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INTEGRAL DOMAINS IN WHICH EVERY IDEAL IS
PROJECTIVELY EQUIVALENT TO A PRIME IDEAL

THOMAS G. LUCAS AND A. MIMOUNI

ABSTRACT. In this paper, we give complete characteri-
zations of Noetherian domains and integrally closed domains
in which every ideal is projectively equivalent to a prime
ideal. We also characterize pullbacks satisfying this prop-
erty and show how to construct integral domains in which
every ideal is projectively equivalent to a prime ideal out-
side the context of Noetherian domains and integrally closed
domains.

1. Introduction. Let R be a commutative ring with unit, and let I
be a regular ideal of R. Recall that an ideal J is projectively equivalent
to I if (Im)′ = (Jn)′ for some positive integers m and n (where A′

denotes the integral closure of A in R, that is,

A′ = {z ∈ R | z satisfies an equation of the form

zr + a1z
r−1 + · · ·+ ar = 0 where ai ∈ Ai for each i}).

The concept of projective equivalence of ideals and the study of ideals
projectively equivalent to an ideal I was introduced by Samuel [16]
and further developed by Nagata [13]. Making use of the interesting
work of Rees [14], McAdam, Ratliff and Sally [12] proved that the set
P(I) of integrally closed ideals projectively equivalent to I is linearly
ordered by inclusion and is discrete. Also, they proved that, if I and
J are projectively equivalent, then the set Rees(I) of Rees valuation
rings of I is equal to the set Rees(J) of Rees valuation rings of J ,
and the values of I and J with respect to these Rees valuation rings
are proportional. Recently, Ciupreca, et al., defined and studied, in a
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Prüfer domain, Dedekind domain, class group, pullbacks.

The second author was supported by KFUPM under research project RG 1210.
Received by the editors on September 10, 2013, and in revised form on March 19,

2014.
DOI:10.1216/JCA-2017-9-1-119 Copyright c⃝2017 Rocky Mountain Mathematics Consortium

119



120 THOMAS G. LUCAS AND A. MIMOUNI

series of papers, the notion of projectively full ideals, see for instance,
[3, 4].

The purpose of this paper is to continue the investigation of projec-
tively equivalent ideals from a pure commutative rings point of view.
Particularly, in Section 2, we give a complete characterization of in-
tegrally closed domains in which every nonzero ideal is projectively
equivalent to a prime ideal. This leads us to a new characterization
of a discrete valuation domain (DV R), that is, a locally finite dimen-
sional domain R is a DV R if and only if it is integrally closed and
every nonzero ideal is projectively equivalent to a prime ideal (Corol-
lary 2.10).

The third section deals with the Noetherian-like setting. We first
characterize Noetherian domains for which every ideal is projectively
equivalent to a prime ideal. It turns that such domains are exactly Noe-
therian domains with integral closure being a DV R (Theorem 3.1). We
also prove that strong Mori domains in which every ideal is projectively
equivalent to a prime ideal must be Noetherian domains; however, Mori
domains with this property need not be Noetherian domains.

In Section 4, we characterize general pullbacks for which every
nonzero ideal is projectively to a prime ideal. Precisely, we prove that,
for a general pullback of type (�), every ideal of R is projectively
equivalent to a prime ideal if and only if every ideal of T is projectively
equivalent to a prime ideal, D = k is a field and K is algebraic over
k (Theorem 4.1). This leads us to construct non-integrally closed
(Noetherian and non-Noetherian) domains for which every nonzero
ideal is projectively to a prime ideal. Throughout this paper, R denotes
an integral domain which is not a field, R′ its integral closure and
Spec(R) its prime spectrum. Other notation will be standard as in
[9, 11].

2. Integrally closed domains. We start this section with a char-
acterization of integrally closed domains in which every ideal is projec-
tively equivalent to an invertible (respectively, a principal) ideal.

Theorem 2.1. Let R be an integrally closed domain. The following
are equivalent :



IDEALS PROJECTIVELY EQUIVALENT TO PRIME IDEALS 121

(1) every ideal is projectively equivalent to an invertible (respectively,
a principal) ideal.

(2) Every prime ideal is projectively equivalent to an invertible
(respectively, a principal) ideal.

(3) R is a Dedekind domain (respectively, Dedekind domain with
torsion class group).

The proof of this theorem requires the next lemma.

Lemma 2.2. Let R be an integrally closed domain and I a nonzero
ideal of R.

(1) (I : I) ⊆ (I ′ : I ′).

(2) For every x ∈ I−1, (xI)′ = xI ′.

Proof.

(1) Let x ∈ (I : I) and z ∈ I ′. Then z satisfies an equation of the
form

zr + a1z
r−1 + · · ·+ ar = 0,

where ai ∈ Ii for each i. Thus,

(xz)r + xa1(xz)
r−1 + · · ·+ xrar = 0.

But, since xiai ∈ Ii(I : I) ⊆ Ii for each i and R is integrally closed,
xz ∈ R, and thus, xz ∈ I ′. Hence, x ∈ (I ′ : I ′), as desired.

