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CASTELNUOVO-MUMFORD REGULARITY OF
SYMBOLIC POWERS OF TWO-DIMENSIONAL

SQUARE-FREE MONOMIAL IDEALS

LE TUAN HOA AND TRAN NAM TRUNG

ABSTRACT. Let I be a square-free monomial ideal of a
polynomial ring R such that dim(R/I) = 2. We give explicit

formulas for computing the ai-invariants ai(R/I(n)), i = 1, 2,

and the Castelnuovo-Mumford regularity reg(R/I(n)) for all
n. The values of these functions depend on the structure of
an associated graph. It turns out that these functions are
linear functions of n for all n ≥ 2.

Introduction. Let I be a square-free monomial ideal of a polyno-
mial ring R = k[x1, . . . , xr] over a field k. Then I can be considered
as a Stanley-Reisner ideal associated to a simplicial complex. In recent
years, the study of powers In and symbolic powers I(n) has attracted
the attention of many authors (see, e.g., [3, 5, 9, 12]). In the two-
dimensional case, the associated simplicial complex is a graph G, and
we may write a two-dimensional square-free monomial ideal in the form:

IG =
∩

{i,j}∈E(G)

Pij

∩
i∈V0(G)

Pi,

where E(G) is the edge set of G, V0(G) the set of isolated vertices,
Pij = ({x1, . . . , xr} \ {xi, xj}), and Pi = ({x1, . . . , xr} \ {xi}). Some

algebraic properties of InG and I
(n)
G can be characterized in terms of G

(see, e.g., [8, 7]). In this paper, we are interested in computing the
Castelnuovo-Mumford regularity. Let us recall this notion. Let J be a
proper homogeneous ideal of R. Set

ai(R/J) = sup{t | Hi
m(R/J)t ̸= 0},
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where Hi
m(R/J) is the local cohomology module with the support

m = (x1, . . . , xr). The Castelnuovo-Mumford regularity of R/J is
defined by

reg(R/J) = max{ai(R/J) + i | 0 6 i 6 dimR/J}.

Let J (n) be the nth symbolic powers of J . It is well known that
reg(R/Jn) is a linear function of n for n ≫ 0 (see [1, Theorem 1.1]
or [6, Theorem 5]). Concerning reg(R/J (n)), it was shown in some
cases that this function is bounded by a linear function of n (see [4,
Section 2]). Moreover, when J = I is a square-free monomial ideal,
in [5, Theorem 4.1 and Theorem 4.9] we proved that ai(R/I(n)) and
reg(R/I(n)) are quasi-linear functions of n for n ≫ 0. But it is still not
known whether they are linear functions of n for n ≫ 0. Therefore,
we start to investigate this problem when dimR/I = 2, i.e., when
I = IG for a graph G. The main purpose of this note is to give

explicit formulas for computing ai(R/I
(n)
G ), i = 1, 2 and reg(R/I

(n)
G )

(see Theorem 2.3, Theorem 2.8 and Theorem 2.9). It turns out that
all these functions are linear functions of n for n ≥ 2. The proofs
of these results are based on Takayama’s formula for computing local
cohomology modules of monomial ideals (see Lemma 1.1) and a formula
for computing simplicial complexes associated to symbolic powers of
square-free monomial ideals (see Lemma 1.3), which extends a result
given in [8].

The paper is divided into two sections. In Section 1, we recall
Takayama’s formula, a generalized version of Hochster’s formula, to
compute local cohomology modules of monomial ideals and then give
some descriptions of associated simplicial complexes. In Section 2, we
prove the main results.

1. Auxiliary results. A simplicial complex ∆ on the finite set
[r] := {1, . . . , r} is a collection of subsets of [r] such that F ∈ ∆
whenever F ⊆ F ′ for some F ′ ∈ ∆. Notice that we do not impose
the condition that {i} ∈ ∆ for all i ∈ [r]. We denote by F(∆) the set
of facets of ∆. The Stanley-Reisner ideal of ∆ is the following ideal of
R := k[x1, . . . , xr]:

I∆ := (xi1 · · ·xis | {i1, . . . , is} /∈ ∆) =
∩

F∈F(∆)

PF ,
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where PF is the prime ideal of R generated by all variables xi with
i /∈ F . It is a square-free monomial ideal. Conversely, if I is a square-
free monomial ideal, then it is the Stanley-Reisner ideal associated to
the following simplicial complex

∆(I) = {{i1, . . . , is}| xi1 · · ·xis /∈ I}.

