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A STRUCTURE THEOREM FOR 2-STRETCHED
GORENSTEIN ALGEBRAS

GIANFRANCO CASNATI AND ROBERTO NOTARI

ABSTRACT. In this paper, we study isomorphism classes
of local, Artinian, Gorenstein k-algebras A whose maximal
ideal M satisfies dimk(M

3/M4) = 1 by means of Macaulay’s
inverse system generalizing a recent result by Elias and
Rossi. Then we use such results in order to complete the
description of the singular locus of the Gorenstein locus of
Hi lb11(Pn

k ).

1. Introduction and notation. Throughout this paper, a k-
algebra is an associative, commutative and unitary algebra over an
algebraically closed field k of characteristic 0.

The study of Artinian k-algebras is a classical topic in commutative
algebra. It is well known that each Artinian k-algebra is a direct sum
of local ones; hence, one can restrict attention to the local case.

Two important invariants of each local, Artinian k-algebra A are its
dimension d := dimk(A) as k-vector space and the Hilbert function HA

of A, i.e., the Hilbert function of the associated graded ring

gr(A) :=

∞⊕
i=0

Mi/Mi+1,

M being the maximal ideal of A.

When d ≤ 6, some authors classified such algebras, A, in terms of
HA, e.g., (see [16, 17, 19]). As d increases, the picture becomes much
more complicated and not easy to handle with the same methods (see
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[1, 18] and the references therein), unless we introduce some extra
technical hypothesis, e.g., if we restrict to Gorenstein algebras, then a
complete classification in terms of HA is available up to d ≤ 9 (see [2]).
However, once more, as d increases, it is not possible to achieve the
complete classification of such algebras. For example, it is not possible
to classify in the above sense algebras A with HA = (1, 4, 4, 1). At
the same time, researchers have focused on some interesting classes of
local, Artinian, Gorenstein k-algebras (see [7, 8, 9, 10, 13, 20]).

Nevertheless, it is possible to prove a general structure result making
use of Macaulay’s correspondence. Each local, Artinian, Gorenstein k-
algebra A can be represented as a quotient of the form k[[x1, . . . , xn]]/J
for a suitable ideal J ⊆ (x1, . . . , xn)

2. If we look at k[[x1, . . . , xn]] as
acting on k[y1, . . . , yn] via derivation, i.e., we identify xi with ∂/∂yi,
i = 1, . . . , n, then J = Ann(F ) for a suitable F ∈ k[y1, . . . , yn] whose
degree s is exactly the maximum integer s such that Ms ̸= 0, the so
called socle degree of A, sdeg(A).

The main result of [7] is that such an F can be chosen to be
homogeneous when the algebra A satisfies HA = (1, n, n, 1). Hence,
the classification of such algebras is actually strictly related to the
classification up to projectivities of cubic hypersurfaces in Pn−1

k .

In the present paper, we extend such a result to Artinian, Gorenstein
algebras A withHA = (1, n,m, 1, . . .) in Section 4, proving the following
theorem (see Theorem 4.3).

Theorem A. Let A be a local, Artinian, Gorenstein algebra. Then
n = HA(1), m = HA(2), 1 = HA(3) = · · · = HA(s), s = sdeg(A) if
and only if

A ∼= k[[x1, . . . , xn]]/Ann(F ),

where F := ys1 + F3 +
∑n

j=m+1 y
2
j , F3 ∈ k[y1, . . . , ym] is a cubic form,

x2
1 ◦ F3 = 0 and x2 ◦ F3, . . . , xm ◦ F3 are linearly independent.

Besides the intrinsic interest of the description of local, Artinian
algebras of dimension d, their study is also important for the charac-
terization of the singular locus of the Hilbert scheme Hi lbd(Pn

k ). In
some recent papers (see [3], for the case d ≤ 9 and [4] for the case
d = 10) we dealt with such a problem, restricting our attention to

the Gorenstein locus Hi lbGd (Pn
k ) ⊆ Hi lbd(Pn

k ), i.e., the locus of schemes
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X ∼= spec(A) where A is a Gorenstein algebra. In particular, in [4], the
structure theorem of [7] has been a helpful tool for such a description.

In [5], a similar analysis has been carried out in the case d = 11.
In that paper we were also able to deal with the singular nature of all
X ∈ Hi lbG11(Pn

k ), but those isomorphic to spec(A) where A is a local,
Artinian, Gorenstein algebra with HA = (1, 4, 4, 1, 1). The second main
result of the present paper is the complete description of such a kind of
X from the following viewpoint. Such a description rests on Theorem A
above. The main results of Section 5 can be summarized in the following
theorem.

Theorem B. Let A be a local, Artinian, Gorenstein algebra with
HA = (1, 4, 4, 1, 1). Then X := spec(A) ∈ Hi lbG11(Pn

k ) is obstructed
if, and only if, A ∼= S[4]/Ann(F ) where F is in the following list :

(i) y41 + y1(b0y
2
2 + b2y

2
3 + b5y

2
4) + y32 + y33 + y34, b0, b2, b5 ∈ k;

(ii) y41 + y1(b0y
2
2 + b2y

2
3 + 2b4y3y4) + y32 + y23y4, b0, b2, b4 ∈ k;

(iii) y41+y1(b0y
2
2+2b1y2y3+b2y

2
3+2b0y3y4)+y22y3+y23y4, b0, b2, b3 ∈ k;

(iv) y41 +y1(b0y
2
2 +2b1y2y3+ b2y

2
3 +2b3y2y4+2b4y3y4+ b5y

2
4)+y23y4−

y23y4, b0, . . . , b5 ∈ k, −b21 + b0b2 − b1b3 − b23 + b0b4 + b0b5 = 0,
(b0, b1, b3) ̸= (0, 0, 0);

(v) y41 + y1(b0y
2
2 +2b1y2y3 + b2y

2
3 +2b3y2y4 +2b4y3y4 + b5y

2
4) + y23y4,

b0, . . . , b5 ∈ k, b21 − b0b2 = 0, (b0, b1, b3) ̸= (0, 0, 0);
(vi) y41 + y1(b0y

2
2 + 2b1y2y3 + b2y

2
3 + 2b3y2y4 + 2b4y3y4 + b5y

2
4) + y33,

b0, . . . , b5 ∈ k and rk(Mb) ≥ 2, where

Mb :=

b0 b1 b3
b1 b2 b4
b3 b4 b5

 ;

(vii) y41+y1(b0y
2
2+2b1y2y3+b2y

2
3+2b3y2y4+2b4y3y4+b5y

2
4), b0, . . . , b5 ∈

k and rk(Mb) = 3, where Mb is the matrix above.

1.1. Notation. In what follows, k is an algebraically closed field of
characteristic 0. A k-algebra is an associative, commutative and unitary
algebra over k. For each N ∈ N, we set S[N ] := k[[x1, . . . , xN ]] and
P [N ] := k[y1, . . . , yN ]. We denote by S[N ]q (respectively, P [N ]q) the
homogeneous component of degree q of such a graded k-algebra. Let
S[N ]≤q :=

⊕q
i=1 S[N ]i (respectively, P [N ]≤q :=

⊕q
i=1 P [N ]i). Finally,
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we set S[N ]+ := (x1, . . . , xN ) ⊆ S[N ] to be the unique maximal ideal
of S[N ].

A local ring R is Gorenstein if its injective dimension as R-module
is finite. An arbitrary ring R is called Gorenstein if RM is Gorenstein
for every maximal ideal M ⊆ R. A scheme X is Gorenstein if and only
if, for each point x ∈ X, the ring OX,x is Gorenstein.

For each numerical polynomial p(t) ∈ Q[t], we denote byHi lbp(t)(PN
k )

the Hilbert scheme of closed subschemes of PN
k with Hilbert polyno-

mial p(t). With abuse of notation, we will denote by the same symbol
both a point in Hi lbp(t)(PN

k ) and the corresponding subscheme of PN
k .

We denote by Hi lbGp(t)(PN
k ) the locus of points representing Gorenstein

schemes.

If γ := (γ1, . . . , γN ) ∈ NN is a multi-index, then we set tγ :=
tγ1

1 · · · tγN

N ∈ k[t1, . . . , tN ]

For all other notation and results we refer to [12].

2. Some facts on Macaulay’s correspondence. Let A be a local,
Artinian k-algebra with maximal ideal M. We know that

A ∼= S[n]/J

for a suitable ideal J ⊆ S[n]2+ ⊆ S[n], where n := HA(1). Recall that
the socle degree sdeg(A) of A is the greatest integer s such that Ms ̸= 0.

For a quick list of results about Macaulay’s theory of the inverse
system, see e.g., [11, 14] and the references therein.

The ring P [n] has a natural structure of S[n]-module by identifying
xi with ∂/∂yi. Hence,

xα ◦ yβ :=

{
α!
(
β
α

)
yβ−α if β ≥ α,

0 if β ̸≥ α.

Given an ideal J ⊆ S[n] and an S[n]-submodule M ⊆ P [n], we set

J⊥ := { F ∈ P [n] | g ◦ F = 0, for all g ∈ J },
Ann(M) := { g ∈ S[n] | g ◦ F = 0, for all F ∈ M }.

The main point of Macaulay’s theory of the inverse system is that
the constructions J 7→ J⊥ and M 7→ Ann(M) give rise to a reversing
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inclusion bijection between ideals J ⊆ S[n] such that S[n]/J is a local,
Artinian k-algebra and finitely generated S[n]-submodules M ⊆ P [n].

Gorenstein algebras A with sdeg(A) = s correspond to cyclic S[n]-
submodules ⟨F ⟩S[n] ⊆ P [n] generated by a polynomial F of degree s in
such a bijection.

On the one hand, for each S[n]-module M , we define

tdf(M) :=
∞⊕
q=0

tdf(M)q,

where

tdf(M)q :=
M ∩ P [n]≤q + P [n]≤q−1

P [n]≤q−1
.

The module tdf(M) can be interpreted as the S[n]-submodule of P [n]
generated by the top degree forms of all the polynomials in M .

On the other hand, for each f ∈ S[n], the lowest degree of monomials
appearing with non-zero coefficient in the minimal representation of f
is called the order of f , and it is denoted by ord(f). If

f =

∞∑
i=ord(f)

fi, fi ∈ S[n]i,

then ford(f) is called the lowest degree form of f . We will denote it by
ldf(f).

Recall that we are assuming J ⊆ S[n]2+; thus, ord(f) ≥ 2 for each
f ∈ J . The lowest degree form ideal ldf(J) associated to J is

ldf(J) := (ldf(f)|f ∈ J) ⊆ S[n].

We have ldf(Ann(M)) = Ann(tdf(M)) (see [11]; see also [7, formu-
las (2), (3)]). As an immediate consequence, we have

gr(S[n]/Ann(M)) ∼= S[n]/ldf(Ann(M)) ∼= S[n]/Ann(tdf(M)).

Thus,

(2.1) HS[n]/Ann(M)(q) = dimk(tdf(M)q).

The module M is non-degenerate if

HS[n]/Ann(M)(1) = dimk(tdf(M)1) = n.



300 GIANFRANCO CASNATI AND ROBERTO NOTARI

In other words, M is non-degenerate if and only if the classes of
y1, . . . , yn are in tdf(M).

In what follows, in order to simplify the notation, we will write
tdf(F ) and Ann(F ) instead of tdf(⟨F ⟩S[n]) and Ann(⟨F ⟩S[n]), respec-
tively.

Assume that A is Gorenstein with s := sdeg(A). Thus, Soc(A) =
Ms ∼= k. In particular, there exists

F :=
s∑

i=0

Fi, Fi ∈ P [n]i,

such that A ∼= S[n]/Ann(F ). For each h ≥ 0, we set

F≥h :=
s∑

i=h

Fi

(hence, Fs = F≥s).

We can always assume that F0 = 0. It is easy to check that
Ann(F ) = Ann(F + σ ◦ F ) for every σ ∈ S[n]. The following lemma

allows us to find a simpler polynomial F̂ such that Ann(F̂ ) = Ann(F ).
For its proof, see [5, Lemma 2.1].