(2) Fix 0 ̸= x ∈ I−1, and let z ∈ (xI)′. Clearly, xI is an integral
ideal of R and z satisfies an equation of the form

zr + a1z
r−1 + · · ·+ ar = 0,

where ai ∈ (xI)i = xiIi for each i. Write ai = xibi, bi ∈ Ii for each i.
Then

zr + xb1z
r−1 + · · ·+ xrbr = 0.

Now, dividing by xr, we obtain(
z

x

)r

+ b1

(
z

x

)r−1

+ · · ·+ br = 0.
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Since R is integrally closed and bi ∈ Ii for each i, z/x ∈ R, and so,
z/x ∈ I ′. Hence, z ∈ xI ′, and therefore, (xI)′ ⊆ xI ′.

For the other inclusion, let y ∈ I ′. Then y ∈ R, and y satisfies an
equation

yr + b1y
r−1 + · · ·+ br = 0,

where bi ∈ Ii for each i. Multiplying this equation by xr, we obtain

(xy)r + b1x(xy)
r−1 + · · ·+ brx

r = 0.

Since bix
i ∈ xiIi = (xI)i ⊆ R for each i and R is integrally closed,

xy ∈ R, and thus, xy ∈ (xI)′. Hence, xI ′ ⊆ (xI)′ and therefore
xI ′ = (xI)′. �

Proof of Theorem 2.1. (1) ⇒ (2) and (3) ⇒ (1) are trivial.

(2) ⇒ (3). Assume first that every prime ideal is projectively
equivalent to a principal ideal, and let M be a maximal ideal of R.
Then there exist a nonzero element a ∈ R and a positive integer n such
that

(Mn)′ = (aR)′ = aR

(since R is integrally closed). Since

aR = (Mn)′ ⊆ M, a ∈ M.

If MM−1 $ R, then M = MM−1, and so,

M−1 = (M : M) ⊆ (Mn : Mn) ⊆ ((Mn)′ : (Mn)′) = (aR : aR) = R,

by Lemma 2.2. Hence, M−1 = (M : M) = R and, by induction,
M−n = R. But, since

Mn ⊆ (Mn)′ = aR, a−1Mn ⊆ R,

and so, a−1 ∈ M−n = R. Hence, 1 ∈ aR ⊆ M , which is absurd. It
follows that every maximal ideal M of R is invertible.

Now, suppose that R has a non-invertible prime ideal P . Then, there
exists a maximal ideal M of R such that

P ⊆ PP−1 ⊆ M.

Since M is invertible, P $ M , and so, M−1 ⊆ (P : P ). By hypothesis,
there is a nonzero element b ∈ R and a positive integer r such that
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(P r)′ = (bR)′ = bR. Thus,

M−1 ⊆ (P : P ) ⊆ (P r : P r) ⊆ ((P r)′ : (P r)′) = (bR : bR) = R

(by Lemma 2.2). Hence, M−1 = R, and so, R = MM−1 = M ,
a contradiction. It follows that every nonzero prime ideal of R is
invertible, and therefore, R is a Dedekind domain. Furthermore, since
R is Prüfer, every ideal is integrally closed, [9, Theorem 27.7]. Hence,
Mn = (Mn)′ = aR for every maximal ideal M of R, and thus, R has
torsion class group.

Finally, assume that every nonzero prime ideal is projectively equiv-
alent to an invertible ideal. Let M be a maximal ideal of R and PRM a
prime ideal of RM where P ⊆ M . Let J be an invertible ideal of R and
m,n positive integers such that (Pm)′ = (Jn)′. By [10, Proposition
1.1.4],

(PmRM )′ = (Pm)′RM = (Jn)′RM = (JnRM )′.

But, since J is invertible, JRM is principal, and thus, PRM is pro-
jectively equivalent to a principal ideal. Hence, RM is a Dedekind
domain, and therefore, R is an almost Dedekind domain. Thus, R is a
one-dimensional Prüfer domain. So, for every maximal ideal M of R,

Mm = (Mm)′ = (In)′ = In

for some invertible, so finitely generated, ideal I of R. Hence, Mm is
finitely generated and therefore invertible. Thus,

R = MmM−m ⊆ MM−1 ⊆ R.

Hence, MM−1 = R, and therefore, R is a Dedekind domain. �

The next example shows that Theorem 2.1 is not true if R is not
integrally closed and a domain such that (I : I) ⊆ (I ′ : I ′), for every
nonzero ideal I, is not necessarily an integrally closed domain.

Example 2.3.

(1) Let k be a field, X an indeterminate over k and set

R = k[[X2, X3]].
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Then R is a one-dimensional Noetherian local domain, R′ = k[[X]] and
Spec(R) = {(0),M}, where

M = (X2, X3) = X2k[[X]] = X2R′.

Set J = X2R. Then,

J ′ = X2R′ ∩R = M ∩R = M.

