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ORDER IDEALS, ANNIHILATOR IDEALS AND
PATHOLOGICAL BEHAVIOR

E. GRAHAM EVANS AND PHILLIP GRIFFITH

ABSTRACT. This article establishes a concrete relation
between order ideals of minimal generators and annihilator
ideals. For a regular local ring R and ideal I the authors
construct an R-module M with minimal generator having I
as order ideal. Further, it is shown that most variability in
idealtheoretic behavior of such order ideals is exhibited by
modules of projective dimension one. The authors “intro-
duce” the concept of ∗-orthogonality and use their syzygy
theorem to show constraints on the size and height of a ∗-
orthogonal set in a given finitely generated non-free module.
The paper contains an application of the theory of order
ideals to the binomial behavior of syzygy rank.

In article [12], we provided a summary update of results on order
ideals associated to modules. These results and their application have
been studied in detail since the late 1950’s, beginning with the articles
of Serre [17] and Bass [1]. The four central theorems outlined in
[12] all focus on bounding heights (or grade) of order ideals, either
from above or below. The applications resulting from these bounds
extend from the theory of commutative algebra to that of algebraic
geometry and cohomology of coherent sheaves (e.g., see the articles
[12, Section 1], [15], [16]). Recently, Dutta [7] has shown the order
ideal conjecture (open in mixed characteristic) for kth syzygy modules
of finite projective dimension implies the monomial conjecture in local
algebra. Dutta’s result places the theory of order ideals in a prominent
place among the other homological conjectures, most of which have
affirmative answers outside of mixed characteristic (see [4, Section
III]). In the current article, we exhibit elementary constructions that
demonstrate the wide range of behavior of such ideals, especially when
the constraints of syzygy index and rank are relaxed. We make precise
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the notion of order ideal. For an R-module E we use the notation
E∗ = HomR(E,R) to denote its R-dual.

Definition. Let R be a ring, and let E be an R-module. For
e ∈ E, the associated ideal OE(e) = {f(e) | f ∈ E∗} is called the
order ideal of e in the module E. One can observe that the element
e defines a R-homomorphism e : E∗ → R via the standard formula
e(f) = f(e). We note that image (e) = OE(e). If E is a free R-module,
then OE(e) is generated by the coordinate components of e relative to
a (any) R-basis for E. Of particular interest in the general theory is the
case E which represents a kth module of syzygies, that is, inductively
speaking, the case E represents the module of relations on a (k − 1)st
syzygy module M for some (minimal) free resolution over the ring R.
In this set-up, there is a prescribed generating set m1, . . . ,mg for the
R-module M and a free R-module Rg with the basis E1, . . . , Eg such
that Ei 7→ mi, 1 ≤ i ≤ g, and such that E = ker(Rg → M). It follows
that an element e ∈ E can be viewed as a vector e = ⟨λ1, . . . , λg⟩ ∈ Rg

such that λ1m1+ · · ·+λgmg = 0. Thus, htR OE (e) can be interpreted
to be a measure of the support for the relation defined by e.

In our original paper [8], monograph [10] and updated more recently
in [12], we discuss the key results that show how syzygy index and rank
serve to impose constraints on the behavior of order ideals, especially
the behavior of order ideals for minimal generators (see also [9]). For
example, if R is a local ring containing a field and, if E is a nonfree kth
syzygy module over R having finite projective dimension and rank k,
then grade OE(e) = k for each minimal generator e (that is, e ∈ E−mE
where m denotes the maximal ideal of R).

In the current article, we pursue a theme mentioned in passing (see
[12, page 405]) and examine more general and pathological behavior
for order ideals of minimal generators. In Section 1 we begin with a
few general facts and then draw a close connection between annihilator
ideals and order ideals of minimal generators, e.g., see Proposition 1.3
and Remark 1.11. In particular, Remark 1.11 illustrates a key point
that whatever pathology can be observed in the theory of order ideals
for minimal generators can already be observed in modules E having
free presentations of the special form 0 → R → Rt+1 → E → 0. So,
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up to R-multiples, it suffices to study modules with a single defining
relation.