Lemma 2.1. Let F, F̂ ∈ P [n] be such that F − F̂ ∈ P [n]≤1. If

Ann(F ) ⊆ S[n]2+, then Ann(F ) = Ann(F̂ ).

In particular, if J ⊆ S[n]2+, then we can assume that J = Ann(F )
where F = F≥2. We do make such an assumption in what follows.

We have a filtration with proper ideals (see [14]) of gr(A) ∼=
S[n]/ldf(Ann(F ))

CA(0) := gr(A) ⊃ CA(1) ⊇ CA(2) ⊇ · · ·
⊇ CA(s− 2) ⊇ CA(s− 1) := 0.

Via the epimorphism S[n] � gr(A), we obtain an induced filtration

ĈA(0) := S[n] ⊃ ĈA(1) ⊇ ĈA(2) ⊇ · · ·

⊇ ĈA(s− 2) ⊇ ĈA(s− 1) := ldf(Ann(F )).
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The quotients QA(a) := CA(a)/CA(a + 1) ∼= ĈA(a)/ĈA(a + 1) are
reflexive graded gr(A)-modules whose Hilbert function is symmetric
around (s − a)/2. In general, gr(A) is no longer Gorenstein, but the
first quotient

(2.2) G(A) := QA(0) ∼= S[n]/Ann(Fs)

is characterized by the property of being the unique (up to isomor-
phism) graded Gorenstein quotient k-algebra of gr(A) with the same
socle degree. The Hilbert function of A satisfies

(2.3) HA(i) = Hgr(A)(i) =
s−2∑
a=0

HQA(a)(i), i ≥ 0.

SinceHA(0) = HG(A)(0) = 1, it follows that, if a ≥ 1, then QA(a)0 = 0,
whence QA(a)i = 0 when i ≥ s− a (see [14]) for the same values of a.

Moreover,

(2.4) Hgr(A)/CA(a+1)(i) = HS[n]/ĈA(a+1)(i) =
a∑

α=0

HQA(α)(i), i ≥ 0.

We set

fh :=

s−h∑
α=0

HQA(α)(1) = HS[n]/ĈA(s−h+1)(1) = Hgr(A)/CA(s−h+1)(1)

(so that n = HA(1) = f2).

We recall that a local, Artinian k-algebra A is c-stretched for some
positive integer c if c is the maximum positive integer j, if any, such
that HA(j) > 1. If HA(j) ≤ 1 for every j, we say that A is 0-stretched.
Finally, if c ≤ 1, we simply say that A is stretched.

We recall some facts about c-stretched algebras A. Trivially, when
c = 0, then A ∼= S[1]/(xs+1

1 ) (recall that S[1] := k[[x1]]). Stretched al-
gebras have been completely classified in [20], with particular attention
to the Gorenstein case.

There are many results about 2-stretched Gorenstein algebras. A
complete description of such algebras when sdeg(A) = 3 can be found
in [7]. 2-stretched algebras with HA(2) = 2 have been examined in
several papers (see, e.g., [3, 10]). A complete classification in the case
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sdeg(A) ≥ 4 and HA(2) = 3 can be found in [3]. Some very partial
results are known when sdeg(A) = 4 and HA(2) = 4 (see [4]).

3. On the homogeneous summands of the apolar polyno-
mial. Let A ∼= S[n]/J be an Artinian, Gorenstein k-algebra where
J = Ann(F ) for a suitable F = F≥2 ∈ P [n]. Such a polynomial
strongly depends on the representation of A as a quotient of S[n].

For the reader’s benefit, we recall (see [14, Theorems 5.3A, 5.3B]) in
this section that it is always possible to choose a system of generators
of S[n]+ such that F satisfies Fi ∈ P [fi]. If A ∼= S[n]/Ann(F ), then
such a property is not automatically satisfied by F , due to the possible
existence of exotic summands in the homogeneous decomposition of F
as the following well-known example shows.

Example 3.1. Let J := (x2
2, 20x

2
1x2 − x4

1) ⊆ S[2], then J⊥ = ⟨F ⟩S[2],

where F := y51 + y31y2. In particular,

F5 = y51 , F4 = y31y2, F3 = F2 = 0.

We have tdf(F )5 = ⟨y51⟩, tdf(F )4 = ⟨y41⟩, tdf(F )3 = ⟨y31⟩, tdf(F )2 =
⟨y21 , y1y2⟩, tdf(F )1 = ⟨y1, y2⟩; thus, HA = (1, 2, 2, 1, 1, 1) due to relation
(2.1). Hence, we have HG(A) = (1, 1, 1, 1, 1, 1), HQ(1) = (0, 0, 0, 0, 0, 0)
and HQ(2) = (0, 1, 1, 0, 0, 0). In particular, F4 /∈ P [f4] because f4 = 1
in our case.

Proposition 3.2. Let A be a local, Artinian, Gorenstein k-algebra. If
n := HA(1) and s := sdeg(A), then

A ∼= S[n]/Ann(F ),

where

F :=

s∑
i=2

Fi +

n∑
j=f3+1

y2j , Fi ∈ P [fi]i, i ≥ 3, F2 ∈ P [f3]2.

Proof. Due to the aforementioned Theorems 5.3A and 5.3B of [14]
(see also the thesis [15]; in particular, see Theorem 4.38 where an
expanded version of the proof is provided), we know the existence of
a representation A ∼= S[n]/Ann(

∑s
i=2 Fi) with Fi ∈ P [fi]i. Now we
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prove that F2 can actually be written as the sum of an element in
P [f3] plus

∑n
f3+1 y

2
i .

First, we prove that we can make a suitable linear change of
y1, . . . , yn in such a way that the linear space generated by y1, . . . , yf3
remains unchanged and the homogeneous part of degree 2 of F is

F2 +

n∑
j=f3+1

y2j , F2 ∈ P [f3].

Up to a suitable linear transformation of the variables yf3+1, . . . , yn,
we can assume that such a homogeneous part of F has the form

n∑
j=f3+1

λjy
2
j +Q,

where λj ∈ {0, 1} and

Q =

f3∑
i=1

n∑
j=i

qi,jyiyj .

Since HA(1) = n, we know that the classes of y1, . . . , yn are in
tdf(F ). It follows that we have relations of the form:

n∑
i=1

ui(xi ◦ F ) + linear combination of derivatives of F

of order at least 2 = yj + constant.

Since Fi ∈ P [fi]i ⊆ P [f3]i, i ≥ 3, we deduce xj ◦ F = 2λjyj + xj ◦Q.

The only derivatives of F of degree s− 1 are xj ◦F , j = 1, . . . , fs−1.
They are linearly independent because dimk(tdf(F )s−1) = HA(s−1) =
fs−1. It follows that uj = 0, for all j = 1, . . . , fs. Since no derivatives
of order 2 contain yj , for j ≥ f3 + 1 (recall that Fi ∈ P [f3]i, i ≥ 3), it
also follows that the linear combination of such derivatives in the first
member of the above equality must be a constant. We conclude that

n∑
i=f3+1

ui(xi ◦ F ) = yj + constant.
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We deduce that necessarily λj = 1, for j ≥ f3 + 1 (recall that
λj ∈ {0, 1} and xj ◦Q ∈ P [f3]). Up to a suitable linear transformation
of the variables y1, . . . , yn, fixing y1, . . . , yf3 , we can finally assume that
F2 := Q ∈ P [f3]2.

The proof of the statement is complete. �

4. The structure theorem. Now we turn our attention to algebras
A with HA = (1, n,m, 1, . . . , 1). We first prove the following prepara-
tory lemma improving Proposition 3.2 in such a particular case.

Lemma 4.1. Let A be a local, Artinian, Gorenstein 2-stretched k-
algebra. If n := HA(1), m := HA(2), s := sdeg(A), then

A ∼= S[n]/Ann(F ),

where

F := ys1 + F3 + F2 +
n∑

j=m+1

y2j , Fi ∈ P [m]i,

x2
1 ◦F3 = x2

1 ◦F2 = 0 and x2 ◦F3, . . . , xm ◦F3 are linearly independent.

Proof. If m = 1, in particular, if n = 1, then the statement is trivial.
Thus we can assume n,m ≥ 2, whence s ≥ 3.

If s = 3, then F = F̃3+F2. Up to a linear change of variables in S[n],

we can assume that the coefficient of y31 in F̃3 is 1, so that F̃3 = y31+F3

with x3
1 ◦ F3 = 0. If the coefficient of y21 in F3 is ℓ ∈ k[y2, . . . , yn], then

the substitution y1 7→ y1 − ℓ/3 finally gives the condition x2
1 ◦ F3 = 0.

From now on, let s ≥ 4. Equality (2.3) and the symmetry of HQA(a)

around (s−a)/2 imply HQA(a) = 0 when i = 1, . . . , s−5. For the same
reason we also know that HQA(s−4)(i) = 0 if i ̸= 2. We thus have (see
equality (2.4))

HS[n]/ĈA(s−3) =
s−4∑
α=0

HQA(α) = HQA(0) +HQA(s−4).

If HQA(s−4)(2) = p ̸= 0, then HS[n]/ĈA(s−3) = (1, 1, 1 + p, 1, . . . , 1)

which is not possible because the quotient S[n]/ĈA(s − 3) is gener-
ated in degree 1 as a k-algebra. Thus, the only possible symmetric
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decomposition of HA is

HQA(a) =


(1, 1, 1, 1, . . . , 1) if a = 0,

(0, 0, 0, 0, . . . , 0) if a = 1, . . . , s− 4,

(0,m− 1,m− 1, 0, . . . , 0) if a = s− 3,

(0, n−m, 0, 0, . . . , 0) if a = s− 2.

It follows that f2 = n, f3 = m and f4 = · · · = fs = 1. Due to
Proposition 3.2 there exists an isomorphism A ∼= S[n]/Ann(F ), where

F :=

s∑
i=2

Fi +

n∑
j=f3+1

y2j ,

F2 ∈ P [m]2, F3 ∈ P [m]3 and Fi ∈ P [1]i, i = 4, . . . , s. In particular, if
s ≥ 4, then G(A) ∼= S[1]/(ys1); thus, we can assume that Fs = ys1 due
to formula (2.2).

Let ei be the ith canonical generator of Nm. For each s, let

F3 =
∑

α∈Nm,|α|=3

s!

α!
uαy

α,

so that xα − uαx
s
1 ∈ Ann(F ) when α ∈ Nm, |α| = 3 and α ̸= 3e1.

Let us consider the automorphism φ of S[n] defined by

φ(xj) = x̂j :=

{
xj if j ̸= 2, . . . ,m,

xj − u2e1+ejx
s−2
1 if j = 2, . . . ,m.

We have an isomorphism

S[n]/φ−1(Ann(F )) ∼= S[n]/Ann(F ) ∼= A.

We conclude the existence of F̂ ∈ P [n] such that φ−1(Ann(F )) =

Ann(F̂ ). Let

F̂ =

s∑
i=2

F̂i.

Due to the definition of φ, we have that x̂α ∈ Ann(F ) if either |α| ≥ 4
and α ̸= |α|e1, or if x̂α does not contain x1, . . . , xm and |α| ≥ 3, or
if α = 2e1 + ej , j = 2, . . . ,m. It follows that xα ∈ φ−1(Ann(F )) =

Ann(F̂ ) in the same ranges.
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The first condition implies that we can still assume F̂i ∈ P [1],

i = 4, . . . , s. The second one implies that F̂3 ∈ P [m]. The third

condition implies x2
1 ◦ F̂3 ∈ P [1]1.

Moreover the automorphism φ fixes the subalgebra S[m] ⊆ S[n] and
leaves the variables ym+1, . . . , yn unchanged. Thus, we can still write

the homogeneous part of degree 2 of F̂ as

F̂2 +
n∑

j=m+1

y2j , F̂2 ∈ P [m]2

as in the statement of Proposition 3.2.