Hence, M is projectively equivalent to J . However, R is not a Prüfer
domain. In fact, as R′ = k[[X]] is the only valuation overring of R,
Rees(I) = {R′} for every nonzero ideal I of R. Thus, I is projectively
equivalent to M by [4, Theorem 3.4].

(2) Let I be a nonzero ideal of R. Since R′ = k[[X]] is the only proper
overring of R, either (I : I) = R or (I : I) = k[[X]]. If (I : I) = R,
trivially (I : I) ⊆ (I ′ : I ′). If (I : I) = R′ = k[[X]], then I is an ideal
of k[[X]]. Thus, I is an integrally closed ideal of R′ and a fortiori an
integrally closed ideal of R. Hence, (I : I) ⊆ (I ′ : I ′) for every ideal I
of R; however, R is not integrally closed, as desired.

The next example shows that the inclusion in Lemma 2.2 (1) may
be strict.

Example 2.4. Let k be a field, X and Y indeterminates over k and
set

R = k + Y k(X)[[Y ]],

T = k[X2, X3] + Y k(X)[[Y ]]

and

I = Y T.

Then R is an integrally closed PV D (pseudo-valuation domain),

I ′ = Y (k[X] + Y k(X)[[Y ]]),

and

(I : I) = T $ k[X] + Y k(X)[[Y ]] = (I ′ : I ′).
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Corollary 2.5. Let R be an integral domain with (R : R′) ̸= (0) and
such that every nonzero ideal is projectively equivalent to a principal
ideal. Then, R′ is a Dedekind domain with torsion class group.

Proof. Let Q be a nonzero prime ideal of R′, and let 0 ̸= c ∈ (R : R′).

Let s be any positive integer, and let z ∈ (Qs)
′
R′ , where ′

R′ is the integral
closure with respect to R′. Then z ∈ R′ and z satisfies an equation of
the form

zr + a1z
r−1 + · · ·+ ar = 0,

where ai ∈ (Qs)i for each i. Thus csz ∈ R and

(csz)r + csa1(c
sz)r−1 + · · ·+ crsar = 0.

But, since (cs)iai ∈ ((cQ)s)i, csz ∈ ((cQ)s)′. Hence,

cs(Qs)
′
R′ ⊆ ((cQ)s)′.

Since R′ is integrally closed, by Lemma 2.2,

((cQ)s)′ ⊆ ((cQ)s)
′
R′ = cs(Qs)

′
R′ .

Therefore,

((cQ)s)′ = ((cQ)s)
′
R′ .

Now, since every nonzero ideal of R is projectively equivalent to a
principal ideal, there exist a positive integer n and a ∈ R such that

cn(Qn)
′
R′ = ((cQ)n)

′
R′ = ((cQ)n)′ = (aR)′ = aR′ ∩R.

Since a ∈ (aR)′ = cn(Qn)
′
R′ , ac−n ∈ (Qn)

′
R′ , and thus, ac−nR′ ⊆

(Qn)
′
R′ . But, clearly, (Qn)

′
R′ ⊆ ac−nR′. Hence,

(Qn)
′
R′ = ac−nR′,

and therefore, Q is projectively equivalent to a principal ideal in R′.
By Theorem 2.1, R′ is a Dedekind domain with torsion class group as
desired. �

The next example shows that the converse is not true in general.

Example 2.6. Let k be a field of characteristic 0, X an indeterminate
over k, and set R = k[X2, X3]. Clearly, R′ = k[X] is a PID and
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(R : R′) = Q = (X2, X3) = X2R′ is a maximal ideal of R. Let

N = (X + 1)k[X] = (X + 1)R′

and

M = N ∩R.

Then, M is a maximal ideal of R. Since Q * M , R′
N = RM . Thus, for

every positive integer r,

Nr ∩R = NrR′
N ∩R = MrRM ∩R = Mr.

On the other hand, by [10, Proposition 1.6.1],

Mr ⊆ (Mr)′ = MrR′ ∩R ⊆ Nr ∩R = Mr.

Hence,
Mr = (Mr)′ = Nr ∩R = (X + 1)rk[X] ∩R.

We claim that M is not projectively equivalent to any principal ideal
of R. Indeed, suppose that there is f ∈ R and a positive integer n such
that Mn = (Mn)′ = fR′ ∩R. Then

(X + 1)nk[X] ∩R = fR′ ∩R.

Thus, f = (X +1)ng for some g ∈ k[X]. Since Xr ∈ R for every r ≥ 2,

(X + 1)n(1− nX) = 1 +

n∑
p=2

(
n
p

)
Xp −

n∑
p=1

n

(
n
p

)
Xp+1 ∈ R.

Then

(X + 1)n(1− nX) ∈ (X + 1)nk[X] ∩R = fk[X] ∩R,

and so,

(X + 1)n(1− nX) = fh = (X + 1)ngh for some h ∈ k[X].