The authors introduce the concept of ∗-orthogonality in Section 2
and use their syzygy theorem to show constraints on the size and height
of a ∗-orthogonal set in a given finitely generated non-free module.
In Section 2 we build on the example noted in [12, page 405] that
shows the maximal ideal can occur multiple times as order ideal, even
for modules of small rank. To facilitate this discussion, we introduce
the notion of ∗-orthogonal sets to illustrate this phenomenon and its
limitations. For example, we prove in Theorem 2.4 that a ∗-orthogonal
set of n-elements having height > k in a nonfree kth syzygy module
E forces the inequality rank E ≥ n + k. (Here, the underlying ring is
regular local and contains a field.)

Section 3 contains an application of the theory of order ideals to the
binomial behavior of syzygy rank. In Section 3, we exhibit a “factor-
ization diagram” (Theorem 3.3) for suitable short exact sequences of
syzygy modules. We apply the factorization result to conclude cases
where syzygy modules have “appropriate” binomial rank. The diagram
factorization is a byproduct of our work on order ideals of minimal gen-
erators, and provides a natural obstruction for maps between syzygy
modules to be surjections. (See [5], [6], [11], [13], [14] for additional
background on this material.)

Notation, terminology and restrictive assumptions. Our ba-
sic notation and terminology follows that of our monograph [9] and
recent article [12]. The advanced book of Bruns and Herzog [4] is a
valuable resource for unexplained facts about local rings and modules.
Throughout this article, we assume (unless otherwise stated) the local
ring is of the form

R = k[[X1, . . . , Xn]],

where k is a field. A consequence of this assumption is that our syzygy
theorem [10, Theorem 3.15] on ranks of kth syzygy modules will always
be valid when necessary for application in this setting. In addition, the
pathological behavior discussed herein is not affected by our simplifying
assumption. Finally, the symbol m denotes the unique maximal ideal
of R, and of course, k denotes the residue field k = R/m.
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1. Relationship of order ideals to annihilator ideals. Our first
observation asserts that the collection of order ideals obeys the following
closure operations.

Lemma 1.1. The collection of order ideals of minimal generators
over a fixed ring is closed under the algebraic operations of sum and
intersection.

Proof. Closure for the sum operation follows readily from an ap-
plication of the notion of direct sum. In the case of intersection
OE(e) ∩ OE′(e′), where e ∈ E − mE and e′ ∈ E′ − mE′, we observe
that OE(e) ∩OE′(e′) = OE′′(e′′), where e′′ is represented by the coset
⟨e, o⟩ = ⟨o, e′⟩ ∈ (E

⊕
E′)/R⟨e,−e′⟩, gives the desired result. �

The following corollary will have an important application later in
this section.

Corollary 1.2. Suppose that I is a nonzero ideal in R such that there
is an injection

λ : R/I ↩→
⊕

Mi.

If λ (1 + I) = ⟨mi⟩ with annR (mi) = OE (ei) for each i, then
annR(⟨mi⟩i) = ∩iOE (ei) is also an order ideal for some minimal gen-
erator.

Proof. One has annR⟨mi⟩ = ∩iannR (mi) = ∩iOE (ei) is an order
ideal for some minimal generator from Lemma 1.1. �

Next, we draw a connection between order ideals and annihilator
ideals–especially for particular torsion free R-modules of projective
dimension one.

Proposition 1.3. Let J = (x1, . . . , xt) be a nonzero ideal, and let

x0 ∈ m− J . Form the short exact sequence 0 → R
ι−→ Rt+1 η−→ E → 0,

where ι(1) = ⟨x0, x1, . . . , xt⟩.

(i) If e = η(⟨1, 0, . . . , 0⟩), then annR(x0+J) = OE (e) for the minimal
generator e of E.