Adding to F̂ a suitable linear combination of the derivatives xi
1 ◦ F̂

we can finally assume that A ∼= S[n]/Ann(F̂ ) where

F̂ := ys1 + F̂3 + F̂2 +

n∑
j=m+1

y2j ,

and x2
1 ◦ F̂3 = x2

1 ◦ F̂2 = 0.

Finally tdf(F̂ )2 is generated by the classes of y21 and x2◦F̂3, . . . , xm◦
F̂3. Since,

dim(tdf(F̂ )2) = HA(2) = m,

we conclude that x2 ◦ F̂3, . . . , xm ◦ F̂3 are linearly independent. �

Remark 4.2. The above lemma can be easily generalized to any local,
Artinian, Gorenstein c-stretched algebra A for each c as follows. If
n := HA(1), m := HA(2) and s := sdeg(A), then

A ∼= S[n]/Ann(F ),

where

F := ys1 +

c+1∑
i=2

Fi +

n∑
j=m+1

y2j , Fi ∈ P [fi]i, i ≥ 3

F2 ∈ P [f3]i, xc
1 ◦ Fc+1 = xi

1 ◦ Fi = 0, i = 3, . . . , c + 1 and x2 ◦
Fc+1, . . . , xm ◦ Fc+1 are linearly independent.

Following the method used to deal with algebras A with sdeg(A) = 3
(in [7]) and with compressed algebras (in [8]), we will show how
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to construct, for each local, Artinian, Gorenstein k-algebra A with
HA = (1, n,m, 1, . . . , 1), sdeg(A) = s, a distinguished polynomial
F3 ∈ P [m]3 such that

A ∼= S[n]/Ann
(
ys1 + F3 +

n∑
j=m+1

y2j

)
.

Let

F = ys1 + F3 + F2 +
n∑

j=m+1

y2j

be as in the statement of Lemma 4.1 and set A := S[n]/Ann(F ). We
look for a particular algebra automorphism φ of S[n] mapping Ann(F )
to Ann(Fsimple), where

Fsimple := F − F2 = ys1 + F3 +
n∑

j=m+1

y2j .

If we set φ(xi) = zi, then z1, . . . , zn is a new minimal set of
generators of S[n]+. Thus each φ ∈ Aut(S[n]) induces an element
in Aut(S[n]/S[n]s+1

+ ) for each s that, improperly, we again denote by

φ. The algebra S[n]/S[n]s+1
+ is also a finitely generated vector space

on k; we fix the basis

X := (xα)α∈Nn,|α|≤s

given by the monomials ordered first by increasing degree and then lex-
icographically. Thus we can identify each element of Aut(S[n]/S[n]s+1

+ )
with a suitable square matrix. It follows that we check the dual basis
in P [n]≤s, with respect to the perfect pairing ⟨·, ·⟩,

Y :=

(
1

α!
yα

)
α∈Nn,|α|≤s,

ordered first by increasing degree and then lexicographically.

Since, in our case, S[n]s+1
+ ⊆ Ann(F ), it follows that finding the

automorphism φ ∈ Aut(S[n]) mapping Ann(F ) to Ann(Fsimple) is

equivalent to finding an automorphism φ̂ ∈ Aut(S[n]/S[n]s+1
+ ) mapping

Ann(F )/S[n]s+1
+ to Ann(Fsimple)/S[n]

s+1
+ .
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By duality, each automorphism φ ∈ Aut(S[n]) mapping Ann(F ) to
Ann(Fsimple) corresponds to an isomorphism

φ∗ : (S[n]/Ann(Fsimple))
∗ −→ (S[n]/Ann(F ))∗,

which we interpret as an isomorphism φ∗ : Ann(Fsimple)
⊥ → Ann(F )⊥

of subspaces of P [n]≤s ⊆ P [n].

As explained in [7, 8], the matrix M(φ∗) associated to φ∗ with
respect to the basis Y is exactly the transpose of the inverse of the
matrix M(φ) associated to the morphism φ with respect to the basis X .

We are now ready to prove the main result of the paper. It is a
structure theorem for 2-stretched algebras.

Theorem 4.3. Let A be a local, Artinian, Gorenstein k-algebra. Then,
A is 2-stretched with n = HA(1), m = HA(2) and s = sdeg(A) if, and
only if,

A ∼= S[n]/Ann(F ),

where

F := ys1 + F3 +
n∑

j=m+1

y2j , F3 ∈ P [m]3,

x2
1 ◦ F3 = 0 and x2 ◦ F3, . . . , xm ◦ F3 are linearly independent.

Proof. In the following we will set

N(h) := {α ∈ Nm | |α| = h, α ̸= he1}.

We first prove the “if” part. Since F3 ∈ P [m]3, it follows that

tdf(F )q = ⟨s!yq1 + q!xs−q
1 ◦ F3⟩, for each 3 ≤ q ≤ s. Due to equality

(2.1), HA(q) = dimk(tdf(F )q) = 1 in the same range. Clearly ⟨s!y21 +

2xs−2
1 ◦ F3, x2 ◦ F3, . . . , xm ◦ F3⟩ ⊆ tdf(F )2. Since x2 ◦ F3, . . . , xm ◦ F3

are linearly independent and do not contain y21 , because x2
1 ◦F3 = 0, it

follows that equality holds; thus, again HA(2) = dimk(tdf(F )2) = m.

Similarly ⟨s!y1 + xs−1
1 ◦ F3, x

γ ◦ F3, ym+1, . . . , yn⟩γ∈N(2) ⊆ tdf(F )1.
Again we actually have an equality. Indeed the only possible new
element in tdf(F )1 could be a linear combination of s!y21 + 2xs−2

1 ◦
F3, x2◦F3, . . . , xm◦F3 when s = 4. In addition, the condition x2

1◦F3 = 0
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guarantees that this cannot occur. It follows that

tdf(F≥3)1 = ⟨s!y1 + 2xs−1
1 ◦ F3, x

γ ◦ F3⟩γ∈N(2).

We conclude that the Hilbert function of B := S[m]/(F≥3) is HB =
(1, a,m, 1, . . . , 1). Due to formula (2.3) we know that a ≥ m. Since
F≥3 ∈ P [m] we necessarily have

⟨s!y1 + 2xs−1
1 ◦ F3, x

γ ◦ F3⟩γ∈N(2) = ⟨y1, . . . , ym⟩,

whence HA(1) = n.

Now we prove the “only if” part. Due to Lemma 4.1 we know that

A ∼= S[n]/Ann(F ),

where

F := ys1 + F3 + F2 +

n∑
j=m+1

y2j , Fi ∈ P [m]i,

x2
1 ◦F3 = x2

1 ◦F2 = 0 and x2 ◦F3, . . . , xm ◦F3 are linearly independent.
We first examine the case n = m. The changes in the case n > m will
be listed at the end of the proof.

Imitating the proof of [7, Theorem 3.3], we look for a suitable
automorphism φ ∈ Aut(S[n]≤s) defined as

φ(xj) = xj +
∑

γ∈N(2)

bγ,jx
γ ,

whose dual morphism transforms Ann(Fsimple)
⊥ to Ann(F )⊥. The

matrix M(φ) with respect to Y is:

(4.1) B :=



1 0 0 0 · · · 0
0 In 0 0 · · · 0
0 B(2, 1) I(n+1

2 ) 0 · · · 0

0 0 B(3, 2) I(n+2
3 ) · · · 0

0 0 B(4, 2) B(4, 3) · · · 0
0 0 0 B(5, 3) · · · 0
...

...
...

...
. . .

...
0 0 0 ∗ · · · I(n+e−1

e )


,
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where Ih is the identity matrix of order h, B(i, j) are matrices of order(
n+i−1

i

)
×

(
n+j−1

j

)
whose entries are forms of degree i− j in the bγ,j ’s

and 0 is a zero matrix of suitable order.

Set

F3 =
∑

α∈N(3)

s!

α!
uαy

α, F2 =
∑

β∈N(2)

s!

β!
vβy

β .

We have

n∑
i=1

u2e1+eiyi = x2
1 ◦ F3 = 0, v2e1 = x2

1 ◦ F2 = 0.

We denote by ∆ the n×
(
n+1
2

)
matrix whose tth row is the vector of

the coordinates of xt ◦ F3 with respect to the basis Y. We notice that
the condition x2

1 ◦ F3 = 0 implies that the first column of ∆ is zero.

Let 0t be the 0 vector of k⊕t, and let e be the first vector of the

canonical basis of k(
n+s−1

s ) (thus e is the vector of the components of
ys1 with respect to Y). The component of F and Fsimple with respect
to the basis Y of P [n]≤s are, respectively,

[F ]Y = (0, 0n, s!vβ , s!uα, 0(n+3
4 ), . . . , 0(n+s−2

s−1 ), e) β∈Nm,|β|=2
α∈Nm,|α|=3

,

[Fsimple]Y = (0, 0n, 0(n+1
2 ), s!uα, 0(n+3

4 ), . . . , 0(n+s−2
s−1 ), e) β∈Nm,|β|=2

α∈Nm,|α|=3

.

By duality, we have to look for a φ such that

(uα)α∈Nm,|α|=3B(3, 2) = (vβ)β∈Nm,|β|=2.(4.2)

Notice that the columns of B(3, 2) are exactly the coefficients of the
forms of degree 3 in the products(

xj +
∑

γ∈Nm,|γ|=2

bγ,jx
γ
)(

xh +
∑

δ∈Nm,|δ|=2

bδ,hx
δ
)

for j ≤ h = 1, . . . , n. It follows that the entry on the αth row and on
the (j, h)th column is

B(3, 2)α,(j,h) =


bδ+ej ,h + bγ+eh,j if α ≥ ej + eh,

bδ+ej ,h if α ≥ ej , α ̸≥ eh,

0 otherwise.
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Thus, the entries of the product (uα)α∈N(3)B(3, 2) are bihomo-
geneous forms in the uα’s and bγ,j ’s. Hence, there is a suitable

n
(
n+1
2

)
×

(
n+1
2

)
matrix U whose coefficients depend on the uα’s and

such that

(uα)α∈Nm,|α|=3B(3, 2) = (bγ,j) γ∈Nm,|γ|=2
j=1,...,n

tU(4.3)

(the bγ,j ’s are ordered first with respect to γ and then with respect
to j). Thus, we obtain from equalities (4.2) and (4.3) the system of
linear equations:

U t(bγ,j) γ∈Nm,|γ|=2
j=1,...,n

= t(vβ)β∈Nm,|β|=2(4.4)

in the variables bγ,j ’s. We recall that, in [7, Proof of Theorem 3.3], it
is proved that U is a lower triangular block matrix

U =



U(1) ∗ ∗ · · · ∗ ∗
0 U(2) ∗ · · · ∗ ∗
0 0 U(3) · · · ∗ ∗
...

...
...

. . .
...

...
0 0 0 · · · U(n− 1) ∗
0 0 0 · · · 0 U(n)


,

where U(h) is a (n − h + 1) ×
(
n+1
2

)
matrix whose first row is twice

the hth row of the matrix ∆ (previously defined as the matrix of the
partial derivatives of F3) and the tth row is exactly the (h + t − 1)th
row of ∆, t = 2, . . . , n− h+ 1.

Due to the independence of the derivatives x2 ◦ F3, . . . , xm ◦ F3 it
thus follows that the rank of the submatrix obtained by erasing the first
row of U is maximal. Moreover, the constant term of the first equation
is v2e1 which is zero, because x2

1 ◦ F2 = 0. It follows that the existence
of a solution of the system (4.4) with bγ,1 = 0, γ ∈ Nm and |γ| = 2.