Hence, 1− nX = gh, and so, deg(g) = 0 or deg(g) = 1. If deg(g) = 0,
then g = c is a nonzero constant, and thus, f = c(X + 1)n ∈ R, which
is absurd (since X /∈ R). Hence, deg(g) = 1, and so, h = c ∈ k \ {0}.
Thus, g = c−1(1− nX), and so,

f = c−1(X + 1)n(1− nX).
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Since

(X + 1)n(1− nX +X2) ∈ (X + 1)nk[X] ∩R = fk[X] ∩R,

(X + 1)n(1− nX +X2) = c−1(X + 1)n(1− nX)g for some g ∈ k[X].

Then
1− nX +X2 = c−1(1− nX)g,

and so, deg(g) = 1. Write g = b + dX where b, d ∈ k and 0 ̸= d. By
identification, we obtain: 1 = c−1b

−n = c−1(d− nb)
1 = −c−1nd


Hence,

−n = c−1d− nc−1b = c−1d− n,

and so 0 = c−1d, which is absurd. It follows that M is not projectively
equivalent to any principal ideal of R.

The next proposition characterizes domains for which every nonzero
finitely generated ideal is projectively equivalent to an invertible (re-
spectively, a principal) ideal in the context of integrally closed domains.

Proposition 2.7. Let R be an integrally closed domain. Then, every
nonzero finitely generated ideal is projectively equivalent to an invertible
(respectively, a principal) ideal if and only if R is a Prüfer domain
(respectively, Prüfer with torsion Picard class group).

Proof. Let I be a finitely generated ideal of R. Then there exist a
positive integer n and a nonzero element a ∈ R such that (In)′ = aR.
So

J = a−1In ⊆ a−1(In)′ = R,

and thus, J is an integral ideal of R. On the other hand, since a ∈ (In)′,
a satisfies an equation of the form

ar + b1a
r−1 + · · ·+ br = 0,
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where bi ∈ (In)i for each i. Dividing the equation by ar, we obtain

1 +
b1
a

+
b2
a2

+ · · ·+ br
ar

= 0.

Thus,

1 = −
(
b1
a

+
b2
a2

+ · · ·+ br
ar

)
.

But, since
bi
ai

= (a−1)ibi ∈ (a−1In)i = J i, 1 ∈ J,

and thus, J = R. Hence, In = aR, and so,

R = InI−n ⊆ II−1 ⊆ R.

Therefore, II−1 = R, and hence, R is a Prüfer domain. Also, since, for
each finitely generated ideal I of R, In = aR (for some positive integer
n and a ∈ R), R has torsion Picard class group.

Now, suppose that every nonzero finitely generated ideal is projec-
tively equivalent to an invertible ideal. Then, for every maximal ideal
M of R, every finitely generated ideal of RM is projectively equivalent
to a principal ideal. Thus, RM is a valuation domain, and therefore, R
is Prüfer.

The converse is trivial. �

The next theorem characterizes locally finite-dimensional (LFD)
domains for which every nonzero ideal is projectively equivalent to a
prime ideal in case where the conductor (R : R′) is a nonzero ideal
of R.

Theorem 2.8. Let R be a locally finite-dimensional domain (LFD).
If R′ is a DV R, then every ideal of R is projectively equivalent to a
prime ideal. The converse holds if (R : R′) ̸= (0).

The proof requires the next useful lemma.

Lemma 2.9. Let R be a domain and I a nonzero ideal of R. Then:

(1) if Q is a prime ideal of R and Q is projectively equivalent to I,

then Q is the unique minimal prime over I, in particular, Q =
√
I.
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(2) If every nonzero ideal of R is projectively equivalent to a prime
ideal, then Spec(R) is a chain, in particular, R is local.

(3) Assume that R is locally finite dimensional (LFD) and every
ideal of R is projectively equivalent to a prime ideal. Then every prime
ideal is the unique minimal prime over some principal ideal.

Proof.

(1) Assume that Q is projectively equivalent to I. Then (Qm)′ =
(In)′ for positive integers m and n. Then I ⊆ Q; and, if P is a prime
ideal minimal over I, then

Qm ⊆ (Qm)′ = (In)′ ⊆ P.

Hence, Q ⊆ P , and therefore, Q = P . It follows that Q is the unique
minimal prime over I as desired.

(2) Let P and Q be any nonzero prime ideals of R, and set I = PQ.
Then, there is a prime idealN of R such that I is projectively equivalent
to N . Thus, (Im)′ = (Nn)′ for some positive integers m and n. Since,
(PQ)m ⊆ (Im)′ = (Nn)′ ⊆ N , either P ⊆ N or Q ⊆ N . Without loss
of generality, we may assume that P ⊆ N . However,

Nn ⊆ (Nn)′ = (Im)′ ⊆ I ′ ⊆ P ∩Q

implies that N ⊆ P ∩ Q. Hence, P = N ⊆ Q. Therefore, any two
nonzero prime ideals of R are comparable and so Spec(R) is a chain
and R is local.

