
. Hence, χg

R = ∅ if a, b and c are odd.
(2) If a′, b′ and d are odd and c is even, then

(a) χg
R ̸= ∅ if and only if H + ⟨c/2⟩ is symmetric.

(b) if χg
R ̸= ∅, then

χg
R = {(t(c/2)l, t(c/2)d) | l is even with 1 < l < d}.

In particular, #χg
R = (d− 1)/2.

(3) If a′, b′ and c are odd, and c is even, then χg
R ̸= ∅. Furthermore,

the number of χg
R does not depend on d.

(4) If a′ or b′ is even, then

χg
R ⊃ {(tdα, tdβ) | α, β ∈ H1 such that (tα, tβ) ∈ χg

R1
} ̸= ∅.

In particular, χg
R ̸= ∅.

2. Preliminaries. We start this section by recalling some results
on Ulrich ideals from [3]. The next theorem is very important for
achieving our goal.

Theorem 2.1 ([3]). Suppose that R = k[[H]] is a Gorenstein nu-
merical semigroup ring (equivalently, H is a symmetric numerical
semigroup), and let I be an ideal of R. Then the following conditions
are equivalent :

(1) I ∈ χg
R.

(2) I = (tα, tβ) (α, β ∈ H,α < β) and if we put x = β−α, the following
conditions hold.
(i) x /∈ H, 2x ∈ H.
(ii) The numerical semigroup S = H + ⟨x⟩ is symmetric, and
(iii) α = min{h ∈ H | h+ x ∈ H}.

In particular, we note that χg
R ̸= ∅ if and only if there is an integer

x ∈ Z which satisfies conditions (i) and (ii) above.
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Example 2.2.

(1) Let H = ⟨4, 5⟩ = {0, 4, 5, 8, 9, 10, 12 →}. We can find the integers
which satisfy condition (i):

x = 2, 6, 7, 11.

Among these integers, 2 and 6 merely satisfy condition (ii). There-
fore, we have

χg
k[[H]] = {(t8, t10), (t4, t10)}

by condition (iii).
(2) If H = ⟨3, 5⟩, then χg

k[[H]] = ∅ since we can check that there are no

integers which satisfy conditions (i) and (ii).

Actually, when H is generated by 2-elements, the set χg
R is com-

pletely described in [3]. In particular, the following assertion holds
true.

Theorem 2.3 ([3]). Let H = ⟨a, b⟩ be a numerical semigroup. Then
the following conditions are equivalent.

(1) χg
k[[H]] ̸= ∅.

(2) a or b is even.

We use the next lemma in Section 3.

Lemma 2.4 ([3]). Under the notation in Definition 1.1, we suppose
that I2 = QI. Then:

(1) e(I) ≤ (µR(I) − d + 1)ℓR(R/I), where e(I), µR(I) and ℓR(R/I)
denote the multiplicity of I, the number of minimal generators of
I, and the length of R/I, respectively.

(2) The following conditions for I are equivalent :
(i) Equality holds in (1).
(ii) I is Ulrich.
(iii) I/Q is a free R/I-module.
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The Apéry sets of a in H correspond to the k-basis of the ring
k[[H]]/(ta), where a ∈ H.

Definition 2.5. Let H be a numerical semigroup, and take 0 ̸= a ∈ H.
The Apéry set of a in H is

Ap(H, a) = {h ∈ H | h− a /∈ H}.

By definition, we see that Ap(H, a) = {0 = w(0), w(1), . . . , w(a−1)},
where w(i) = min{h ∈ H | h ≡ i} for each 1 ≤ i ≤ a − 1. For more
details, see [7].

3. The case of H = ⟨a, b, c⟩. In this section, we consider the case
where H = ⟨a, b, c⟩ is symmetric. We provide some lemmas to prove
our main theorem.

Definition 3.1 ([7]). For two numerical semigroupsH1 = ⟨a1, . . . , am⟩
and H2 = ⟨b1, . . . , bn⟩, we define a gluing of H1 and H2 as follows:

⟨d1H1, d2H2⟩ := ⟨d1a1, . . . , d1am, d2b1, . . . , d2bn⟩ ,

where d1 ∈ H2\{b1, . . . , bn}, d2 ∈ H1\{a1, . . . , am} and gcd(d1, d2) = 1.

By the constructions of gluings, we have the following result.