(ii) If htR(x0, x1, . . . , xt) ≥ k + 1, then syzRE ≥ k.
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Proof. AnR-homomorphism f : Rt+1 → R induces anR-homomorphism
f : E → R precisely when f(⟨x0, . . . , xt⟩) = 0. That is precisely
when there is an R-relation x0r0 + x1r1 + · · · + xtrt = 0, where
r0 = f(⟨1, 0, . . . , 0⟩). So one has f(e) = r ⇔ x0r ∈ (x1, . . . , xt).

For part (ii), we recall [8, Theorem 3.8] that E becomes a kth syzygy
if and only if E is free when localized at prime ideals of height ≤ k. �

Corollary 1.4. If P = (a1, . . . , at) is a nonzero prime ideal of height
k < dimR, then P = OE(e) for a kth syzygy module E such that

(i) e ∈ E −mE,
(ii) pdE = 1,
(iii) rankE = t.

Proof. Choose a0 ∈ m−P , and note htR(a0, P ) = k+1. Then apply
the construction of Proposition 1.3. �

Corollary 1.5. Let P be as above. Then P = OE(e), where syzRE =
k − 1 and

(i) e ∈ E −m , E
(ii) pdE = 1,
(iii) rankE = k.

Proof. Let x1, . . . , xk be a maximal R-sequence in P . Then P =
annR((x0,+(x1, . . . , xk)) for some x0. Let 0 → R → Rk+1 → E → 0,
where 1 7→ ⟨x0, x1, . . . , xk⟩, and set e = image of ⟨1, 0, . . . , 0⟩ in E. �

The next case deals with m-primary ideals.

Corollary 1.6. Suppose I is an m-primary ideal and x1, . . . , xd is a
maximal R-sequence in I. We assume that x = (x1, . . . , xd) ̸= m.
Then I = OE(e) for some torsion free R-module E and e ∈ E −mE.

Proof. One has an injection R/I ↩→
⊕h

R/x, since R/x is a self-
injective local ring. Suppose that 1 + I = ⟨a1, . . . , ah⟩. Then the claim
follows from Corollary 1.2 after one notes I = ∩j ann (aj). �
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Corollary 1.7. If depth R/J > 0, then J = OE(e) for appropriate E
and e ∈ E −mE.

Proof. There is a0 ∈ m − J such that a0 is regular on R/J . So
set E = Rt+1/Rv where v = ⟨a0, . . . , at⟩ and J = (a1, . . . , at). Then
ann a0 + J = J . �

Theorem 1.8. Let I be any nonzero ideal in R. Then I = OE(e) for
appropriate E and e ∈ E −m E.

Proof. If depth R/I > 0, we are finished by Corollary 1.7. If not, we
can embed R/I ↩→ E(R/I), where E(R/I) is the injective envelope of
R/I. Then E(R/I) = E0

⊕
E1 where AssE0 = m and AssE1 contains

only nonmaximal prime ideals. Let C0 be the natural projection of R/I
in E0 and likewise C1 the natural projection of R/I in E1. Then, both
C0 and C1 are cyclic with ℓ(C0) < ∞ and depth C1 > 0. Therefore,
the annihilators of C0 and C1 are order ideals of minimal generators
for appropriate modules by Corollaries 1.6 and 1.7. Since we have
I = annC0 ∩ annC1, we are finished by Corollary 1.2. �

The final results of this section demonstrate that we often can be
more efficient with respect to rank in our construction of modules
having a minimal generator with prescribed order ideal. Due to the
affirmative nature of the following two theorems we deviate from
previous practice by allowing the local ring (R,m) to denote any regular
local ring–regardless of characteristic. The argument for Theorem 1.9
makes use of local cohomology as described in Brodmann and Sharp
[2, Chapters 1–6].

Theorem 1.9. Let (R,m) be a regular local ring, and let I be an R-
ideal of grade ≥ 3. Then I is the order ideal of a minimal generator
for a rank 3 R-module.