(3) First, recall that Spec(R) is a chain by (2). Let P be a nonzero
prime ideal of R. Since R is LFD, there is a unique prime ideal P ′ $ P
of R such that ht (P/P ′) = 1. Let a ∈ P \P ′. Then, aR is projectively

equivalent to a prime ideal Q of R; and by (1), Q =
√
aR = P is the

unique minimal prime over aR. �

Proof of Theorem 2.8. Assume that R′ is a DV R, and let N be its
maximal ideal. Then R is local with maximal ideal M = N ∩ R. Let
I be a nonzero ideal of R. Then, IR′ = Nr and MR′ = Ns for some
positive integers r and s. Hence, by [10, Proposition 1.6.1],

(Is)′ = IsR′ ∩R = (Nr)s ∩R = (Ns)r ∩R = MrR′ ∩R = (Mr)′,

as desired.
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Now, suppose that (R : R′) ̸= (0) and every ideal of R is projectively
equivalent to a prime ideal. By Lemma 2.9, R is local, and so, it is of
finite dimension since it is LFD. Also, Spec(R) is a finite chain and
every prime ideal is projectively equivalent to a principal ideal. Thus,
every ideal of R is projectively equivalent to a principal ideal, and,
by Corollary 2.5, R′ is a Dedekind domain with torsion class group.
Hence, it suffices to show that R′ is local.

If R is integrally closed, then R′ = R is local. Next, assume that
R′ ̸= R. Since dimR = dimR′ = 1,

Spec(R) = {(0) $ M},

and so, M ⊆ J(R′) where J(R′) is the Jacobson radical of R′. Set
A = (R : R′). Then (An)′ = (Mm)′ for positive integers m and n. But
since An is an ideal of R′ and R′ is Prüfer, An is an integrally closed
ideal of R′, and, a fortiori, an integrally closed ideal of R. Hence,
An = (Mm)′.

Now, let N and Q be maximal ideals of R′. Then NA is an ideal of
both R and R′. Then, ((AN)r)′ = (Ms)′ for some positive integers r
and s. Again, sinceR′ is Prüfer, (AN)r is an integrally closed ideal ofR′

and, a fortiori, an integrally closed ideal of R. Hence (AN)r = (Ms)′.
Thus,

NrmArm = (AN)rm = ((AN)rm)′

= ((AN)r)m)′ = (((Ms)′)m)′

= (Msm)′ = (((Mm)′)s)′ = Ans.

If rm ≥ ns, then composing the two sides of the equality by (R′ : Ans)
and using the fact that R′ is a Dedekind domain (so Ans(R′ : Ans) =
R′), we obtain

NrmArm−ns = NrmArm(R′ : Ans) = Ans(R′ : Ans) = R′,

which is a contradiction. Hence, rm < ns, and so,

Nrm = NrmArm(R′ : Arm) = Ans(R′ : Arm) = Ans−rm ⊆ M ⊆ Q.

Thus, N ⊆ Q, and hence, N = Q. It follows that R′ is local, and
therefore, R′ is a DV R. �
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Corollary 2.10. Let R be a locally finite dimensional domain which
is integrally closed. Then, every nonzero ideal is projectively equivalent
to a prime ideal if and only if R is a DV R.

Question 2.11 (Open question). Beyond the context where (R : R′) ̸=
(0), we are not able to prove or disprove whether R′ is a DV R if every
ideal of R is projectively equivalent to a prime ideal. A more general
question is about whether the integral closure R′ of such a domain R
inherits the property that every ideal is projectively equivalent to a prime
ideal. If the answer is “yes,” then R′ would be a DV R by the integrally
closed case. A weaker version of this question is regarding the integral
closure of a domain in which every ideal is projectively equivalent to a
prime (respectively, invertible, respectively, principal) ideal is a Prüfer
domain (equivalently, R is quasi-Prüfer)?

While the polynomial ring R[X] never has the property that every
ideal is projectively equivalent to a prime ideal (as it is never local),
our next corollary shows that the power series rings R[[X]] has this
property only if R is a field.

Corollary 2.12. Every nonzero ideal of R[[X]] is projectively equiva-
lent to a prime ideal if and only if R is a field.

Proof. Assume that R is not a field. By Lemma 2.9, R[[X]] is local
and so is R. Let M be the maximal ideal of R, and let 0 ̸= m ∈ M .
Set

Q = XR[[X]] and Pm = (X −m)R[[X]].

Again, by Lemma 2.9, P and Q are comparable. Without loss of
generality, we may assume that Q ⊆ Pm. Then X = (X − m)f for
some

f =
∑
n≥0

anX
n ∈ R[[X]].

Necessarily,
−a0m = 0 and a0 − a1m = 1.

Thus, −a1m = 1, which is absurd. It follows that R is a field.

The converse follows immediately from Corollary 2.10 since k[[X]] is
a DV R. �
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3. Noetherian-settings. The next theorem deals with Noetherian
domains for which every nonzero ideal is projectively equivalent to a
prime ideal. A combination of Lemma 2.9 and the Principal ideal
theorem shows that such a domain is a one-dimensional local domain.

Theorem 3.1. Let R be a Noetherian domain. The following are
equivalent.