If I is an arbitrary monomial ideal we set ∆(I) = ∆(
√
I). For a subset

F of [r], let RF := R[x−1
i | i ∈ F ] and for α = (α1, . . . , αr) ∈ Zr,

and let xα = xα1
1 · · ·xαr

r . We define the co-support of α to be the set
CSα := {i | αi < 0}. Set

∆α(I) = {F ⊆ [r] \ CSα | xα /∈ IRF∪CSα}.

We set H̃i(∅; k) = 0 for all i, H̃i({∅}; k) = 0 for all i ̸= −1, and

H̃−1({∅}; k) = k. Thanks to [2, Lemma 1.1], we may formulate
Takayama’s formula as follows.

Lemma 1.1. ([11, Theorem 2.2]).

dimk H
i
m(R/I)α =

{
dimk H̃i−|CSα|−1(∆α(I); k) if CSα ∈ ∆(I),
0 otherwise.

It was then shown in [8, Lemma 1.3] that ∆α(I) is a subcomplex of
∆(I). For a face F ∈ ∆, the link of F is defined by

lk∆(F ) = {G ⊆ [r] \ F | F ∪G ∈ ∆}.

The next lemma gives a more precise description of ∆α(I) and will be
useful in its computation.

Lemma 1.2. Assume that CSα ∈ ∆(I) for some α ∈ Zr. Then

∆α(I) = {F ∈ lk∆(I)(CSα) | xα /∈ IRF∪CSα
}.

Proof. Let F ⊆ [r] \ CSα. Note that, if F ∪ CSα /∈ ∆(I), then√
IRF∪CSα = RF∪CSα , which yields IRF∪CSα = RF∪CSα and F /∈

∆α(I). So, if F ∈ ∆α(I), we must have F ∪ CSα ∈ ∆(I), i.e.,
F ∈ lk∆(I)(CSα). �
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The nth symbolic power I
(n)
∆ is defined by

I
(n)
∆ =

∩
F∈F(∆)

Pn
F .

The following lemma extends [8, Lemma 2.1] and plays a crucial role

in studying properties of ∆α(I
(n)
G ).

Lemma 1.3. Assume that CSα ∈ ∆ for some α ∈ Zr. Then

F(∆α(I
(n)
∆ )) =

{
F ∈ F(lk∆(CSα)) |

∑
i/∈F∪CSα

αi 6 n− 1

}
.

Proof. By Lemma 1.2, it follows that a facet F ∈ ∆α(I
(n)
∆ ) has

the form F = F ′ \ CSα, where F ′ is a facet of ∆ containing CSα

and xα /∈ I
(n)
∆ RF ′ . Since I

(n)
∆ RF ′ = (xi| i /∈ F ′)n, the last condition

is equivalent to xα′
/∈ (xi | i /∈ F ′)n, where xα′

= x
αi1
i1

· · ·xαis
is

if
we set [r] \ F ′ = {i1, . . . , is}. Clearly, this condition is equivalent to∑

i/∈F∪CSα
αi ≤ n− 1. �

Notation 1.4. Put |α| = α1 + · · ·+ αr.

Lemma 1.5. If ∆α(I
(n)
∆ ) = {∅}, then CSα ∈ F(∆) and |α| ≤

n− 1− |CSα|. Moreover, if F ∈ F(∆), then

max{|β| | CSβ = F and ∆β(I
(n)
∆ ) = {∅}} = n− 1− |F |.

Proof. From Lemma 1.3, it immediately follows that CSα ∈ F(∆).

Since αi ≤ −1 for all i ∈ CSα, and ∅ ∈ ∆α(I
(n)
∆ ), again by Lemma 1.3,

we have
|α| =

∑
i∈CSα

αi +
∑

j /∈CSα

αj ≤ −|CSα|+ n− 1.