In order to extend the above proof to the case n > m it suffices to
change the ordering on X and, consequently, on Y. In this case we fix
an order on X by first taking all the monomials in x1, . . . , xm (ordered
first by degree and then lexicographically), and then all the remaining
monomials in any order. Thus,

M(φ) =

(
B 0
∗ B′

)
,
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where B is as in (4.1) and B′ is a suitable matrix whose entries depend
on the bγ,j ’s such that γ ≥ ej for some j ≥ m+ 1. We can thus repeat
the above arguments, obtaining a system of the form:(

U ∗
0 U ′

)
t(bγ,j) γ∈Nm,|γ|=2

j=1,...,n
= t(vβ)β∈Nm,|β|=2,(4.5)

where U is as above and the entries of U ′ depend on uα such that
α ≥ ej for some j ≥ m + 1. On the one hand, due to Lemma 4.1 we
know that such uα are all zero, i.e., U ′ is the zero matrix. On the other
hand, again by Lemma 4.1 we know that vβ = 0, for β ≥ ej , when
j ≥ m + 1. We deduce that such a system again has solutions, and,
in particular, one of its solutions satisfies bγ,j = 0, γ ∈ Nm, |γ| = 2,
j = 1,m+ 1, . . . , n. �

5. Obstructedness of a class of algebras. In this section, we
make use of the above structure theorem in order to deal with the
obstructedness of the points in Hi lbG11(PN

k ) corresponding to schemes
X ∼= spec(A) where A is a local, Artin, Gorenstein k-algebra with
Hilbert function HA = (1, 4, 4, 1, 1). Thus, A ∼= S[4]/J , where J
contains

(5.1) xβ , xα, β, α ∈ N4, |β| = 4, β ̸= 4e1, |α| = 5.

It follows that S[4]5+ ⊆ J ; hence, there is a natural isomorphism

S[4]

J
∼=

k[x1, x2, x3, x4]

J ∩ k[x1, x2, x3, x4]
,

inducing a natural epimorphism k[x1, x2, x3, x4] � A ∼= S[4]/J , i.e., an
embedding X ⊆ A4

k ⊆ P4
k.

In [5], we proved the irreducibility of Hi lbG11(Pn
k ) by studying the

locus of singular X such that X ∼= spec(A), where A is local with
HA ̸= (1, 4, 4, 1, 1). Thus, a point X ∈ Hi lb11(Pn

k ) is singular, i.e., the
corresponding scheme is obstructed, if the dimension of the tangent
space at X to Hi lb11(Pn

k ) is greater than dim(Hi lbG11(Pn
k )).

Obstructedness depends only on the intrinsic structure of X (see [3]
and the references therein), hence only on A. Thus, we can restrict our
attention to the aforementioned embedding in P4

k, and we simply speak
about the obstructedness of the algebra A.
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Recall that the tangent space to Hi lbG11(P4
k) at X is canonically

identified with H0(X,N ), global sections of the normal sheaf N of
X := spec(S[4]/J) ⊆ A4

k. Thus, X is unobstructed if and only if

NS[4]/J := h0 (X,N ) = dim
(
Hi lbG11(P4

k)
)
= 44.

In [3], we pointed out that NS[4]/J = dimk(S[4]/J
2)− 11.

Due to Theorem 4.3, we can assume J = Ann(F ), where F = y41+F3,
F3 ∈ P [4], x2

1 ◦ F3 = 0 and x2 ◦ F3, x3 ◦ F3, x4 ◦ F3 are linearly
independent. So,

F = y41 + y1Q+H,

where Q ∈ k[y2, y3, y4]2 and H ∈ k[y2, y3, y4]3. Either H = 0 or, up to
a suitable linear transformation of the variables y2, y3, y4, is one of the
following:

(5.2)

y32 + y33 + y34 + ty2y3y4, y32 + y33 + y2y3y4,

y32 + y2y3y4, y2y3y4, y32 + y23y4,

y22y3 + y23y4, y23y4 − y3y
2
4 , y3y

2
4 , y34 .

We will compute dimk(S[4]/J
2) case by case.

Before starting with the description in the different cases we give
descriptions of the methods used to perform the computations.

Due to relations (5.1), we know that S[4]10+ ⊆ J2; thus,

S[4]

J2
∼=

k[x1, x2, x3, x4]

J2 ∩ k[x1, x2, x3, x4]
,

too. In particular, when we perform computations, we can always work
in the polynomial ring k[x1, x2, x3, x4] instead of S[4]. For this reason,
we can make use of the computer algebra software Singular [6] for all
the computations in S[4].

Moreover, J is never homogeneous. We computed the initial ideals
in(J) and in(J2) with respect to the product term order for which

(i) x4 > x3 > x2 > x1;
(ii) the graded reverse lexicographic order on x4, x3, x2;
(iii) the lexicographic order on x1.
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Hence, in order to compare xa4
4 xa3

3 xa2
2 xa1

1 and xb4
4 xb3

3 xb2
2 xb1

1 , we first

compare xa4
4 xa3

3 xa2
2 and xb4

4 xb3
3 xb2

2 with respect to degrevlex, and, if

they are equal, we compare xa1
1 and xb1

1 with respect to lex.

For such a choice, the Hilbert function of S[4]/in(J) is (1, 4, 4, 1, 1),
while the Hilbert function of S[4]/in(J2) has to be computed case by
case, as Q and H vary.

We start by examining the case H = 0.

Proposition 5.1. Let A := S[4]/Ann(y41+y1Q) with Q ∈ k[y2, y3, y4]2
and HA = (1, 4, 4, 1, 1). Then NA = 49; hence, A is obstructed.

Proof. We know that xi ◦ F3, i = 2, 3, 4, are linearly independent
because of Theorem 4.3. It follows that, up to a linear change of the
variables y2, y3, y4, we can assume Q = y22 + y23 + y24 . In this case,
J = Ann(F ) is generated by

x2
4 − x2

2, x2
3 − x2

2, x4x3, x4x2,

x3x2, 12x2
4 − x3

1, x2x
2
1, x3x

2
1, x4x

2
1.

Using Singular, we obtain HS[4]/J2 = (1, 4, 10, 20, 20, 4, 1); thus,
NA = 49 > 44. �

Remark 5.2. The hypothesis HA = (1, 4, 4, 1, 1) in Proposition 5.1 is
equivalent to rk(M) = 3, where M is the symmetric matrix associated
to the quadratic form Q.

Now we turn our attention to the case H ̸= 0. It follows that H
is one of the polynomials indicated in the list (5.2). We outline the
strategy for the computations.

Once H ̸= 0 is fixed, for each b := (b0, . . . , b5) ∈ A6
k, we consider the

quadratic form:

Qb := b0y
2
2 + 2b1y2y3 + b2y

2
3 + 2b3y2y4 + 2b4y3y4 + b5y

2
4

The associated symmetric matrix is the matrix Mb defined in the
introduction.

We define FH,b := y41 + y1Qb + H and AH,b := S[4]/Ann(FH,b).
Hence, Ann(FH,b) depends on x1, . . . , x4 and b0, . . . , b5. Due to The-
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orem 4.3 and [11, page 415, Corollary], we have a flat family whose
base is the open non-empty subset

BH := {b ∈ A6
k | where xi ◦ (y1Qb +H),

i = 2, 3, 4, are linearly independent}.

Trivially, we must compute the Hilbert function of Ann(FH,b)2 as a
function of b.

The following result helps us to simplify the computations in several
cases.

Lemma 5.3. Let H ∈ k[y2, y3, y4]3 be fixed. If 0 ∈ BH and AH,0 is
unobstructed, then BH = A6

k and, for every b ∈ A6
k, we have that AH,b

is unobstructed.

Proof. Fix b and H. Theorem 4.3 implies that HAH,0 = (1, 4, 4, 1, 1)

because 0 ∈ BH . In particular, xi ◦ FH,0
3 = xi ◦ H, i = 2, 3, 4, are

linearly independent; thus, the same is true for xi ◦ FH,tb
3 , i = 2, 3, 4,

without restrictions on t ∈ k and b ∈ A6
k, because y1 does not appear

in H. In particular, BH = A6
k.

Again, Theorem 4.3 implies that the Hilbert function of AH,tb is
(1, 4, 4, 1, 1); thus, we have a flat family ([11, page 415, Corollary]) of
deformations of AH,0 with base A1

k. If t ̸= 0, the automorphism of P [4]
defined by

(y1, y2, y3, y4) 7−→ (t3y1, t
4y2, t

4y3, t
4y4)

shows that all the other deformations are isomorphic to AH,b. Since
AH,0 is unobstructed, it follows that the general one, i.e., AH,b, is
unobstructed too. �

As an immediate application of Lemma 5.3 we obtain the following
general result.

Proposition 5.4. Let H be either y32 + y33 + y34 + ty2y3y4 with t(t3 −
216) ̸= 0, or y32 + y33 + y2y3y4, y

3
2 + y2y3y4, or y2y3y4. Then BH = A6

k,
and AH,b is unobstructed.

Proof. In all cases but the first one, we apply the same strat-
egy as in Proposition 5.1. We compute the generators of the ap-
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olar ideal J for Qb = 0, and we compute the Hilbert function of
S[4]/J2 by using Singular that turns out to be equal to HS[4]/J2 =

(1, 4, 10, 20, 14, 4, 1, 1) in all the cases. Hence, 0 ∈ BH , and AH,0 is
unobstructed. The result then follows from Lemma 5.3.

Now we consider the first case. We will write Ht instead of H. As
a first stage, we look for t such that 0 ∈ Ut, where Ut ⊆ A6

k is the open
subset of b’s such that AHt,b is unobstructed. For such values of t, we
have BHt = A6

k again by Lemma 5.3.

The ideal Jt := Ann(FHt,0) is non-minimally generated by

x1x2, x1x3, x1x4, tx2
2 − 6x3x4, tx2

3 − 6x2x4,

tx2
4 − 6x2x3, x2

1x2, x1x
2
2, x2

1x3, x1x2x3,

x2
2x3, x1x

2
3, x2x

2
3, x2

1x4, x1x2x4, x2
2x4,

x1x3x4, x2
3x4, x1x

2
4, x2x

2
4, x3x

2
4, 4x3

2 − x4
1,

4x3
3 − x4

1, 24x2x3x4 − tx4
1, 4x3

4 − x4
1.

By computing a Gröbner basis of Jt, we get that, if t ̸= 0, the
initial ideal of Jt does not depend on t, and the Hilbert function
HS[4]/J = (1, 4, 4, 1, 1), as expected.

The coefficients of the initial terms of the polynomials of a Gröbner
basis of J2

t are either non-zero constants, multiples of t, or multiples
of t3 − 216, e.g., tx5

4 − 6x4
2x3, (t

3 − 216)x4
2x4. Thus, if t(t

3 − 216) ̸= 0,
the Hilbert function HS[4]/J2

t
does not depend on t and is the same one

computed in previous cases. So the proof of the statement follows by
using the same previous arguments also in the first case. �

Remark 5.5. The form y32 + y33 + y34 + ty2y3y4 is the sum of the cubes
of three linearly independent linear forms, i.e., it represents a Fermat
cubic in the projective plane, if, and only if, t(t3 − 216) = 0.

In the remaining cases of list (5.2) plus the Fermat cubic, the above
argument does not work. Anyhow, as will be evident from the com-
putations below, the generators of Ann(FH,b), hence of Ann(FH,b)2,
in k[b] ⊗k S[4], have homogeneous coefficients in k[b], and this prop-
erty still holds when we compute Gröbner bases of either Ann(FH,b)
or Ann(FH,b)2.
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Now, we focus on Ann(FH,b)2. The Hilbert function of the quo-
tient S[4]/Ann(FH,b)2 will be constant on an open subset of BH . If
the Hilbert function of S[4]/Ann(FH,b)2 changes for suitable b, then
in(Ann(FH,b)2) must change as well. Of course, the converse does not
hold. The initial ideal in(Ann(FH,b)2) could change but the Hilbert
function of S[4]/Ann(FH,b)2 stays the same. However, we compute a
Gröbner basis of Ann(FH,b)2 with respect to the term order described
above, and we compute, for each monomial of in(Ann(FH,b)2), the
homogeneous ideals in k[b] spanned by its coefficients. We compute
the prime ideals r∗ associated to such ideals, giving us a set of level
1 conditions that force the initial ideal of Ann(FH,b)2 to change. Of
course, we can restrict to the associated prime ideals because we study
set-theoretically the family S[4]/Ann(FH,b) → BH . By computing the
Gröbner basis of r∗ + Ann(FH,b)2, we get a new initial ideal that we
study exactly as before, obtaining a new set of level 2 prime ideals.
Continuing with this strategy, we construct a tree that we analyze leaf-
by-leaf from the point of view of the Hilbert function.