Proposition 3.2. Let H = ⟨d1H1, d2H2⟩ be a gluing of two numerical
semigroups H1 and H2. Then the ring k[[H]] is a k[[H1]], (respectively,
k[[H2]])-free module of rank d1 (respectively, d2).

Proof. By the k-algebra map ϕ : k[[H1]] → k[[H]], where ta 7→ td1a

for all a ∈ H1, we can regard k[[H]] as a k[[H1]]-module. From [7,
Theorem 9.2], we have

Ap(H, d1d2) = {d1h1 + d2h2 | h1 ∈ Ap(H1, d2), h2 ∈ Ap(H2, d1)}

=
∪

h2∈Ap(H2,d1)

(d2h2 + d1 Ap(H1, d2)) (disjoint union).
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This implies that

H =
∪

h2∈Ap(H2,d1)

(d2h2 + d1H1) (disjoint union).

Hence, we get the isomorphism k[[H]] ∼= k[[H1]]
⊕d1 as a k[[H1]]-module.

By exactly the same argument, we see that k[[H]] ∼= k[[H2]]
⊕d2 as a

k[[H2]]-module. �

We say that a numerical semigroup H is a complete intersection if
its semigroup ring k[[H]] is a complete intersection.

Theorem 3.3 ([2, 7]). The following assertions hold true.

(1) Let H = ⟨d1H1, d2H2⟩ be a gluing of two numerical semigroups
H1 and H2. Then H is symmetric (respectively, a complete
intersection) if and only if H1 and H2 are symmetric (respectively,
complete intersections).

(2) A numerical semigroup other than N is a complete intersection if
and only if it is a gluing of two complete intersection numerical
semigroups.

Remark 3.4. When a numerical semigroup H is generated by 3-
elements, H is symmetric if and only if H is a complete intersection,
see [4]. Therefore, Lemma 1.2 is a special case of Theorem 3.3 (2) since
H = ⟨a, b, c⟩ = ⟨d ⟨a′, b′⟩ , c⟩ is a gluing of ⟨a′, b′⟩ and ⟨1⟩ = N.

The following is one of the key lemmas in this section. We remark
that, if k[[H]] is not Gorenstein, then Ulrich ideals of k[[H]] need not
be 2-generated, see [3]. Hence, we can state (1) in the next lemma as
follows since we do not assume Gorensteiness of R or Ri in the proof.

Lemma 3.5. Let H = ⟨d1H1, d2H2⟩ be a gluing of two numerical
semigroups H1 = ⟨a1, . . . , am⟩ and H2 = ⟨b1, . . . , bn⟩. We put R =
k[[H]] and Ri = k[[Hi]] for i = 1, 2. The following assertions hold true
for i = 1, 2.

(1) If (tα1 , tα2 , . . . , tαr ) ∈ χg
Ri
, then (tdiα1 , tdiα2 , . . . , tdiαr ) ∈ χg

R.
(2) Suppose that H1 and H2 is symmetric (equivalently, H is sym-

metric by Theorem 3.3). Then if (tγ , tδ) ∈ χg
R and di divides
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x := δ − γ > 0, then there exists two integers α, β ∈ Hi with
x/di = β − α > 0 such that (tα, tβ) ∈ χg

Ri
.

(3) #χg
Ri

≤ #χg
R.

Proof.

(1) We note that R ∼= R⊕d1
1 by Proposition 3.2. Therefore, by

Lemma 2.4, if I = (tα1 , tα2 , . . . , tαr ) ∈ χg
R1

, then

e(IR) = d1 e(I) = d1µR1(I)ℓR1(R1/I) = µR(IR)ℓR(R/IR),

where IR = (tdiα1 , tdiα2 , . . . , tdiαr ). Hence IR ∈ χg
R by Lemma 2.4.

(2) It suffices to prove that x/d1 /∈ H1, 2x/d1 ∈ H1 and H1 + ⟨x/d1⟩
is symmetric by Theorem 2.1. It is clear that x/d1 /∈ H1 and
2x/d1 ∈ H1 since x /∈ H and 2x ∈ H by Theorem 2.1. We
use Theorem 3.3 to see that H1 + ⟨x/d1⟩ is symmetric: since
H+⟨x⟩ = ⟨d1(H1 + ⟨x/d1⟩), d2H2⟩ is symmetric, so is H1+⟨x/d1⟩.