Now let F ∈ F(∆). Without loss of generality, we may assume that
F = {1, . . . , s}. Let β = (−1, . . . ,−1, n− 1, 0, . . . , 0) (s entries of −1).
Then CSβ = F , |β| = n− 1− s, and one can use Lemma 1.3 to verify

that ∆β(I
(n)
∆ ) = {∅}. Hence, the second statement follows from the

first one. �
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A graph G is an undirected simple graph with the vertex set V (G) ⊆
[r] having no loops. The set of isolated vertices is denoted by V0(G),
which can be empty. The set of edges of G is denoted by E(G) and
is assumed not to be empty. We always consider G as the simplicial
complex ∆ of dimension one, such that F(∆) = E(G) ∪ {{i} | i ∈
V0(G)}. If there is no confusion, we will use the same notation G to
denote this simplicial complex. Recall that a connected graph without
cycles is called a tree, and a disjoint union of trees is called a forest. The
following result is probably known, but we could not find a reference.
We provide a proof for the sake of completeness.

Lemma 1.6. Let G be a graph considered as a simplicial complex of

dimension one. Then H̃1(G, k) = 0 if and only if G is a forest.

Proof. Let G1, . . . , Gs be the connected components of G. Then the
reduced Euler characteristic χ̃(G) of G can be computed in two ways
(see, e.g., [10, Definition 3.2]):

χ̃(G) = −1 + |V (G)| − |E(G)| = dimk H̃0(G; k)− dimk H̃1(G; k).

Since dimk H̃0(G; k) = s− 1, we deduce that

dimk H̃1(G; k) = |E(G)|+ s− |V (G)| =
s∑

i=1

(|E(Gi)|+ 1− |V (Gi)|).

As each Gi is a connected graph, we have |E(Gi)| + 1 ≥ |V (Gi)|, and
the equality holds if and only if Gi is a tree. Thus, dimk H̃1(G; k) = 0
if and only if all G1, . . . , Gs are trees, that means G is a forest, as
required. �

2. Castelnuovo-Mumford regularity of symbolic powers. Since
we are considering graphs with possibly isolated vertices, any square-
free monomial ideal of dimension two can be seen as IG for some graph

G. Since I
(n)
G has no m-primary component, H0

m(R/I
(n)
G ) = 0. Hence,

reg(R/I
(n)
G ) = max{a1(R/I

(n)
G ) + 1, a2(R/I

(n)
G ) + 2}.

So, in order to compute reg(R/I
(n)
G ), we have to compute a1(R/I

(n)
G )

and a2(R/I
(n)
G ). The computation of a1(R/I

(n)
G ) in the unmixed case

was implicitly done in [7, 8]. We formulate these results below. Since
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dim(R/I
(n)
G ) = 2, it follows that a1(R/I

(n)
G ) = −∞ if and only if the

ring R/I
(n)
G is Cohen-Macaulay.

We recall some notions from graph theory. The distance between two
vertices i and j is the minimal length of paths which connect them. The
maximal distance between two vertices of G is called the diameter of G
and is denoted by diam(G). If G is not connected, we set diam(G) = ∞.
A graph is called a matroid if any two of its disjoint edges are contained
in a cycle of length 4.

Lemma 2.1. The ring R/I
(n)
G is a Cohen-Macaulay ring if and only

if G is connected and one of the following conditions is satisfied :

(i) n = 1,
(ii) diam (G) = 2 and either n = 2 or G is a matroid.

Proof. It is well known that the Cohen-Macaulayness of R/I
(n)
G

implies the connectedness of G. This also immediately follows from
Lemma 1.1 by setting α = (0, . . . , 0) and i = 1. Hence, we may assume
from the beginning that G is connected. In particular, G has no isolated
vertex, and the statement follows from [8, Theorem 2.3 and Theorem
2.4]. �

Lemma 2.2. Assume that G has no isolated vertex and R/I
(n)
G is not

a Cohen-Macaulay ring. Then a1(R/I
(n)
G ) = 2n− 2.

Proof. By [7, Lemma 3.2(1)], a1(R/I
(n)
G ) ≤ 2n−2. In order to show

the reverse inequality, we distinguish three cases.

If n = 1, then, by Lemma 2.1, G is not connected. Hence, by [7,
Lemma 3.2 (2)], [H1

m(R/IG)]0 ̸= 0.