(1) Every nonzero ideal of R is projectively equivalent to a prime
ideal.

(2) R is a one-dimensional local domain, and all nonzero ideals of
R are projectively equivalent to a same principal ideal.

(3) R′ is a DV R.

Proof.

(1) ⇒ (2). Since R is an LFD, by Lemma 2.9, R is local with
maximal ideal M , and M is the unique minimal prime over a certain
principal ideal aR. Thus, by the Principal ideal theorem, dimR =
htM = 1. Hence,

Spec(R) = {(0) $ M,

and so all nonzero ideals of R are projectively equivalent to M , and
therefore projectively equivalent to aR, as desired.

(2) ⇒ (3). Assume that all ideals of R are projectively equivalent
to the same principal ideal I = aR. Since R is a one-dimensional
Noetherian domain, R′ is a Dedekind domain, and thus, it suffices to
show that R′ is local. Since R is a one-dimensional local domain,

I ⊆ M ⊆ J(R′).

By [3, Example 3.5],

Rees(I) = {R′
N | N ∈ Max(R′)}.

Moreover, If |Rees(I)| ≥ 2, there exists an ideal J of R with Rees(I) =
Rees(J), but J is not projectively equivalent to I, which is absurd.
Hence, |Rees(I)| = 1, and therefore, R′ is local, as desired.

(3) ⇒ (1). Follows from Theorem 2.8. �
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Recall that a domain R is said to be strong Mori domain if R satisfies
the acc on w-ideals. Noetherian and strong Mori domains are Mori.

Proposition 3.2. Let R be a strong Mori domain. If every ideal of R
is projectively equivalent to a prime ideal, then dimR = 1, and so R is
Noetherian.

Proof. Suppose that dimR ≥ 2, and let

(0) $ P $ M

be a chain of prime ideals of R. Let a ∈ M \ P . Then there exists a
prime ideal Q of R such that aR is projectively equivalent to Q. Set
(anR)′ = (Qm)′ for some positive integers m and n. By Lemma 2.9, P
and Q are comparable. But, since a /∈ P , P $ Q. On the other hand,
Q is minimal over aR. But since R is strong Mori, by [5, Corollary
1.11], htQ = 1, which is a contradiction. Hence, dimR = 1, and again,
by [5, Corollary 1.10], R is Noetherian. �

Recall that a commutative ring R with identity is compactly packed
by primes (CP -ring for short) if, whenever an ideal I of R is contained
in the union of a family of prime ideals of R, then I is actually contained
in one of the primes of the family [15]; equivalently, every prime ideal
is the radical of a principal ideal [17].

The next proposition shows that a Mori domain in which every ideal
is projectively equivalent to a prime ideal is a CP -ring. However, we are
not able to prove or disprove that R must be a one-dimensional domain.
We recall that a domain R is semi-normal if, for every x ∈ qf(R),
x2, x3 ∈ R, implies that x ∈ R.

Proposition 3.3. Let R be a Mori domain. If every ideal of R is
projectively equivalent to a prime ideal, then R is a CP -ring with finite
prime spectrum. In particular, if R satisfies the PIT (Principal ideal
theorem) or (R : R′) ̸= (0) or R is semi-normal, then dimR = 1.

Proof. We claim that Spec(R) is finite. By way of contradiction,
let {Pn}n≥0 be an infinite chain of prime ideals of R. (Note that, by
Lemma 2.9, Spec(R) is a chain). For each n ≥ 1, let

an ∈ Pn \ Pn−1.
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Then there is a prime ideal Qn of R such that Qn is projectively
equivalent to anR. By Lemma 2.9, Qn is the unique prime minimal
over anR, and hence, Qn is a t-prime ideal.

On the other hand, sinceQn, Pn and Pn−1 are comparable (Lemma 2.9)
and an ∈ Qn \ Pn−1,

Pn−1 $ Qn j Pn.

Thus, we construct a chain

P0 $ Q1 j P1 $ Q2 j P2 · · · j Pn−1 $ Qn j Pn · · · ,

from which we extract the infinite chain

Q1 $ Q2 $ Q3 · · · $ Qn−1 $ Qn $ Qn+1 · · ·

of t-prime ideals, which is a contradiction since R is a Mori domain.
Hence, Spec(R) is finite. Set

Spec(R) = {(0) = P0 $ P1 $ · · · $ Pn = M},

where M is the maximal ideal of R. By Lemma 2.9, each prime of
R is the radical of a principal ideal, and therefore, R is a CP -ring.
Now, if (R : R′) ̸= (0), by Theorem 2.8, R′ is a DV R, and so,
dimR = dimR′ = 1. If R satisfies the PIT, then htM = 1, as M
is minimal over a principal ideal. Finally if R is semi-normal and
htM ≥ 2, then M must contain infinitely many height 1 prime ideals
[1, Theorem 2.6], which is a contradiction. Hence, dimR = 1, as
desired. �

4. Pullbacks. Let T be an integral domain, M a nonzero ideal
of T (not necessarily maximal), D an integral domain contained in
K = T/M , ϕ : T → T/M the canonical homomorphism and R the
pullback of the diagram:

R −→ D
↓ ↓
T

ϕ−→ K = T/M

We assume that R ( T , and we refer to this diagram as of type (∆).
If M is a maximal ideal of T and K = T/M its residue field, we refer to
the above diagram as of type (�); and if T = V is a valuation domain
with maximal ideal M , we shall refer to this as a classical diagram of
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type (�). (For more details on classical diagrams and diagrams of type
(�), we refer to [2, 6, 7, 8]). Recall that M is a prime ideal of R as
R/M ≃ D.