(3) This is clear by (1). �

By Theorem 2.3 and Lemma 3.5, when H = ⟨d ⟨a′, b′⟩ , c⟩, we see
that χg

k[[H]] ̸= ∅ whenever a′ or b′ is even.

Example 3.6.

(1) Let H1 = ⟨4, 5⟩ and H2 = N. We know that

χg
R1

= {(t8, t10), (t4, t10)}

and χg
R2

= ∅ (see Example 2.2). Let H = ⟨3H1, 13H2⟩ =
⟨12, 13, 15⟩ be a gluing of H1 and H2. By Theorem 2.1, we can
check that

χg
R = {(t24, t30), (t12, t30)}.

In that case, there is a one-to-one correspondence between the sets
χg
R1

and χg
R. In other words, all Ulrich ideals of R are extensions

from those of R1 (this example illustrates Theorem 3.11 (1) since
3 and 13 are odd).

(2) Let H1 and H2 be as above, and let H = ⟨3H1, 16H2⟩ = ⟨12, 15, 16⟩
be a gluing of H1 and H2. Then we see that

χg
R = {(t24, t30), (t12, t30), (t16, t24), (t16, t30)}.
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In that case, the ideals (t16, t24) and (t16, t30) are not extensions
from those of R1.

Now, let H = ⟨a1, a2, a3, a4⟩ be a numerical semigroup. We define
the positive integer α1 > 0 as follows:

α1 = min{n > 0 | na1 ∈ ⟨a2, a3, a4⟩}.

We also define α2, α3, α4 in the same way. Then Bresinsky completely
characterized the defining ideal p of k[[H]] ∼= k[[X1, X2, X3, X4]]/p
when H is symmetric but not a complete intersection.

Theorem 3.7 ([1]). Let H = ⟨a1, a2, a3, a4⟩ be a numerical semigroup
and p its defining ideal. Then H is symmetric, which is not a complete
intersection if and only if after changing order of a1, a2, a3 and a4, if
necessary,

p = (f1 = Xα1
1 −Xα13

3 Xα14
4 , f2 = Xα2

2 −Xα21
1 Xα24

4 ,

f3 = Xα3
3 −Xα31

1 Xα32
2 , f4 = Xα4

4 −Xα42
2 Xα43

3 ,

f5 = Xα43
3 Xα21

1 −Xα32
2 Xα14

4 ),

where each fi is unique up to isomorphism for each i and 0 < αij < αj

for each i, j.

The following is important for our goal.

Theorem 3.8. Let H = ⟨a, b, c⟩ be a symmetric numerical semigroup.
If H + ⟨x⟩ is symmetric for an integer x ∈ Z such that x /∈ H and
2x ∈ H, then H + ⟨x⟩ is a complete intersection.

Proof. When S = H + ⟨x⟩ is generated by at most 3-elements, S is
a complete intersection if and only if it is symmetric. Thus, we may
assume that S is generated by 4-elements.

We assume thatH+⟨x⟩ is symmetric but not a complete intersection.
By Lemma 1.2, we may assume thatH = ⟨d ⟨a′, b′⟩ , c⟩. In Theorem 3.7,
we may also assume that x = a4 without loss of generality. Then
α4 = 2, α14 = α24 = 1 and α34 = 0 by our assumption and
Theorem 3.7.
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Next, we show that we may put c = a3. Otherwise, we may put
a = a1, b = a3 and c = a2 (note the situation is symmetric in the
order of a and b). Then, since α1a = α13b+ x, we see that d divides x.
Therefore, we can write S = ⟨d ⟨a′, b′, x′⟩ , c⟩, where x = x′d. Since S is
symmetric which is not a complete intersection, so is H1 = ⟨a′, b′, x′⟩
by Theorem 3.3, which is a contradiction since H1 is generated by 3-
elements. Thus, we put a = a1, b = a2 and c = a3. But then, we again
see that d divides x since we have α2b = α21a + x, a contradiction.
This completes the proof. �

Remark 3.9. In Theorem 3.8, the condition, 2x ∈ H, is essential. For
example, letH = ⟨13, 16, 20⟩, which is symmetric, and let x = 22. Then
x, 2x /∈ H, but 3x ∈ H. We can check that H + ⟨x⟩ = ⟨13, 16, 20, 22⟩ is
symmetric but not a complete intersection.

Using Theorem 3.8, we can prove the next lemma.