If n = 2, then, by Lemma 2.1, diam(G) ≥ 3. Hence, by [7, Corollary

3.4], [H1
m(R/I

(2)
G )]2 ̸= 0.

Assume n ≥ 3. By Lemma 2.1, G is not a matroid. Hence, by [7,

Lemma 3.5], [H1
m(R/I

(n)
G )]2n−2 ̸= 0.

Summing up, in all cases, [H1
m(R/I

(n)
G )]2n−2 ̸= 0, which yields

a1(R/I
(n)
G ) ≥ 2n− 2, as required. �
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Theorem 2.3. Assume that R/I
(n)
G is not a Cohen-Macaulay ring.

Then a1(R/I
(n)
G ) = 2n− 2.

Proof. By Lemma 2.2, it suffices to assume that G has an isolated
vertex, say 1. Since E(G) ̸= ∅, we may assume that {2, 3} ∈ E(G).
Let β = (n− 1, n− 1, 0, . . . , 0). We have CSβ = ∅, and, by Lemma 1.3,

{1}, {2, 3} ∈ ∆β(I
(n)
G ). Hence, ∆β(I

(n)
G ) is disconnected and, by

Lemma 1.1,

dimk[H
1
m(R/I

(n)
G )]β = dimk H̃0(∆β(I

(n)
G ); k) ̸= 0,

which implies a1(R/I
(n)
G ) ≥ |β| = 2n− 2.

We now show that a1(R/I
(n)
G ) ≤ 2n − 2. Let α ∈ Zr such that

a1(R/I
(n)
G ) = |α| and

(2.1) dimk[H
1
m(R/I

(n)
G )]α = dimk H̃−|CSα|(∆α(I

(n)
G ); k) ̸= 0.

Hence, |CSα| ≤ 1. If |CSα| = 1, the above inequality implies that

∆α(I
(n)
G ) = {∅}. By Lemma 1.5, |α| ≤ n − 2, a contradiction. Hence,

CSα = ∅. In this case, by Lemma 1.2, ∆α(I
(n)
G ) is a subgraph of G and,

by (2.1), it must be disconnected. We may assume that {1, i1}, {2, i2}
are facets of ∆α(I

(n)
G ) such that i1 ̸= 2, i2 ̸= 1 and i1 ̸= i2 (but

it may happen that i1 = 1 and/or i2 = 2). Then, by Lemma 1.3,
|α| ≤

∑
j ̸=1,i1

αj +
∑

j ̸=2,i2
αj ≤ 2n− 2, as required. �

We now compute a2(R/I
(n)
G ). For that, we need some preparation

lemmas. Recall that the girth of G, denoted by girth(G), is the
smallest length of cycles of G. If G contains no cycle (equivalently,
G is a forest) we set girth(G) = ∞. Thus, if girth(G) is finite, then
3 ≤ girth(G) ≤ |V (G)|.

From now on, let α ∈ Zr such that [H2
m(R/I

(n)
G )]α ̸= 0. By

Lemma 1.1,

(2.2) dimk[H
2
m(R/I

(n)
G )]α = dimk H̃1−|CSα|(∆α(I

(n)
G ); k) ̸= 0,

and CSα is a face of the simplicial complex G. Hence, we must have
|CSα| ≤ 2. We distinguish three cases.
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Lemma 2.4. Assume that |CSα| = 0, i.e., α ∈ Nr. Then 3 ≤ s :=
girth(G) ≤ r, and

|α| ≤
[
s(n− 1)

s− 2

]
.

Proof. Since CSα = ∅, by Lemma 1.2, ∆α(I
(n)
G ) is a subgraph of G.

Since H̃1(∆α(I
(n)
G ); k) ̸= 0, by Lemma 1.6, ∆α(I

(n)
G ) must contain a

cycle, say C = (1, 2, . . . , t), where t ≥ s = girth(G). In particular, s is
finite and 3 ≤ s ≤ r. By Lemma 1.3, for all l = 1, . . . , t − 1, we have∑

i̸=l,l+1 αi ≤ n− 1 and
∑

i ̸=t,1 αi ≤ n− 1. Hence,

(t− 2)|α| ≤
t−1∑
l=1

∑
i ̸=l
l+1

αi +
∑
i ̸=t,1

αi ≤ t(n− 1),

which yields |α| ≤ [t(n− 1)/(t− 2)] ≤ [s(n− 1)/(s− 2)]. �

Lemma 2.5. Assume that |CSα| = 1. Then |α| ≤ 2n− 3.