Before listing the results, we explain how we perform the computa-
tions.

Computational strategy. The Gröbner bases computations will be
performed in the ring k[x4, . . . , x1, b0, . . . , b5], up to choosing a product
term ordering, with 3 blocks of variables: x4 > x3 > x2, x1, b0 > · · · >
b5, and degrevlex orders the monomials in the first and last block, while
lex orders the monomials in the second block.

The steps of the computations are as follows.

(1) To compute the Hilbert function of Ann(FH,b)2 over the gen-
eral element of the variety V defined by a prime ideal r ⊂ k[b],
we proceed in the following way. First, we compute a Gröbner
basis of rb = r+Ann(FH,b)2, then the initial ideal in(rb), gen-
erated by the initial terms of the polynomial in the computed
Gröbner basis, then erase from in(rb) the monomials contained
in k[b], and finally we reduce the resulting monomial ideal by
setting bi = 1 for each i. As a last step, we compute the Hilbert
function of the ideal we get.

(2) To compute the ideal spanned by the coefficients of a partic-
ular initial monomial M ∈ k[x1, . . . , x4], we select the polyno-
mials in the Gröbner basis having initial monomial MM ′ with
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M ′ ∈ k[b0, . . . , b5]. Then we compute the remainder of every
such polynomial modulo M and the difference D between the
polynomial and its remainder. D has M as a factor, and we
call d the quotient. The computed d’s are the generators of the
ideal spanned by the coefficients. The prime ideals associated
to such an ideal are computed by using the package Primdec

in Singular, when it produces the result (this happened ex-
cept for a few cases in which we had to make the computation
by hand with ad hoc techniques, because the size of the ideal
was too big for Singular to compute the result in a reasonable
time).

In next proposition, we deal with the cases H ̸= 0 not covered by
Proposition 5.4.

Proposition 5.6. Let H = y32 + y33 + y34. Then BH = A6
k and AH,b is

obstructed if, and only if, b ∈ V (b1, b3, b4) ⊆ A6
k.

Let H = y32 + y23y4. Then BH = A6
k and AH,b is obstructed if, and

only if, b ∈ V (b1, b3, b5) ⊆ A6
k.

Let H = y22y3 + y23y4. Then BH = A6
k and AH,b is obstructed if, and

only if, b ∈ V (b0 − b4, b3, b5) ⊆ A6
k.

Let H = y23y4 − y23y4. Then BH = A6
k \ V (b0, b1, b3) and AH,b is

obstructed if, and only if, b ∈ V (−b21+b0b2−b1b3−b23+b0b4+b0b5) ⊆ A6
k.

Let H = y3y
2
4. Then BH = A6

k \ V (b0, b1, b3) and AH,b is obstructed
if, and only if, b ∈ V (b21 − b0b2) ⊆ A6

k.

Let H = y34. Then BH = {b ∈ A6
k | rk(Mb) ≥ 2} and AH,b is

obstructed for each b ∈ BH .

In all the aforementioned cases, if AH,b is obstructed, then NAH,b =
49.

Proof. In each of the above cases we indicate a non-minimal set of
generators of the ideal Ann(FH,b) and the locus in BH corresponding
to obstructed ideals. Only in the first case of the list we report also the
tree and the Hilbert function of the general element of each subset of
BH where the initial ideal changes.

Let H = y32 + y33 + y34 . It is immediate to check that BH = A6
k.

Again we will denote by U the open and non-empty subset of b ∈ A6
k
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such that AH,b is unobstructed. Since H is fixed throughout the whole
proof we will simply write Jb instead of Ann(FH,b). Jb is non-minimally
generated by both the monomials in list (5.1) and

3x2x1 − b0p1 − b1p2 − b3p3, 3x3x1 − b1p1 − b2p2 − b4p3,

12x3x2 − b1x
3
1, 3x4x1 − b3p1 − b4p2 − b5p3,

12x4x2 − b3x
3
1, 12x4x3 − b4x

3
1, x2x

2
1, 12x2

2x1 − b0x
4
1,

4x3
2 − x4

1, x3x
2
1, 12x3x2x1 − b1x

4
1, x3x

2
2,

12x2
3x1 − b2x

4
1, x2

3x2, 4x3
3 − x4

1, x4x
2
1,

12x4x2x1 − b3x
4
1, x4x

2
2, 12x4x3x1 − b4x

4
1, x4x3x2, x4x

2
3,

12x2
4x1 − b5x

4
1, x2

4x2, x2
4x3, 4x3

4 − x4
1,

where

p1 = x2
2 − b0x

3
1/12, p2 = x2

3 − b2x
3
1/12, p3 = x2

4 − b5x
3
1/12.

We know 0 /∈ U , because NS[4]/J0
= 49. We have that in(J2

b ) could

change only if b is in the variety V (r∗) ⊆ A6
k where r∗ is one of the

following ideals, computed according to point (2) of the computational
strategy, ordered first by decreasing codimension and then by increasing
degree:

• r1 = (b1, b3, b4);
• r2 = (b3, b4, b5);
• r3 = (b0, b1, b3);
• r4 = (b1, b2, b4);
• r5 = (−b24+b2b5,−b3b4+b1b5,−b2b3+b1b4,−b23+b0b5,−b1b3+
b0b4,−b21 + b0b2);

• r6 = (b1, b3);
• r7 = (b1, b4);
• r8 = (b3, b4);
• r9 = (−b2b3 + b1b4,−b1b3 + b0b4,−b21 + b0b2);
• r10 = (−b24 + b2b5,−b3b4 + b1b5,−b2b3 + b1b4);
• r11 = (−b3b4 + b1b5,−b23 + b0b5,−b1b3 + b0b4);
• r12 = (b3);
• r13 = (b1);
• r14 = (−b21 + b0b2);
• r15 = (−b1b3 + b0b4);
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• r16 = (−b2b
2
3 + 2b1b3b4 − b0b

2
4 − b21b5 + b0b2b5);

• r17 = (b1b
2
2b

2
3 − 2b21b2b3b4 + b31b

2
4 − b33b

2
4 + 2b1b

2
3b4b5 − b21b3b

2
5).

These ideals are the first level conditions in the tree we are construct-
ing. Now, we impose the conditions one at a time, i.e., we compute a
Gröbner basis of r∗ + J2

b , i.e., J
2
b restricted to r∗, and we analyze its

initial ideal.

We consider the ideals r1, . . . , r17 in the given order.

Let us first look at r1. For a general b ∈ V (r1), we have that
HS[4]/J2

b
= (1, 4, 10, 20, 16, 7, 1, 1) (see point (1) of the computational

strategy) and so NS[4]/Jb
= 49. Hence, AH,b is obstructed for a general

b ∈ V (r1). Since V (r1) is irreducible, it follows that V (r1)∩U = ∅ due
to the semicontinuity of the Hilbert function of S[4]/J2

b . The following
computations will prove that actually V (r1) = A6

k \ U .
Consider r2. For a general b ∈ V (r2), A

H,b is unobstructed because
HS[4]/J2

b
= (1, 4, 10, 20, 14, 5, 1), (see point (1) of the computational

strategy) and so NS[4]/Jb
= 44.

As we always refer to point (1) of the computational strategy when
we compute the Hilbert function of S[4]/J2

b for a general b, we omit
the reference from now on.

The conditions that force the initial ideal to change obviously contain
r2. They are:

• r2,1 = (b1, b3, b4, b5);
• r2,2 = (b0, b1, b3, b4, b5);
• r2,3 = (−b21 + b0b2, b3, b4, b5);
• r2,4 = (b1, b2, b3, b4, b5).

Notice that r2,2, r2,4 ⊃ r2,1 ⊃ r1. From the analysis of r1, it follows that
AH,b is obstructed for every b ∈ V (r2,2) ∪ V (r2,4) ∪ V (r2,1) = V (r2,1).
By using Singular, we check that NS[4]/Jb

= 49. On the other hand,
if b ∈ V (r2,3) \ V (r2,1), then b ∈ U because HS[4]/J2

b
is equal to the

one for b general in V (r2). The conditions that force the initial ideal
of r2,3 + J2

b to change are r2,2, r2,4 and r0 = (b0, . . . , b5). They were
studied before, and so the analysis of this case is finished.

Further, we consider r3. We first notice that a general b ∈ V (r3)
corresponds to an unobstructed scheme AH,b. There are many con-
ditions that force the initial ideal to change, but many of them were
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already examined above, e.g., r2,2. An easy and careful check of such
conditions yields that the only totally new ones are

• r3,1 = (b0, b1, b3, b4);
• r3,2 = (b0, b1, b2, b3, b4);
• r3,3 = (−b24 + b2b5, b3, b1, b0).

Notice that V (r3,1), V (r3,2) ⊆ V (r1) ⊆ A6
k \ U . Moreover, AH,b is

unobstructed for a general b ∈ V (r3,3). As the further conditions which
force the initial ideal to change are contained in V (r1), we conclude that

V (r3,3) \ V (r1) ⊂ U .

Also for V (r4), the general b ∈ V (r4) is associated to an unob-
structed scheme AH,b. The conditions that force the initial ideal to
change are:

• r4,1 = (b1, b2, b3, b4);
• r4,2 = (−b23 + b0b5, b4, b2, b1).

The first one defines a subvariety of V (r1), and so we do not study it
further. If b ∈ V (r4,2) \ V (r1), then b ∈ U for the same argument used
to study V (r3,3) \ V (r1). A similar argument holds for V (r5) \ V (r1),
too.

Now, we start studying the codimension 2 ideals that appear in the
initial list. The first we consider is r6. Again, the general b ∈ V (r5) is
in U , and the only new condition that forces the initial ideal to change
is

• r6,1 = (−b24 + b2b5, b3, b1).

By using the same technique, we get that b ∈ U if, and only if,
b /∈ V (r1). Thus, there is no level 3 condition to analyze. A similar
argument holds for r7 and r8. In this case, the only new conditions are:

• r7,1 = (−b23 + b0b5, b4, b1);
• r8,1 = (−b21 + b0b2, b4, b3).

b ∈ U if, and only if, either b ∈ V (r7,1) \ V (r1) or b ∈ V (r8,1) \ V (r1).

Next, we examine V (r9). Also, in this case, the general b ∈ V (r9)
belongs to U . The conditions that force in(r9 + J2

b ) to change are:

• r9,1 = (b2, b1, b0);
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• r9,2 = (b3, b2, b1, b0).

Notice that V (r9,2) ⊆ V (r3). We already studied V (r3), and so we stop
the analysis of this case here because it does not give new insight. The
general b ∈ V (r9,1) belongs to U , but it appears as a new condition
that forces in(r9,1 + J2

b ) to change, i.e., a level 3 condition. It is:

• r9,1,1 = (b4, b2, b1, b0).

Trivially, V (r9,1,1) ⊆ V (r4), which we studied above.

When studying r10, no new condition shows up, and V (r10)∩ U ̸= ∅.
The last codimension 2 ideal is r11. Also, for it, we have that

V (r11) ∩ U ̸= ∅, for that same argument, and the special condition
is:

• r11,1 = (b5, b3, b0).

Studying r11,1, the following two new conditions appear

• r11,1,1 = (b5, b3, b1, b0);
• r11,1,2 = (b5, b4, b3, b0).

The first one defines a subvariety of V (r3), while the second one defines
a subvariety of V (r2), and so none of them has to be studied. Moreover,
the points outside V (r11,1,1) ∪ V (r11,1,2) are in U .

Now, we consider the codimension 1 ideals.