The next theorem characterizes diagrams of type (�), in which
every ideal is projectively equivalent to a prime ideal and shows how
to construct non-integrally closed (Noetherian and non-Noetherian)
domains with this property.

Theorem 4.1. For a diagram of type (�) assume that T and D are
LFDs. Then, every ideal of R is projectively equivalent to a prime
ideal of R if and only if every ideal of T is projectively equivalent to a
prime ideal of T , D = k is a field and K is algebraic over k.

The proof of Theorem 4.1 requires the next lemma.

Lemma 4.2. Let R ⊆ T be an extension of integral domains such that
the conductor A = (R : T ) is a nonzero proper integrally closed ideal
of R.

(1) If I is an ideal of R which is also an ideal of T , then I ′ is an
ideal of T .

(2) If A is projectively equivalent to a principal ideal of R, then T is
integral over R, that is, T ⊆ R′.

Proof.

(1) Let I be an ideal of both R and T , and let x ∈ I ′ and b ∈ T .
Since IT = I ⊆ R, I ⊆ A, and so, I ′ ⊆ A′ = A. Hence, x ∈ A, and so,
xb ∈ A ⊆ R. Moreover, x satisfies an equation of the form

xr + a1x
r−1 + · · ·+ ar = 0,

where ai ∈ Ii for each i ∈ {1, . . . , r}. Thus,

(xb)r + ba1(xb)
r−1 + · · ·+ brar = 0.

But, since biai ∈ IiT = Ii for each i, xb ∈ I ′. Hence, I ′ is an ideal of
T , as desired.
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(2) Assume that A is projectively equivalent to aR for some nonzero
element a ∈ R. Then, there exist positive integers m and n such that

(An)′ = (amR)′ = amR′ ∩R.

Since
amR ⊆ (amR)′ = (An)′,

and (An)′ is an ideal of T by (1),

amT ⊆ (An)′ = amR′ ∩R.

Thus, amT ⊆ amR′, and hence, T ⊆ R′, as desired. �

Proof of Theorem 4.1. First note that R is LFD. Assume that every
ideal of R is projectively equivalent to a prime ideal. By Lemma 2.9,
R is local and so T must be local with maximal ideal M . Now, let J
be a nonzero ideal of T . Since J ⊆ M , J is an ideal of R. Hence,

(Jn)
′
T = (Jn)

′
R = (Qm)

′
R

for some prime ideal Q of R and positive integers m and n. But, since
J ⊆ M , Q ⊆ M and so Q is a prime ideal of T . Hence,

(Jn)
′
T = (Jn)

′
R = (Qm)

′
R = (Qm)

′
T ,

as desired.

Now, since (R : T ) = M is a prime ideal ofR,M must be projectively
equivalent to a principal ideal of R (Lemma 2.9 (3)). By Lemma 4.2,
T is integral over R. Hence, D = k is a field and K is algebraic over k.

Conversely, by Lemma 2.9, T is local. Hence, R is local and
Spec(R) = Spec t(T ). Let I be a nonzero ideal of R. Since R is local
with maximal ideal M , I ⊆ M . Thus, IT is a nonzero proper ideal of
T (as IT ⊆ M), and so

((IT )n)
′
T = (Qm)

′
T

for some positive integers m and n and a prime ideal Q of T . Since
Spec(R) = Spec(T ), Q is a prime ideal of R. By [10, Proposition
1.6.1],

(In)′ = (InT )
′
T ∩R = ((IT )n)

′
T ∩R = (Qm)

′
T ∩R = (Qm)′.

Hence, I is projectively equivalent to Q, as desired. �
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In view of Theorem 2.10, a valuation domain V of finite dimension
has the property that every ideal is projectively equivalent to a prime
ideal if and only if it is a DV R. Combining with Theorem 4.1, we
obtain the following characterization of classical diagram of type (�).

Corollary 4.3. For the pullback of the classical diagram of type (�),
assume that V is of finite dimension and D is LFD. The following are
equivalent :

(1) Every ideal of R is projectively equivalent to a prime ideal.

(2) Every ideal of R is projectively equivalent to a principal ideal.

(3) V is a DV R, D = k is a field and K is algebraic over k.

Proof.

(1) ⇔ (3). Follows from Theorem 4.1 and Corollary 2.10.