Proof. We may assume that CSα = {r}. By Lemma 1.2, ∆α(I
(n)
G ) ⊆

lkG(CSα), so it is ∅, or {∅}, or a set of points. By (2.2), dimkH̃0(∆α(I
(n)
G );

k) ̸= 0. Therefore, ∆α(I
(n)
G ) must contain at least two points, say 1, 2,

and we must have r ≥ 3. Since αr ≤ −1 and α ≥ 0 for i ≤ r − 1, by
Lemma 1.3, we get

|α| ≤
∑
i ̸=1,r

αi +
∑
i ̸=2,r

αi + αr ≤ 2(n− 1)− 1 = 2n− 3. �

Lemma 2.6. Assume that |CSα| = 2. Then |α| ≤ n− 3.

Proof. Since lkCSα(G) = {∅}, by Lemma 1.2, ∆α(I
(n)
G ) is either ∅ or

equal to {∅}. By (2.2), we must have H̃−1(∆α(I
(n)
G ); k) ̸= 0. Therefore,

∆α(I
(n)
G ) = {∅}. By Lemma 1.5, |α| ≤ n− 3. �

Lemma 2.7. Assume that G contains a vertex of degree at least 2.

Then a2(R/I
(n)
G ) ≥ 2n− 3.
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Proof. We may assume that {1, 2}, {1, 3} ∈ E(G). Let β = (−1, n−
1, n − 1, 0, . . . , 0). Then CSβ = {1}, lkG(CSβ) ⊇ {2, 3}. By Lemma

1.3, one can check that ∆β(I
(n)
G ) = {∅, {2}, {3}}. Hence, by Lemma 1.1,

dimk[H
2
m(R/I

(n)
G )]β = dimk H̃0(∆β(I

(n)
G ); k) = 1,

which implies a2(R/I
(n)
G ) ≥ |β| = 2n− 3. �

We are now able to compute a2(R/I
(n)
G ):

Theorem 2.8. For all n > 1, we have

(i) If girth(G) = 3, then a2(R/I
(n)
G ) = 3n− 3.

(ii) If girth(G) = 4, then a2(R/I
(n)
G ) = 2n− 2.

(iii) If ∞ > girth(G) > 5, then a2(R/IG) = 0 and a2(R/I
(n)
G ) = 2n−3

for all n > 2.
(iv) If G is a forest with some vertex of degree at least 2, then

a2(R/I
(n)
G ) = 2n− 3.

(v) If G consists of t ≥ 1 disjoint edges and possibly isolated vertices,
then

a2(R/I
(n)
G ) =

{
−2 if r = 2,

n− 3 if r > 2,

where r is the number of variables of R.

Proof. Let m := a2(R/I
(n)
G ), and let α be chosen as in (2.2) such

that m = |α|. Let s = girth(G). In the case s < ∞, we may assume
that C = (1, 2, . . . , s) is a cycle of G. We distinguish four cases.

Case 1. s = 3. By Lemmas 2.4, 2.5 and 2.6, m ≤ 3n − 3. Let
β = (n−1, n−1, n−1, 0, . . . , 0). Using Lemma 1.3, one can immediately

check that ∆β(I
(n)
G ) is a subgraph of G and contains C. By Lemma 1.6,

H̃1(∆β(I
(n)
G ); k) ̸= 0. Then, by Lemma 1.1, [H2

m(R/I
(n)
G )]β ̸= 0, whence

m ≥ |β| = 3n− 3. Hence, m = 3n− 3.

Case 2. s = 4. Again, by Lemmas 2.4, 2.5 and 2.6, m ≤ 2n− 2. Let
β = (n − 1, 0, n − 1, 0, . . . , 0). With a similar argument as in Case 1,
we get m = 2n− 2.