The first one we consider is r12. For the general b ∈ V (r12), A
H,b

is unobstructed and so b ∈ U . The new conditions forcing the initial
ideal to change are:

• r12,1 = (−b21 + b0b2, b3);
• r12,2 = (b0, b3);
• r12,3 = (−b0b

2
4 − b21b5 + b0b2b5, b3).

There exists b ∈ V (r12,2) ∩ U , and the only new condition is:

• r12,2,1 = (b4, b3, b0).

Such a case was already examined above because V (r12,2,1) ⊆ V (r8).

When we take a general b ∈ V (r12,1), then again b ∈ U . The only
new condition to examine is:
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• r12,1,1 = (b3, b2, b1).

We can argue as above because V (r12,1,1) ⊆ V (r6).

Finally, the scheme AH,b associated to the general b ∈ V (r12,3) is
unobstructed, i.e., b ∈ U . As no new condition shows up, the analysis
of r12 is finished.

Also, in the next case, the general b ∈ V (r13) is in U . The conditions
that force in(r13 + J2) to change are:

• r13,1 = (b2, b1);
• r13,2 = (b1, b0);
• r13,3 = (−b2b

2
3 − b0b

2
4 + b0b2b5, b1).

If b is general in either V (r13,1) or V (r13,3), then b ∈ U . Since no new
condition appears it follows that the same holds for each b. Similarly,
the general b ∈ V (r13,2) is in U , but the following two new conditions
show up:

• r13,2,1 = (b4, b1, b0);
• r13,2,2 = (b32 − b34 + b2b4b5, b3, b1, b0).

The first ideal defines a subvariety of V (r7), while the second one defines
a subvariety of V (r3), and so none of them has to be studied.

The analysis of r14 is more difficult than the previous ones. We still
have V (r14) ∩ U ̸= ∅, and the only new condition that appears is:

• r14,1 = (b1b
2
2b

2
3−2b21b2b3b4+b31b

2
4−b33b

2
4+2b1b

2
3b4b5−b21b3b

2
5,−b21+

b0b2).

Again, V (r14,1) ∩ U is not empty, but a new condition appears:

• r14,1,1 = (b2b3+b1b4, b1b3+b0b4, b
2
1−b0b2, 4b

3
2b4+b44+2b2b

2
4b5+

b22b
2
5, 4b1b

2
2b4−b3b

3
4+2b1b

2
4b5+b1b2b

2
5, 4b0b

2
2b4+b23b

2
4+2b0b

2
4b5+

b0b2b
2
5, 4b0b1b2b4 − b33b4 − 2b0b3b4b5 + b0b1b

2
5, b

4
3 + 4b20b2b4 +

2b0b
2
3b5 + b20b

2
5).

although V (r14,1,1) ∩ U ≠ ∅, several non-generic new conditions show
up:

• r14,1,1,1 = (4b32b4 + b44 + 2b2b
2
4b5 + b22b

2
5, b3, b1, b0);

• r14,1,1,2 = (b3 + b4, b1 − b2, b0 − b2, 4b
3
2b4 + b44 + 2b2b

2
4b5 + b22b

2
5);

• r14,1,1,3 = (b4, b2, b1, b
2
3 + b0b5);
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• r14,1,1,4 = (b0 + b1 + b2, b
2
3 − b3b4 + b24, b2b3 + b1b4, b1b3 − b1b4 −

b2b4, b
2
1 + b1b2 + b22, 4b

3
2b4 + b44 +2b2b

2
4b5 + b22b

2
5, 4b1b

2
2b4 − b3b

3
4 +

2b1b
2
4b5 + b1b2b

2
5);

• r14,1,1,5 = (b3, b1, b0, 3b
2
4 − b2b5, 9b2b4 + 4b25, 3b

2
2 + 4b4b5);

• r14,1,1,6 = (b4 + b5, b3, b2 − b5, b1, b0);
• r14,1,1,7 = (b24 − b4b5 + b25, b3, b2 − b4 + b5, b1, b0).

The ideals r14,1,1,1, r14,1,1,5, r14,1,1,6 and r14,1,1,7 define subvarieties of
V (r3), while r14,1,1,3 defines a subvariety of V (r4), and so we do not
study them.

We have V (r14,1,1,2) ∩ U ̸= ∅, and the new non-general conditions
are:

• r14,1,1,2,1 = (b5, b4, b3, b1 − b2, b0 − b2);
• r14,1,1,2,2 = (b24 − b4b5 + b25, b2 − b4 + b5, b3 + b4, b1 − b2, b0 − b2);
• r14,1,1,2,3 = (b4 + b5, b2 + b4, b3 + b4, b1 − b2, b0 − b2).

The first ideal defines a subvariety of V (r2) ,and so we do not study
it. The general b in either V (r14,1,1,2,2) or V (r14,1,1,2,3) is in U and, in
both cases, the non-general condition is b0 = · · · = b5 = 0 that defines
a point in V (r1).

We have V (r14,1,1,4) ∩ U ̸= ∅, and the non-general conditions are:

• r14,1,1,4,1 = (b24−b4b5+b25, b3−b4+b5, b2−b3, b1−b5, b0+b1+b2);
• r14,1,1,4,2 = (b5, b4, b3, b

2
1 + b1b2 + b22, b0 + b1 + b2);

• r14,1,1,4,3 = (b24−b4b5+b25, b3−b5, b2−b4+b5, b1+b4, b0+b1+b2);
• r14,1,1,4,4 = (b4 + b5, b

2
3 + b3b5 + b25, b2 + b4, b1 − b3, b0 + b1 + b2).

V (r14,1,1,4,2) ⊆ V (r2), and so we do not consider it. The general b
in either V (r14,1,1,4,1) or V (r14,1,1,4,3) or V (r14,1,1,4,4) is in U , and the
only non-general condition is b0 = · · · = b5 = 0 in all three cases. It
was considered earlier, and so the analysis of r14 is complete, too.

The general b ∈ V (r15) belongs to U , and the only new non-general
condition that appears from the study of in(r15 + J2) is:

• r15,1 = (b1b3−b0b4, b0b
2
2b3+b31b4−2b0b1b2b4−b33b4+2b0b3b4b5−

b0b1b
2
5).

Again, V (r15,1) ∩ U ̸= ∅, and no new non-general condition shows up.
Hence, the analysis of r15 is complete.
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V (r16)∩U ̸= ∅ and no new non–general condition appears. We infer
V (r16) \ V (r1) ⊆ U .

So, we can consider the last and more difficult case r17. As in most of
the previous cases, V (r17)∩U ̸= ∅, and the new non-general conditions
are:

• r17,1 = (b2b
2
3 − 2b1b3b4 + b0b

2
4 + b21b5 − b0b2b5, b

3
1 − b0b1b2 − b33 +

b0b3b5);
• r17,2 = (b1b3+b0b4, b0b

2
2b3−b31b4−2b0b1b2b4+b33b4+2b0b3b4b5−

b0b1b
2
5).

r17,1 contains r16, and so we can skip its study. However, V (r17,2)∩U ≠
∅. The new non-general conditions that show up from the study of
in(r17,2 + J2

b ) are:

• r17,2,1 = (b24 − b2b5, b3b4 − b1b5, b
2
3 + b0b5, b2b3 − b1b4, b1b3 +

b0b4, b
2
1 + b0b2);

• r17,2,2 = (b5, b4, b3, b
2
1 + b0b2);

• r17,2,3 = (b4, b2, b1, b
2
3 + b0b5);

• r17,2,4 = (b3, b1, b0, 4b
3
2b4 − 27b44 + 18b2b

2
4b5 + b22b

2
5 + 4b4b

3
5);

• r17,2,5 = (b3, b1, b0, 4b
3
2b4 − 15b44 + 4b2b

2
4b5 + 3b22b

2
5 + 4b4b

3
5);

• r17,2,6 = (9b24 − 3b4b5 + b25, b3, b2 − 3b4 + b5, b1, b0);
• r17,2,7 = (3b4 + b5, b3, b2 + 3b4, b1, b0);
• r17,2,8 = (b5, b3, b2, b1, b0);
• r17,2,9 = (b24 + b4b5 + b25, b3, b2 + b4 + b5, b0, b1);
• r17,2,10 = (b4 − b5, b3, b2 − b4, b0, b1);
• r17,2,11 = (225b34+17b35, b3,−105b24+17b2b5, 15b2b4+7b25, 17b

2
2+

49b4b5, b0, b1);
• r17,2,12 = (b1b3+b0b4, 3b

2
1b4+b0b2b4−b23b5+b0b

2
5, b2b

2
3+3b0b

2
4+

b21b5−b0b2b5, b
2
2b3−3b1b2b4+3b3b4b5−b1b

2
5, b

2
1b2−b0b

2
2−3b23b4−

b0b4b5, b
3
1 − b0b1b2 − b33 + b0b3b5, 3b2b3b

2
4 − 9b1b

3
4 + 4b1b2b4b5 +

b3b4b
2
5 + b1b

3
5, 4b

3
2b4 − 27b44 + 18b2b

2
4b5 + b22b

2
5 + 4b4b

3
5, 4b1b

2
2b4 −

9b3b
3
4 + b2b3b4b5 + 3b1b

2
4b5 + b1b2b

2
5);