Lemma 3.10. Let H = ⟨a, b, c⟩ = ⟨d ⟨a′, b′⟩ , c⟩ be a symmetric
numerical semigroup. Suppose that S = H + ⟨x⟩ is symmetric for
an integer x ∈ Z such that x /∈ H and 2x ∈ H. We write 2x =
λ1a + λ2b + λ3c, where λ1, λ2, λ3 ≥ 0. It follows that if λ3 > 0, and
λ1 > 0 or λ2 > 0, then a or b is even, and c is even.

Proof. We consider each case individually. First we consider the case
where S is generated by 3-elements.

(i) Assume that c ∈ ⟨a, b, x⟩. Then we can write c = µ1a+µ2b+µ3x,
where µ1, µ2 ≥ 0, µ3 > 0. Therefore, we can write 2x =
(λ1 + λ3µ1)a + (λ2 + λ3µ2)b + λ3µ3x. In this equality, we know
that λ3µ3 = 1 or 2 since λ3 > 0 and µ3 > 0. If λ3µ3 = 1, then
x ∈ H, which is a contradiction. Thus, we get λ3µ3 = 2, but this
is impossible, since λ1 > 0 or λ2 > 0. Hence, this case does not
occur.

(ii) Assume that a ∈ ⟨b, c, x⟩ or b ∈ ⟨a, c, x⟩. Since a and b are
interchangeable, it suffices to consider a ∈ ⟨b, c, x⟩. Then, we
can put a = µ1b+ µ2c+ µ3x, where µ1, µ2 ≥ 0, µ3 > 0. Thus, we
have 2x = (λ1µ1 + λ2)b + (λ1µ2 + λ3)c + λ1µ3x. Since λ3 > 0,
we see that λ1µ3 = 0 or 1. If λ1µ3 = 1, then x ∈ H, which is
a contradiction, and hence, λ1µ3 = 0. Then, since µ3 > 0 and
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λ1 = 0, we have λ2 > 0 by our assumption. By Lemma 1.2, we
have S = ⟨2 ⟨b′′, c′′⟩ , x⟩, where b = 2b′′, c = 2c′′. This yields that
b and c are even.

Next, we consider the case where S = ⟨a, b, c, x⟩ is generated by
4-elements. Then by Lemma 3.8, we know that S is a complete
intersection. Thus, S is a gluing of two complete intersection numerical
semigroups H1 and H2 by Theorem 3.3. In our situation, we can
determine H1 and H2 (see [2] or [7, Chapter 8]). In particular, if 2x =
λ1a + λ3c with λ1, λ3 > 0, then we can take H1 = ⟨a/d1, c/d1, x/d1⟩,
where d1 = gcd(a, c, x) > 1, and if 2x = λ1a + λ2b with λ1, λ2 > 0,
then H1 = ⟨a/d1, b/d1, x/d1⟩, where d1 = gcd(a, b, x) > 1.

(i) If λ1 > 0 and λ2 > 0, then S = ⟨2 ⟨a/2, b/2, c/2⟩ , x⟩. This
contradicts gcd(a, b, c) = 1.

(ii) When λ1 > 0 and λ2 = 0, we see that S = ⟨d1 ⟨a/d1, c/d1, x/d1⟩ , b⟩.
Furthermore, ⟨a/d1, c/d1, x/d1⟩ = ⟨2 ⟨a/2d1, c/2d1⟩ , x/d1⟩. Hence,
a and c are even.

(iii) When λ1 = 0 and λ2 > 0, we see that b and c are even in the
same manner as in (ii).

The proof is complete. �

Now we give the proof of our main theorem.

Theorem 3.11. Let H = ⟨a, b, c⟩ be a symmetric numerical semigroup,
and assume that H = ⟨d ⟨a′, b′⟩ , c⟩. We set R = k[[H]], H1 = ⟨a′, b′⟩
and R1 = k[[H1]]. Then the following assertions hold true.

(1) If d and c are odd, then

χg
R = {(tdα, tdβ) | α, β ∈ H1 such that (tα, tβ) ∈ χg

R1
}.

In particular, #χg
R = #χg

R1
. Hence, χg

R = ∅ if a, b and c are odd.
(2) If a′, b′ and d are odd, and c is even, then

(i) χg
R ̸= ∅ if and only if H + ⟨c/2⟩ is symmetric.

(ii) if χg
R ̸= ∅, then

χg
R = {(t(c/2)l, t(c/2)d) | l is even with 1 < l < d}.