Case 3. 5 ≤ s < ∞. If n = 1, then again by Lemmas 2.4, 2.5
and 2.6, m ≤ 0. Using a similar argument as in Case 1 applied to
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β = (0, . . . , 0), we get m = 0. If n ≥ 2, then [s(n−1)/(s−2)] ≤ 2n−3.
Again by Lemmas 2.4, 2.5 and 2.6, m ≤ 2n− 3. Using Lemma 2.7, we
then get m = 2n− 3.

Case 4. s = ∞, that means G is a forest. If G contains a vertex
of degree at least 2, then combining Lemmas 2.5, 2.6 and 2.7, we get
m = 2n−3. Otherwise, G consists of t disjoint edges, where t ≥ 1, and

possibly some isolated vertices. If r = 2, then t = 1 and I
(n)
G = IG = 0.

It is clear that a2(R/I
(n)
G ) = −2. Let r ≥ 3. By Lemma 2.4, we must

have |CSα| = 1, 2. Assume that |CSα| = 1. Since at most one vertex

is joined to the vertex of CSα, ∆α(I
(n)
G ) must be ∅ or {∅} or consists

of exactly one point. In all cases, by Lemma 1.1

dimk[H
2
m(R/I

(n)
G )]α = dimk H̃0(∆α(I

(n)
G ); k) = 0,

a contradiction. Hence, |CSα| = 2. By Lemma 2.6, m = |α| ≤ n− 3.

On the other hand, in this case we may assume that {1, 2} ∈ E(G).
Let β = (−1,−1, n−1, 0, . . . , 0). Then CSβ = {1, 2}, lkG(CSβ) = {∅}.
By Lemma 1.3, one can check that ∆β(I

(n)
G ) = {∅}. Hence, by

Lemma 1.1,

dimk[H
2
m(R/I

(n)
G )]β = dimk H̃−1(∆β(I

(n)
G ); k) = 1,

which implies m = a2(R/I
(n)
G ) ≥ |β| = n− 3, whence m = n− 3. �

Finally, we can state and prove the main result on the Castelnuovo-

Mumford regularity. One can see that, as a2(R/I
(n)
G ), the function

reg(R/I
(n)
G ) mainly depends on the girth of G.

Theorem 2.9. For all n > 1, we have

(i) If girth(G) = 3, then reg(R/I
(n)
G ) = 3n− 1.

(ii) If girth(G) = 4, then reg(R/I
(n)
G ) = 2n.

(iii) If ∞ > girth(G) > 5, then reg(R/IG) = 2 and reg(R/I
(n)
G ) =

2n− 1 for all n > 2.
(iv) If G is a forest with at least two edges or at least one isolated

vertex, then reg(R/I
(n)
G ) = 2n− 1.
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(v) If G consists of exactly one edge, then reg(R/I
(n)
G ) = 0 if r = 2

and reg(R/I
(n)
G ) = n − 1 for all r ≥ 3, where r is the number of

variables of R.

Proof. By Lemma 2.1 and Theorem 2.3, a1(R/I
(n)
G ) + 1 ≤ 2n − 1.

Since

reg(R/I
(n)
G ) = max{a1(R/I

(n)
G ) + 1, a2(R/I

(n)
G ) + 2},

using Theorem 2.8 above one immediately get the statements in the
first three cases and also in the case when G is a forest with a vertex
of degree at least 2.

So, it is left to consider the case G being a forest and all its vertices
having degree one or zero. In particular, all edges of G must be disjoint.
Recall that G has at least one edge. If G is a forest consisting of at least
two disjoint edges or at least one isolated vertex, thenG is disconnected.

By Lemma 2.1 and Theorem 2.3, a1(R/I
(n)
G ) + 1 = 2n − 1, while by

Theorem 2.8 (v), a2(R/I
(n)
G )+2 = n−1. Hence, reg(R/I

(n)
G ) = 2n−1.

In the last case, when G consists of exactly one edge, then R/I
(n)
G is

a Cohen-Macaulay ring. Therefore, reg(R/I
(n)
G ) = a2(R/I

(n)
G ) + 2, and

the statement follows from Theorem 2.8 (v). �

From Lemma 2.1 and Theorem 2.3, it is clear that a1(R/I
(n)
G ) is a

linear function for all n ≥ 1, and, from Theorem 2.8 and Theorem 2.9,

a2(R/I
(n)
G ) and reg(R/I

(n)
G ) are linear functions for all n ≥ 2.
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