Proof. From our construction described in Proposition 1.3 one ob-
serves that it suffices to show there are elements a, b, c, d in m such that
I = annR (d + (a, b, c)), that is, one needs to establish an R-injection
R/I ↩→ R/(a, b, c).

To this end, let E be the second syzygy module for R/I. We note E
is not a free R-module since pd R/I ≥ grade I ≥ 3. Applying Bruns’s
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theorem [4] we may construct a short exact sequence O → F → E →
E′ → O for which F is a free R-module and E′ is the second syzygy
module for a cyclic R-module of the form R/(a, b, c). Since grade I ≥ 3
one has that the local cohomology modules with respect to the ideal I
satisfy Hj

I (R) = 0 for j = 0, 1, 2. Therefore, one easily calculates the
induced maps

R/I ∼= H0
I (R/I) ∼= H2

I (E) ↩→ H2
I (E

′) ∼= H0
I (R/(a, b, c)) ⊆ R/(a, b, c).

Thus, there is the required injection R/I → R/(a, b, c), and the claim
is proved. �

Although we cannot establish the conclusion of Theorem 1.9 for
all ideals I having grade I ≥ 2, we show in Theorem 1.10 that the
conclusion of Theorem 1.9 holds for all prime ideals of grade ≥ 2.

Theorem 1.10. Let dimR ≥ 2, and let P be a prime ideal in R with
height P ≥ 2. Then there is a torsion free R-module having rank 3 and
minimal generator e such that OE(e) = P .

Proof. When P is the maximal ideal the result follows from our
standard construction given in Proposition 1.3 and Bruns’s theorem
[3]. Namely, there is a three-generated ideal (a, b, c) with P associated
to R/(a, b, c). Therefore, one can form the short exact sequence

O −→ R
i−→ R4 −→ E −→ O

in which i(1) = ⟨d, a, b, c⟩ where P = ann [d + (a, b, c)]. The general
construction follows by repeating the identical construction over the
local ring RP . To insure that E can be realized as an R-module one
multiplies the vector ⟨d, a, b, c⟩ by a suitable s ∈ R − P so that the
adjusted vector ⟨sd, sa, sb, sc⟩ lies in R4 and height (sd, sa, sb, sc) ≥ 2.
The affect of this operation does not change the R-annihilator of the
coset d+(a, b, c), i.e., OE(e) = P where e represents the coset in E for
the vector ⟨1, 0, 0, 0⟩ ∈ R4. We are still left with the question: Can any
grade ≥ 2 ideal be the order ideal of a minimal generator in a torsion
free R-module of rank 3? �

Remark 1.11. While one may view the class of torsion free R-modules
considered here to be rather special, we point out that the basic
construction in Proposition 1.3 underlies most situations with respect



50 E. GRAHAM EVANS AND PHILLIP GRIFFITH

to order ideals and their properties. To this end, let E be a torsion free
R-module, and let e ∈ E − mE. We assume htOE(e) ≥ 2 (if OE(e)
is not principal, then OE(e) is always isomorphic to such an ideal.)
Applying Bruns’s theorem (see [9, 3.11]) we may extend the set {e}
to a set {e = e0, e1, . . . , et−2} so that ΣiRei is a free submodule of E
and such that E/(ΣiRei) is isomorphic to an ideal of height ≥ 2 (if
the ideal in question were principal then E would necessarily be a free
module). Since an ideal of R of height ≥ 2 must contain a 2-sequence,
we enlarge our set {e0, . . . , et−2} by two elements so that the enlarged
set {e0, . . . , et} has the following properties. For W = Σt

j=0Rej

(a) There is a free presentation 0 → R → Rt+1 → W → 0, where
1 7→ ⟨r0, . . . , rt⟩ is the result of the relation

(∗) r0e0 + r1e1 + . . .+ rtet = 0.