In particular, #χg
R = (d− 1)/2.
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(3) If a′, b′ and c are odd, and d is even, then H+⟨da′/2⟩ or H+⟨db′/2⟩
is symmetric. In particular, χg

R ̸= ∅. Furthermore, the number of
χg
R does not depend on d.

(4) If a′ or b′ is even, then

χg
R ⊃ {(tdα, tdβ) | α, β ∈ H1 such that (tα, tβ) ∈ χg

R1
} ̸= ∅.

In particular, χg
R ̸= ∅.

Remark 3.12. When a′ or b′ is even, and c or d is even, there are cases
where χg

R is lifted from χg
R1

and also the cases where some element of

χg
R is not lifted (see Example 3.13 (4)).

Proof.

(1) We assume that d and c are odd. Then the statement implies
that all Ulrich ideals of R are extensions from those of R1. Therefore, it
suffices to prove that, if H+ ⟨x⟩ is symmetric for an integer x such that
x /∈ H and 2x ∈ H, then d divides x by Theorem 2.1 and Lemma 3.5.

Since 2x ∈ H, we put 2x = λ1a + λ2b + λ3c, where λ1, λ2, λ3 ≥ 0.
If λ3 = 0, then d divides x since a and b are divided by d, and hence
we are done. Therefore, we assume that λ3 > 0. If λ1 = λ2 = 0, then
x = λ3c/2 ∈ H, a contradiction. Hence, we have λ1 > 0 or λ2 > 0.
But then, c is even by Lemma 3.10, which contradicts our assumption.
Hence, we must have λ3 = 0. The last statement of (1) follows from
Theorem 2.3 and the first statement of (1).

(2) Next we assume that a′, b′ and d are odd (equivalently, a and b
are odd), and c is even. Then we note that χg

R1
= ∅ by Theorem 2.3. It

is clear that, if H + ⟨c/2⟩ is symmetric, then χg
R ̸= ∅ by Theorem 2.1.

Conversely, if χg
R ̸= ∅, then there exists an integer x such that

x /∈ H, 2x ∈ H andH+⟨x⟩ is symmetric by Theorem 2.1. We claim that
the set of such integers is equal to {λc/2 | λ is odd with 1 ≤ λ ≤ d−1}.
Then the statements of (2) follow from this.

We put 2x = λ1a + λ2b + λ3c, where λ1, λ2, λ3 ≥ 0. If λ3 = 0,
then d divides x, and hence, χg

R1
̸= ∅ by Lemma 3.5, a contradiction.

Therefore, we have λ3 > 0 and λ1 = λ2 = 0 since, if λ1 > 0 or
λ2 > 0, then a or b is even by Lemma 3.10, a contradiction. By this
discussion, we can write x = λc/2, where λ = λ3 is odd. We need
to show that H + ⟨x⟩ is symmetric for any 1 ≤ λ ≤ d − 1. Since
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H + ⟨x⟩ = ⟨a, b, c, λc/2⟩ is symmetric, it is a complete intersection by
Theorem 3.8. Hence, we can write

H + ⟨x⟩ =
⟨
d ⟨a′, b′⟩ , c

2
⟨2, λ⟩

⟩
.

by Theorem 3.3 since we know that both ⟨a′, b′⟩ and ⟨2, λ⟩ are complete
intersections. Then it is easily seen that d ∈ ⟨2, λ⟩ \ {2, λ} if and only
if 1 ≤ λ ≤ d− 1. This completes the proof.

(3) Assume that a′, b′ and c are odd, and d is even. Since c ∈ ⟨a′, b′⟩,
we put c = λ1a

′ + λ2b
′, where λ1, λ2 ≥ 0. We know that either

λ1 or λ2 is odd and the other is even since c is even. If λ1 is odd
and λ2 is even (respectively, λ1 is even and λ2 is odd), then H +
⟨da′/2⟩ = ⟨d/2 ⟨a′, 2b′⟩ , c⟩ (respectively, H + ⟨db′/2⟩ = ⟨d/2 ⟨2a′, b′⟩ , c⟩
is symmetric. Hence, χg

R ̸= ∅ by Theorem 2.1.