• r17,2,13 = (b1b3 + b0b4, b0b
2
2b3 − b31b4 − 2b0b1b2b4 + b33b4 +

2b0b3b4b5−b0b1b
2
5, 4b0b

3
1b4+12b20b1b2b4+b2b

2
3b

2
4+3b0b

4
4−b22b

2
3b5−

12b20b3b4b5+b21b
2
4b5−4b0b2b

2
4b5+4b20b1b

2
5−b21b2b

2
5+b0b

2
2b

2
5, b

2
2b

4
3+

16b30b1b2b4+12b20b
3
3b4+6b0b2b

2
3b

2
4+9b20b

4
4−8b30b3b4b5+2b43b4b5+

8b0b
2
1b

2
4b5 + 4b30b1b

2
5 + b41b

2
5 − 2b0b

2
1b2b

2
5 + b20b

2
2b

2
5 + 4b0b

2
3b4b

2
5 +

2b20b4b
3
5, b

3
2b

3
3 +12b20b2b

2
3b4 +4b30b

3
4 +2b31b

3
4 +3b0b1b2b

3
4 − 5b33b

3
4 −

4b20b
2
1b4b5 + 4b30b2b4b5 + b2b

3
3b4b5 − 11b0b3b

3
4b5 + 2b0b2b3b4b

2
5 +
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7b0b1b
2
4b

2
5+b31b

3
5−b0b1b2b

3
5, b

4
2b

2
3−16b20b1b2b

2
4+b21b

2
2b

2
4+2b0b

3
2b

2
4−

12b0b
3
3b

2
4 − 6b2b

2
3b

3
4 − 9b0b

5
4 + 4b22b

2
3b4b5 + 8b20b3b

2
4b5 − 6b21b

3
4b5 +

4b0b2b
3
4b5−4b20b1b4b

2
5+4b21b2b4b

2
5+b0b

2
2b4b

2
5+b23b

2
4b

2
5+2b0b

2
4b

3
5+

b21b
4
5, 4b

3
0b

3
1+b61−4b40b1b2+b0b

4
1b2−b20b

2
1b

2
2−b30b

3
2−12b30b

3
3+b63−

4b20b2b
2
3b4 − 4b30b

3
4 − 4b40b3b5 + b0b

4
3b5 − 4b20b

2
1b4b5 − 4b30b2b4b5 −

b20b
2
3b

2
5− b30b

3
5, b

3
2b

2
3b

2
4+12b20b2b3b

3
4− 4b20b1b

4
4+ b21b2b

4
4+2b0b

2
2b

4
4−

3b23b
5
4−16b20b1b2b

2
4b5−10b0b

5
4b5+b22b

2
3b4b

2
5+12b20b3b

2
4b

2
5−6b21b

3
4b

2
5+

6b0b2b
3
4b

2
5 − 4b20b1b4b

3
5 + 4b21b2b4b

3
5 + b23b

2
4b

3
5 + 2b0b

2
4b

4
5 + b21b

5
5,

4b0b
2
1b

2
2b

2
4−4b20b

3
2b

2
4−4b0b2b

2
3b

3
4− b22b3b

4
4+3b1b2b

5
4+2b32b3b

2
4b5+

4b0b
2
1b

3
4b5+16b20b2b

3
4b5−6b1b

2
2b

3
4b5−3b3b

5
4b5−b42b3b

2
5+3b1b

3
2b4b

2
5+

12b0b
2
3b

2
4b

2
5+6b2b3b

3
4b

2
5+b1b

4
4b

2
5−3b22b3b4b

3
5+4b20b

2
4b

3
5−2b1b2b

2
4b

3
5+

b1b
2
2b

4
5, 16b

2
0b1b

2
2b

2
4+b22b

2
3b

3
4−4b20b3b

4
4−3b21b

5
4+2b0b2b

5
4−b32b

2
3b4b5−

12b20b2b3b
2
4b5 − 4b20b1b

3
4b5 + 7b21b2b

3
4b5 − 2b0b

2
2b

3
4b5 + b23b

4
4b5 +

4b20b1b2b4b
2
5−4b21b

2
2b4b

2
5−b2b

2
3b

2
4b

2
5+2b0b

4
4b

2
5+b21b

2
4b

3
5−2b0b2b

2
4b

3
5−

b21b2b
4
5, 48b

4
0b2b3b4−4b0b2b

4
3b4−16b40b1b

2
4+48b30b

2
2b

2
4−3b22b

3
3b

2
4−

6b0b2b3b
4
4−9b0b1b

5
4+48b30b

3
3b5−4b63b5+8b20b2b

2
3b4b5−32b30b

3
4b5+

24b0b1b2b
3
4b5 + 6b33b

3
4b5 + 16b40b3b

2
5 − 4b0b

4
3b

2
5 + 16b20b

2
1b4b

2
5 +

12b30b2b4b
2
5−12b0b1b

2
2b4b

2
5+15b0b3b

3
4b

2
5+4b20b

2
3b

3
5−12b0b1b

2
4b

3
5+

4b30b
4
5 − 3b31b

4
5, 12b

3
0b2b

3
3 − b2b

6
3 +4b40b3b

2
4 − 3b0b

4
3b

2
4 +4b40b2b3b5 −

b0b2b
4
3b5+4b40b1b4b5− 7b20b

2
3b

2
4b5+ b20b2b

2
3b

2
5− 5b30b

2
4b

2
5− b20b

2
1b

3
5+

b30b2b
3
5, 8b

4
1b

4
4+28b0b

2
1b2b

4
4−4b20b

2
2b

4
4−4b0b

2
3b

5
4−3b2b3b

6
4+9b1b

7
4+

16b20b
3
2b

2
4b5+16b0b2b

2
3b

3
4b5+6b22b3b

4
4b5+32b20b

5
4b5−22b1b2b

5
4b5−

3b32b3b
2
4b

2
5+4b0b

2
1b

3
4b

2
5−4b20b2b

3
4b

2
5+17b1b

2
2b

3
4b

2
5−b3b

5
4b

2
5+4b20b

2
2b4b

3
5−

4b1b
3
2b4b

3
5+4b0b

2
3b

2
4b

3
5+2b2b3b

3
4b

3
5−b1b

4
4b

3
5−b22b3b4b

4
5−4b20b

2
4b

4
5+

2b1b2b
2
4b

4
5 − b1b

2
2b

5
5, 16b

2
0b

4
2b

2
4 − 16b43b

4
4 − 28b0b

2
1b

5
4 − 64b20b2b

5
4 −

4b1b
2
2b

5
4+9b3b

7
4−4b0b

2
1b2b

3
4b5−4b20b

2
2b

3
4b5+8b1b

3
2b

3
4b5−68b0b

2
3b

4
4b5−

19b2b3b
5
4b5 − 3b1b

6
4b5 + 4b20b

3
2b4b

2
5 − 4b1b

4
2b4b

2
5 + 4b0b2b

2
3b

2
4b

2
5 +

11b22b3b
3
4b

2
5 − 28b20b

4
4b

2
5 + 5b1b2b

4
4b

2
5 − b32b3b4b

3
5 − 4b20b2b

2
4b

3
5 −

b1b
2
2b

2
4b

3
5−b1b

3
2b

4
5, 768b

4
0b1b2b

2
4+128b30b

3
2b

2
4+16b31b

3
2b

2
4+32b0b1b

4
2b

2
4+

576b30b
3
3b

2
4−48b63b

2
4+320b20b2b

2
3b

3
4+416b30b

5
4−68b31b

5
4−192b0b1b2b

5
4+

4b32b
5
4+8b33b

5
4−27b84−384b40b3b

2
4b5−1088b30b2b

3
4b5+16b31b2b

3
4b5+

104b0b1b
2
2b

3
4b5−8b42b

3
4b5+112b2b

3
3b

3
4b5+392b0b3b

5
4b5+72b2b

6
4b5+

192b40b1b4b
2
5−160b30b

2
2b4b

2
5+4b31b

2
2b4b

2
5−8b0b1b

3
2b4b

2
5+4b52b4b

2
5−

88b22b
3
3b4b

2
5−1120b20b

2
3b

2
4b

2
5−408b0b2b3b

3
4b

2
5+20b0b1b

4
4b

2
5−62b22b

4
4b

2
5−

192b30b
2
4b

3
5+176b31b

2
4b

3
5+160b0b1b2b

2
4b

3
5+16b32b

2
4b

3
5− 128b33b

2
4b

3
5+

4b54b
3
5− 48b20b

2
1b

4
5− 48b31b2b

4
5+44b0b1b

2
2b

4
5+ b42b

4
5− 272b0b3b

2
4b

4
5−

8b2b
3
4b

4
5 + 128b0b1b4b

5
5 + 4b22b4b

5
5).
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We have V (r17,2,j) ⊆ V (r3), j = 4, . . . , 11, V (r17,2,1) ⊆ V (r10),
V (r17,2,2) ⊆ V (r2), V (r17,2,3) ⊆ V (r4), and finally, V (r17,2,12) ⊆
V (r16). Hence, the only ideal to be studied is r17,2,13.

Again, the general b ∈ V (r17,2,13) is in U , but many new non-general
conditions appear. They are:

• r17,2,13,1 = (3b4 + b5, b3, b2 − b5, b1, b0);
• r17,2,13,2 = (4b30b1 + b41 + 2b0b

2
1b2 + b20b

2
2, b5, b4, b3);

• r17,2,13,3 = (12b30b
3
3−b63+4b40b3b5−b0b

4
3b5+b20b

2
3b

2
5+b30b

3
5, b4, b2, b1);

• r17,2,13,4 = (b4 − b5, b2 − b5, b1 − b3, b
2
3 + b0b5);

• r17,2,13,5 = (b2+ b4+ b5, b
2
4+ b4b5+ b25, b3b4− b1b5, b1b4+ b1b5+

b3b5, b
2
3 + b0b5, b1b3 + b0b4, b

2
1 − b0b4 − b0b5);

• r17,2,13,6 = (b24 − b4b5 + b25, b3, b2 − b4 + b5, b1, b0);
• r17,2,13,7 = (b4 + b5, b3, b2 + b4, b1, b0);
• r17,2,13,8 = (b3 + b4, b1 − b2, b0 − b2, 4b

3
2b4 + b44 +2b2b

2
4b5 + b22b

2
5);

• r17,2,13,9 = (b0+ b1+ b2, b
2
3− b3b4+ b24, b2b3+ b1b4, b1b3− b1b4−

b2b4, b
2
1 + b1b2 + b22, 4b

3
2b4 + b44 +2b2b

2
4b5 + b22b

2
5, 4b1b

2
2b4 − b3b

3
4 +

2b1b
2
4b5 + b1b2b

2
5);

• r17,2,13,10 = (b5, b4, b3, b1 + b2, b0 − b2);
• r17,2,13,11 = (b5, b4, b3, b

2
1 − b1b2 + b22, b0 − b1 + b2);

• r17,2,13,12 = (4b33 + 3b34 − 2b24b5 − b4b
2
5, b2 − b5, b1 − b3, b

2
3 +

b0b4, 4b0b3 − 3b24 + 2b4b5 + b25);
• r17,2,13,13 = (b2b3+ b1b5+ b3b5, b1b3+ b0b4, b

2
2+ b2b5+ b25, b1b2−

b3b5, b
2
1+b23−b0b4, 4b0b1+4b0b3+2b2b4+3b24−b2b5+2b4b5, 4b

2
0b3−

3b23b4 + 3b0b
2
4 − 2b23b5 + b0b

2
5).

The only ideals to be studied are r17,2,13,12 and r17,2,13,13 because
V (r17,2,13,j) is contained in either V (r2) (in the cases j = 2, 10, 11),
or V (r3) (in the cases j = 1, 6, 7), or V (r16) (in the cases j = 4, 5), or
V (r14) (in the cases j = 8, 9).

For b general, in either V (r17,2,13,12) or V (r17,2,13,13), then b ∈ U .
The new non-general conditions inside r17,2,13,12 are:

• r17,2,13,12,1 = (b4 + b5, b3 − b5, b0 − b5, b2 − b5, b1 − b3);
• r17,2,13,12,2 = (b4+b5, b

2
3+b3b5+b25, b0+b3+b5, b2−b5, b1−b3),

but both ideals define subvarieties of V (r14), and so we do not study
them.

The new non-general conditions inside r17,2,13,13 are:
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• r17,2,13,13,1 = (b24−b4b5+b25, b3+b4, b2−b4+b5, b1−b4+b5, b0−
b4 + b5);

• r17,2,13,13,2 = (b24−b4b5+b25, b3−b4+b5, b2−b4+b5, b1−b5, b0+
b4);

• r17,2,13,13,3 = (b24−b4b5+b25, b3−b5, b2−b4+b5, b1+b4, b0−b5),

but they all define subvarieties of V (r14), and so they are not to be
studied. Hence, the analysis of r17 is over.

Our analysis in now complete when H = y32 + y33 + y34 .

Let H = y32 + y23y4. Ann(F
H,b) is generated by

12x2
4 − b5x

3
1, 12x4x2 − b3x

3
1, 12x3x2 − b1x

3
1,

3x2x1 − b0p1 − 3b1p2 − 3b3p3, 3x3x1 − b1p1 − 3b2p2 − 3b4p3,

3x4x1 − b3p1 − 3b4p2 − 3b5p3, x2x
2
1, 12x2

2x1 − b0x
4
1, 4x3

2 − x4
1,

x3x
2
1, 12x3x2x1 − b1x

4
1, x3x

2
2, 12x2

3x1 − b2x
4
1, x2

3x2, x3
3,

x4x
2
1, 12x4x2x1 − b3x

4
1, x4x

2
2, 12x4x3x1 − b4x

4
1, x4x3x2,

12x4x
2
3 − x4

1, 12x2
4x1 − b5x

4
1, x2

4x2, x2
4x3, x3

4,

where

p1 = x2
2 − b0x

3
1/12, p2 = x4x3 − b4x

3
1/12, p3 = x2

3 − b2x
3
1/12.

Let H = y22y3 + y23y4. Ann(FH,b) is generated by

12x2
4 − b5x

3
1, 12x4x2 − b3x

3
1, x2x1 − b0p1 − b1p2 − b3p3,

x2
2 − b0x

3
1/12− p2, x3x1 − b1p1 − b2p2 − b4p3,

x4x1 − b3p1 − b4p2 − b5p3, x2x
2
1, 12x2

2x1 − b0x
4
1,

x3
2, x3x

2
1, 12x3x2x1 − b1x

4
1, 12x3x

2
2 − x4

1, 12x2
3x1 − b2x

4
1,

x2
3x2, x3

3, x4x
2
1, 12x4x2x1 − b3x

4
1, x4x

2
2, 12x4x3x1 − b4x

4
1,

x4x3x2, 12x4x
2
3 − x4

1, 12x2
4x1 − b5x

4
1, x2

4x2, x2
4x3, x3

4,

where

p1 = x3x2 − b1x
3
1/12, p2 = x4x3 − b4x

3
1/12, p3 = x2

3 − b2x
3
1/12.