(b) All other relations on {e0, . . . , et} are scalar multiples of (∗).
(c) W ∗ = E∗.
(d) OW (e0) = OE(e) = ann (r0 + (r1, . . . , rt)), i.e., OE(e) is an

annihilator ideal modulo (r1, . . . , rt).

To see that (a)–(d) hold one concludes from the construction of W
that t = rankRE, W is generated by 1 + rankW = 1 + t elements and
that E/W has no support in codimension one. Also, part (d) is related
to Proposition 1.3 (i).

Thus, any torsion free module E contains a copy of such a module
“W” for each of its generators.

2. ∗-Orthogonal sets, rank and order ideals for syzygy mod-
ules of projective dimension one. We begin with a discussion of
∗-orthogonal sets and their consequences in the setting of torsion free
modules.

Definition 2.1. Let (R,m) be a local domain, and let E be a torsion
free R-module. A set {ei} in E is called a ∗-orthogonal set, provided:
for each i, the order ideal OE(ei) is generated by f(ei) where f ∈ E∗

and f(ej) = 0 for j ̸= i. We say the set {ei} is ∗-orthogonal of height
≥ k provided htOE(ei) ≥ k for each i.
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Remark 2.2. Choosing an element fi :∈ E∗ for each i such that
fi(ei) ̸= 0 while fi(ej) = 0 for i ̸= j gives rise to an R-bilinear form
on E defined by the formula: ⟨e, e′⟩ = Σifi(e)fi(e

′) for which the set
{e1, . . . , en} in the definition (2.1) is an orthogonal set in the usual
sense.

Lemma 2.3. Suppose E is a kth syzygy module having a ∗-orthogonal
set {ei} of height > k. Then E/F is a kth syzygy module and
F = ΣiRei is a free submodule.

Proof. The argument here is a direct consequence of [10, Lemma
3.10] and induction on n. �

The following statement amounts to a restatement of our syzygy
theorem [10, Theorem 3.15] in the context of ∗-orthogonal sets.

Theorem 2.4. Let E be a nonfree kth syzygy module. If {e1, . . . , en}
is a ∗-orthogonal set in E of height > k, then rankE ≥ k + n.

Proof. The definition of ∗-orthogonal set together with induction on
n guarantees the short exact sequence

0 −→ ΣiRei −→ E −→ E/ΣiRei −→ 0

is split exact locally in codimension ≤ k. Thus, the factor module
E/ΣiRei will necessarily be a kth syzygy module when E is a kth
syzygy module. �

We remark that a basis {e1, . . . , en} for a free module F =
⊕

i Rei
is certainly a ∗-orthogonal set as a result of the notion of “dual basis.”
The following corollary indicates a module with a ∗-orthogonal set is
necessarily free should the ∗-orthogonal set be too large in relation to
the rank of the module.

Corollary 2.5. If the kth syzygy E has a ∗-orthogonal set {e1, . . . , en}
of height > k such that n > rank E - k, then E is a free R-module.

In particular, if E is a reflexive module (i.e., E is a second syzygy)
then n > rankE − 2 implies that E is a free module. This form of
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Corollary 3.5 will be used later in the current section. In this context
the following observation will prove useful.

Lemma 2.6. Let E be a torsion free R-module, and let {e1, . . . , en}
be a ∗-orthogonal set in E of height ≥ 3. Then 0 → F → E∗∗ →
(E/F )∗∗ → 0 is exact, where F = ΣRei.

Proof. From the short exact sequence 0 → F → E → E/F → 0 we
obtain the induced commutative diagram of

O // (E/F )∗ // E∗ //

$$ $$I
II

II
II

II
I F ∗

⊕iOE(ei)

::vvvvvvvvvv

which further induces the commutative diagram

0 // F //

∼=
��

E //

��

E/F //

��

0

0 // F ∗∗ // E∗∗ // (E/F )∗∗ // 0

The map E∗∗ → (E/F )∗∗ is surjective because Ext1R(OE(ei), R) = 0,
for 1 ≤ i ≤ n, since height OE(ei) ≥ 3 for each i. �

Corollary 2.7 (Notation as above). The second dual E∗∗ is free if and
only if (E/F )∗ is free.