We see that the number of χg
R does not depend on d as follows. Let

H ′ = ⟨2 ⟨a′, b′⟩ , c⟩ and Hm = ⟨d ⟨a′, b′⟩ , c⟩, where d = 2m, m > 1. We
show that #χg

k[[H′]] = #χg
k[[Hm]] for any m. Assume that H ′ + ⟨x⟩ is

symmetric for x ∈ Z such that x /∈ H ′ and 2x ∈ H ′. Then it is easily
seen that mx /∈ Hm, 2mx ∈ Hm and H + ⟨mx⟩ is symmetric, which
implies that #χg

k[[H′]] ≤ #χg
k[[Hm]] by Theorem 2.1.

Conversely, we assume that Hm + ⟨y⟩ is symmetric for y ∈ Z such
that y /∈ Hm and 2y ∈ Hm. By Lemma 3.10, we can write as
2y = λ1(2ma′) + λ2(2mb′), where λ1, λ2 ≥ 0. Therefore, m divides y,
and we put x = y/m. Then we see that x /∈ H ′, 2x ∈ H ′ and H ′ + ⟨x⟩
is symmetric. This yields #χg

k[[H′]] ≥ #χg
k[[Hm]] by Theorem 2.1.

(4) This follows immediately from Theorem 2.3 and Lemma 3.5. �

Example 3.13.

(1) By Theorem 3.11 (1), if all of a, b and c are odd, then χg
R = ∅,

but the converse is not true. For example, let H = ⟨8, 9, 15⟩ =
⟨3 ⟨3, 5⟩ , 8⟩. Then we can check that χg

R = ∅, which also illustrates
Theorem 3.11 (2).

(2) Let Hm = ⟨2m ⟨3, 7⟩ , 23⟩, where m ≥ 1. Then, for any m,

χg
k[[Hm]] = {(t20m, t23m), (t14m, t23m), (t6m, t23m)}.
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(3) In the case of Theorem 3.11 (3), the number of χg
R may not be

described by using a′, b′ or c. For example, we let H = ⟨6, 10, c⟩ =
⟨2 ⟨3, 5⟩ , c⟩. Then:

• if c = 11, χg
R = {(t6, t11)}.

• if c = 13, χg
R = {(t10, t13)}.

• if c = 15, χg
R = {(t12, t15), (t10, t15), (t6, t15)}.

• if c = 17, χg
R = {(t12, t17), (t6, t17)}.

• if c = 19, χg
R = {(t16, t19), (t10, t19), (t6, t19)}.

(4) We give examples in the case where a′ or b′ is even. If H =
⟨3 ⟨3, 4⟩ , 10⟩, then

χg
R = {(t12, t18)}.

In that case, χg
R consists of the extension from χg

R1
, and hence

the equality holds true in Theorem 3.11 (4). If H = ⟨3 ⟨2, 3⟩ , 4⟩,
however, then

χg
R = {(t4, t6), (t6, t9), (t4, t9)}.

Then the ideal (t6, t9) is the only extension from χg
R1

(see also
Example 3.6).

4. Some remarks. We conclude the paper by giving some remarks.
We say that a numerical semigroup H is generated by an arithmetic
sequence if it is in the form of

H = ⟨a, a+ d, . . . , a+ nd⟩ ,

where a, d > 0, n ≥ 2 and gcd(a, d) = 1. In that case, the following
result is shown in [6].

Theorem 4.1 ([6]). Let H = ⟨a, a+ d, . . . , a+ nd⟩ be a symmet-
ric numerical semigroup generated by an arithmetic sequence. Then
χg
k[[H]] ̸= ∅ if and only if n = 2.

It is known that, when H = ⟨a, a+ d, . . . , a+ nd⟩ is symmetric, it
is a complete intersection if and only if n = 2, see [5]. Therefore, we
may expect that if H is a symmetric numerical semigroup but not a
complete intersection, then χg

k[[H]] = ∅. However, unfortunately, there

are counterexamples:



156 TAKAHIRO NUMATA

Example 4.2. A numerical semigroup H = ⟨10, 12, 13, 14, 15⟩ is
symmetric but not a complete intersection. However, H + ⟨5⟩ =
⟨5, 12, 13, 14⟩ is symmetric, and hence, χg

k[[H]] ̸= ∅. In general, Hm =

⟨2m, 2m+ 2, 2m+ 3, . . . , 3m⟩ is symmetric but not a complete inter-
section if m ≥ 5. Then we can check that H + ⟨m⟩ is symmetric.
Therefore, χg

k[[Hm]] ̸= ∅.
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