Let H = y23y4 − y3y
2
4 . b0, b1 and b3 cannot vanish simultaneously.
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Ann(FH,b) is generated by

12x2
2 − b0x

3
1, 12x3x2 − b1x

3
1, 12x4x2 − b3x

3
1,

12x2
3 + 12x4x3 + 12x2

4 − (b2 + b4 + b5)x
3
1, b1p1 − b0p2,

b3p1 − b0p3, b3p2 − b1p3, x3
4, 12x2

4x3 + x4
1, x

2
4x2, 12x2

4x1 − b5x
4
1,

12x4x
2
3 − x4

1, x4x3x2, 12x4x3x1 − b4x
4
1, x4x

2
2, 12x4x2x1 − b3x

4
1,

x3
3, x2

3x2, 12x2
3x1 − b2x

4
1, x3x

2
2, 12x3x2x1 − b1x

4
1, x3

2,

12x2
2x1 − b0x

4
1, x4x

2
1, x3x

2
1, x2x

2
1,

where

p1 = x2x1 + b1(x
2
4 − b5x

3
1/12)− b3(x

2
3 − b2x

3
1/12),

p2 = x3x1 + b2(x
2
4 − b5x

3
1/12)− b4(x

2
3 − b2x

3
1/12),

p3 = x4x1 + b4(x
2
4 − b5x

3
1/12)− b5(x

2
3 − b2x

3
1/12).

Let H = y3y
2
4 . b0, b1 and b3 cannot vanish simultaneously, and

Ann(FH,b) is generated by

12x2
2 − b0x

3
1, 12x3x2 − b1x

3
1, 12x4x2 − b3x

3
1, 12x2

3 − b2x
3
1,

b1p1 − b0p2, b3p1 − b0p3, b3p2 − b1p3, x3
4, 12x2

4x3 − x4
1, x2

4x2,

x4x
2
3, x4x3x2, x4x

2
2, x3

3, x2
3x2, x3x

2
2, x3

2, 12x2
4x1 − b5x

4
1,

12x4x3x1 − b4x
4
1, 12x4x2x1 − b3x

4
1, 12x2

3x1 − b2x
4
1,

12x3x2x1 − b1x
4
1, 12x2

2x1 − b0x
4
1, x4x

2
1, x3x

2
1, x2x

2
1,

where

p1 = x2x1 − b1(x
2
4 − b5x

3
1/12)− b3(x4x3 − b4x

3
1/12),

p2 = x3x1 − b2(x
2
4 − b5x

3
1/12)− b4(x4x3 − b4x

3
1/12),

p3 = x4x1 − b4(x
2
4 − b5x

3
1/12)− b5(x4x3 − b4x

3
1/12).

Finally, let H = y34 . If the first two lines of Mb would be proportional,
a suitable linear transformation on y2 and y3 would yield b0 = b1 =
b3 = 0, whence x2 ◦ (y1Qb + H) = 0. Thus, b /∈ BH . Ann(FH,b) is
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generated by:

b6(x
2
4 − b5x

3
1/12)− 3x4x1(b

2
1 − b0b2) +

+ 3x3x1(b1b3 − b0b4)− 3x2x1(b2b3 − b1b4),

12x2
2 − b0x

3
1, 12x2x3 − b1x

3
1, 12x2

3 − b2x
3
1, 12x4x2 − b3x

3
1,

12x4x3 − b4x
3
1, 4x3

4 − x4
1, x2

4x3, x2
4x2, 12x2

4x1 − b5x
4
1, x4x

2
3,

x4x3x2, 12x4x3x1 − b4x
4
1, x4x

2
2, 12x4x2x1 − b3x

4
1, x4x

2
1, x3

3,

x2
3x2, 12x2

3x1 − b2x
4
1, x3x

2
2, 12x3x2x1 − b1x

4
1, x3x

2
1, x3

2,

12x2
2x1 − b0x

4
1, x2x

2
1,

where b6 = − det(Mb). �

Now, we summarize the previous results by giving the proof of
Theorem B stated in the introduction.

Proof of Theorem B. IfH = y32+y33+y34+ty2y3y4, with t(t3−216) ̸=
0, AH,b is unobstructed for every b ∈ A6, by Proposition 5.4. If
t(t3 − 216) = 0, H is a Fermat cubic, and so it can be written
as y32 + y33 + y34 up to a suitable change of coordinates. Let F =
y41 + y1Qb + y32 + y33 + y34 . Then AH,b is obstructed if, and only if,
b1 = b3 = b4 = 0, by Proposition 5.6.

If H is either y32 + y33 + y2y3y4, y
3
2 + y2y3y4 or y2y3y4, then AH,b is

unobstructed for every b ∈ A6, by Proposition 5.4.

If H is either y32 + y22y4, y
2
2y3 + y23y4, y

2
3y4 − y3y

2
4 , y3y

2
4 or y34 , the

result was proved in Proposition 5.6.

Finally, if H = 0, the AH,b is obstructed for every b ∈ A6, by
Proposition 5.1. �

We end the section with an example.

Example 5.7. Let us consider the two polynomials

F1 = y41 + y1(y
2
2 + 2y3y4) + y22y3 + y23y4

and
F2 = y41 + y1(y

2
2 + 2y3y4 + y24) + y22y3 + y23y4.
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Their apolar ideals are

Ann(F1) = (x2
4, 12x4x3 − 12x4x1 − x3

1, x
2
3 − x3x1, x4x2,

x3x2 − x2x1, 12x
2
2 − 12x4x1 − x3

1, x4x
2
1, x3x

2
1, x2x

2
1)

and

Ann(F2) = (12x2
4 − x3

1, 12x4x3 − 12x4x1 + 12x3x1 − x3
1, x

2
3 − x3x1,

x4x2, x3x2 − x2x1, 12x
2
2 − 12x4x1 + 12x3x1 − x3

1, x4x
2
1, x2x

2
1),

respectively. By using Singular, we get that

NS[4]/Ann(F1) = 49, NS[4]/Ann(F2) = 44.

Thus, S[4]/Ann(F1) is obstructed, while S[4]/Ann(F2) is unobstructed.

These results are coherent with Theorem B. In fact, the coefficients
of the quadratic polynomial Q1 = y22 + 2y3y4 give a point in V (b0 −
b4, b3, b5), the locus of the obstructed schemes for the given H =
y22y3 + y23y4, while the coefficients of the quadratic polynomial Q2 =
y22+2y3y4+y24 give a point not in V (b0−b4, b3, b5), and so the associated
scheme is unobstructed.

6. Appendix.

6.1. Singular session. In this appendix, we show how we got the
ideals r1, . . . , r17 in the proof of Proposition 5.6. By adapting it, one
can study all the cases of the above-mentioned proposition. We do not
report the outputs of the command lines, starting with the symbol >
and ending with the semicolumn, not to use too much space, but we
insert comments staring with the symbol • to help the reader when
performing the session by himself.

Here is the Singular session.

• the polynomial we consider is p = x4+ x(b(0) ∗ y2+ 2 ∗ b(1) ∗ yz+
b(2) ∗ z2+ +2 ∗ b(3) ∗ yw + 2 ∗ b(4) ∗ zw + b(5) ∗ w2) + y3 + z3 + w3

> LIB“primdec.lib”;

> ring r = 0, (w, z, y, x, b(0..5)), (dp(3), lp(1), dp(6));

> poly p1 = y2− b(0) ∗ x3/12;
> poly p2 = z2− b(2) ∗ x3/12;
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> poly p3 = w2− b(5) ∗ x3/12;
> ideal i1 = 3xy − b(0) ∗ p1− b(1) ∗ p2− b(3) ∗ p3,
. 3xz − b(1) ∗ p1− b(2) ∗ p2− b(4) ∗ p3, 12yz − b(1) ∗ x3,
. 3xw−b(3)∗p1−b(4)∗p2−b(5)∗p3, 12yw−b(3)∗x3, 12zw−b(4)∗x3;
> ideal i2 = x2y, 12xy2−b(0)∗x4, 4y3−x4, x2z, 12xyz−b(1)∗x4, y2z,
. 12xz2− b(2) ∗ x4, yz2, 4z3− x4, x2w, 12xyw − b(3) ∗ x4, y2w,
. 12xzw− b(4) ∗x4, yzw, z2w, 12xw2− b(5) ∗x4, yw2, zw2, 4w3−x4;

> ideal i3 = x5, x3y, x2y2, xy3, y4, x3z, x2yz, xy2z, y3z, x2z2, xyz2,

. y2z2, xz3, yz3, z4, x3w, x2yw, xy2w, y3w, x2zw, xyzw, y2zw, xz2w,

. yz2w, z3w, x2w2, xyw2, y2w2, xzw2, yzw2, z2w2, xw3, yw3, zw3, w4;

• we compute the apolar ideal of p and its Gröbner basis

> ideal ip = i1, i2, i3;

> ip =std(ip);

• we compute the square of the ideal ip and its Gröbner basis

> ideal ii = i1 ∗ i1, i1 ∗ i2, i1 ∗ i3, i2 ∗ i2, i2 ∗ i3, i3 ∗ i3;
> ii = std(ii);

• we compute the initial ideal of ii

> ideal mi = lead(ii);

• generic conditions for the computation of the Hilbert function

> ideal bg = b(0)− 1, b(1)− 1, b(2)− 1, b(3)− 1, b(4)− 1, b(5)− 1;

• computation of the Hilbert function for a general b

> mm = mi[1..158], bg;

> hilb(std(mm));

• the output of the previous line is (1, 4, 10, 20, 14, 4, 2). So the
general apolar ideal is unobstructed

• the initial terms of the polynomials in ii depending on the b(i)’s are
(numbers refer to the list of the generators of ii, and M is a monomial
in k[b]):

w5M is initial term for the polynomials 152, 153, 154,
z5M is initial term for the polynomials 146, 147, 148,
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y5M is initial term for the polynomials 138, 139, 140,
w4xM is initial term for the polynomials 134, 135, 136,
w4M is initial term for the polynomials 128, . . . , 133,
w3zM is initial term for the polynomials 124, 125, 126,
wz3M is initial term for the polynomials 119, 120, 121,
z4xM is initial term for the polynomials 115, 116, 117,
z4M is initial term for the polynomials 107, . . . , 114,
w3yM is initial term for the polynomials 103, 104, 105,
z3yM is initial term for the polynomials 97, 98, 99,
wy3M is initial term for the polynomials 89, . . . , 92,
zy3M is initial term for the polynomials 85, 86, 87,
y4xM is initial term for the polynomials 81, 82, 83,
y4M is initial term for the polynomials 69, . . . , 80,
w2x2M is initial term for the polynomials 65, 66, 67,
w3xM is initial term for the polynomials 58, . . . , 64,
w2zxM is initial term for the polynomials 53, . . . , 56,
wz2xM is initial term for the polynomials 38, . . . , 51,
z3x2M is initial term for the polynomials 34, 35, 36,
z3xM is initial term for the polynomials 33,
w2yxM is initial term for the polynomial 31,
wzywM is initial term for the polynomials 29,
y3x2M is initial term for the polynomials 22, 23, 24,
w2x3M is initial term for the polynomials 19, 20,
z2x3M is initial term for the polynomials 15, 16,
y2x3M is initial term for the polynomials 10, 11,
wx5M is initial term for the polynomial 8,
zx5M is initial term for the polynomial 6,
x7M is initial term for the polynomials 1, 2, 3

• e.g. computation of the relations associated to x7

> int i;

> ideal r1;

> for(i = 1; i <= 3; i = i+1){r1 = r1, (ii[i]− reduce(ii[i], std(x7)))/
(x7); };

• analogous computations allow us to compute all the ideals from r1
to r17.
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