(2) ⇒ (3). By Corollary 2.5, R′ is a Dedekind domain. Hence,
R′ = V and so V is a DV R, D = k is a field and K is algebraic over
k, as desired.

(3) ⇒ (2). Assume that V is a DV R and K is algebraic over k.
Then R′ = V . Let I be a nonzero ideal of R. If I is an ideal of V , then
I is integrally closed in both R and V and I = Mn for some n ≥ 1. If
I is not an ideal of V , then I = aϕ−1(W ), where W is a k-subvector
space of K with k ⊆ W $ K. Since aR ⊆ I ⊆ IV = aV ,

aV = aR′ = aR′ ∩R = (aR)′ ⊆ I ′ ⊆ (aV )′ = aV.

Thus, I ′ = aV = aR′ = (aR)′ = Mn for some n ≥ 1, as desired. �

Theorem 4.4. For the diagram of type (∆) assume that T and D are
LFDs and M is a prime principal ideal of T . Then, every nonzero
ideal of R is projectively equivalent to a prime ideal if and only if M
is a maximal ideal of T , every ideal of T is projectively equivalent to a
prime ideal, D = k is a field and K is algebraic over k.

Proof. Set M = aT and suppose that every ideal of R is projectively
equivalent to a prime ideal.
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Claim 1. For every nonzero ideal J of T , (aJ)
′
T = aJ

′
T . Indeed, let

x ∈ (aJ)
′
T . Then x ∈ T and

xr + b1x
r−1 + · · ·+ br = 0

where bi ∈ (aJ)i = aiJ i. Since aJ = JM ⊆ M , (aJ)
′
T ⊆ M = aT .

Then, x ∈ aT , and so, x/a ∈ T . But, since(
x

a

)r

+
b1
a

(
x

a

)r−1

+ · · ·+ br
ar

= 0

and
bi
ai

∈ J i,
x

a
∈ J

′
T ,

and thus, x ∈ aJ
′
T . Hence, (aJ)

′
T ⊆ aJ

′
T . Conversely, it is easy to see

that (aJ)
′
T ⊇ aJ

′
T . Therefore (aJ)

′
T = aJ

′
T .

Claim 2. For every nonzero ideal J of T and for every positive
integer n, (anJ)

′
T = anJ

′
T by induction on n. If n = 1, the result

is true by Claim 1. Assume the induction hypothesis for n. Then,
applying Claim 1 and the induction hypothesis to the ideal anJ , we
obtain

(an+1J)
′
T = (a.anJ)

′
T = a(anJ)

′
T = a.anJ

′
T = an+1J

′
T ,

as desired.

Claim 3. (Mn)
′
T = Mn. If n = 1, we are done. Assume that n ≥ 2.

Applying Claim 2 to the ideal J = M , we obtain

(Mn)
′
T = (anT )

′
T = (an−1M)

′
T = an−1M

′
T = an−1M = Mn.

Now, let N be a maximal ideal of T such that M ⊆ N . Then aN is an
ideal of both R and T . Since every nonzero ideal of R is projectively
equivalent to a prime ideal, ((aN)n)

′
R = (Qm)

′
R for some prime ideal

Q of R and positive integers n and m. Hence, aN ⊆ Q ⊆ M . Then,

M2 = aM ⊆ aN ⊆ Q,

and so, M ⊆ Q. Hence, Q = M . Also, since aN ⊆ M ,

((aN)n)
′
T = ((aN)n)

′
R .
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By Claims 2 and 3,

an(Nn)
′
T = ((aN)n)

′
T = ((aN)n)

′
R

= (Qm)
′
R = (Mm)

′
R

= (Mm)
′
T = Mm = amT.

Hence,

Nn ⊆ (Nn)
′
T = am−nT = Mm−n ⊆ M,

and therefore, N ⊆ M . Thus, M = N is a maximal ideal of T , as
desired. The remaining conditions and the converse now follows from
Theorem 4.1. �

Corollary 4.5. Let A j B be an extension of LFD domains, X an
indeterminate over B, and set R := A+XB[[X]]. Then, every nonzero
ideal of R is projectively equivalent to a prime ideal if and only if A
and B are fields and B is algebraic over A.

Proof. By Theorem 4.4, M = XB[[X]] must be a maximal ideal of
T = B[[X]]. Hence, B is a field, and, by Corollary 4.3, A is a field and
B is algebraic over A. The converse also follows from Corollary 4.3. �

The next example shows how to construct a non Noetherain non-
integrally closed Mori domain in which every ideal is projectively
equivalent to a prime ideal.

Example 4.6. Let Q be the field of rational numbers, X an indeter-
minate over Q and

V = Q(
√
2,
√
3,
√
5, . . .

√
p, . . .)[[X]] = K +M,

where
K = Q(

√
2,
√
3,
√
5, . . .

√
p, . . .)

and M = XV . Set R = Q +M . By Corollary 4.3, every ideal of R is
projectively equivalent to a prime ideal. However, R is a Mori domain
[8, Theorem 4.18] which is not Noetherian [8, Theorem 4.12].
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