Our next goal is to provide an affirmative answer to our question
[12, page 14] regarding generating sets having multiple members whose
order ideals are the maximal ideal. As it turns out, the members e of
the generating set having the property OE(e) = m are members of a
∗-orthogonal set of generators. We describe our construction here.

Following the setup in [12, page 405] let (a, b, c) denote a three-
generated ideal having the following properties:

(∗) The vector space dimension of the k-socle of R/(a, b, c) is n.

(∗∗) The second syzygy of R/(a, b, c) is nonfree of rank 2.
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Let m1, . . . ,mn be elements of R whose cosets modulo (a, b, c) provide
a k-basis for the k-socle of R/(a, b, c). That is, the annihilator of each
cosetmi+(a, b, c) is exactlym. We let E be defined by the minimal free
presentation 0 → R → Rn+3 → E → 0 where 1 → ⟨m1, . . . ,mn, a, b, c⟩.
Let e1, . . . , en be the corresponding first n-standard basis vectors in
Rn+3 whose images in E are denoted by e1, . . . , en, respectively. As
argued in [12, page 14], we have OE(ei) = m, for 1 ≤ i ≤ n. The
set {e1, . . . , en} is easily shown to be a ∗-orthogonal set in E having
n = rankE − 2 elements. The question asked in [12, page 405] is: can
we find a larger such set? The answer is given in our next result and is
achieved through a more subtle argument than say that of Theorem 2.4.

Theorem 2.8. Let E be a torsion free R-module such that E∗ is not
a free module, and let {e1, . . . , en} be a ∗-orthogonal set in E of height
≥ 3. Then n ≤ rankE − 2.

Proof. Consider the case where n = rankE − 1, and let F be the
free submodule generated by e1, . . . , en−1. Then the rank 2 torsion free
factor module N = E/F has an element en having order ideal J of
height ≥ 3. Therefore, we obtain a short exact sequence

(∗) 0 −→ R −→ N −→ N/R −→ 0, where 1 7−→ en,

and where N/R is isomorphic to an ideal of R. Dualizing (∗) with
respect to R gives an exact sequence

0 −→ (N/R)∗ −→ N∗ −→ R∗ −→ Ext1R(N/R,R).

The image of N∗ in R∗ ∼= R is isomorphic to J and (N/R)∗ ∼= R since
R is a UFD. From here, one sees that the left hand portion of the dual
sequence 0 → R → N∗ → J → 0 is necessarily split exact since height
J = grade J ≥ 3 implies Ext1R(J,R) ∼= Ext2R(R/J,R) = 0.

Thus, N∗ ∼= R
⊕

J is free since J is a reflexive ideal and R is a UFD.
Noting that N∗ = (E/F )∗ and N∗∗ = (E/F )∗∗ are free R-modules we
may invoke Corollary 2.7 (see also Lemma 2.6) to conclude E∗ must be a
free R-module as well, a fact that contradicts the hypothesis above. �

Remark. We note the condition in Theorem 2.8 “height ≥ 3” is
necessary. If R = k[[x, y, z]] and N = R3/⟨x2, y2, xy⟩, then the order



54 E. GRAHAM EVANS AND PHILLIP GRIFFITH

ideal of the image of ⟨0, 0, 1⟩ in N is (x, y), rankN = 2 and N∗ is not
a free module.

We recall more facts concerning our example [12, page 14] cited
earlier in this section. From the description surrounding our example
one may construct the commutative diagram

F��

��

F��

��
0 // R // Rn+3

����

// E

����

// 0

0 // R // R3 // E′ // 0

where 1 7→ ⟨a, b, c⟩ defines the left hand map of the second row. It
follows that (E′)∗ is the second syzygy for the cyclic module R/(a, b, c).
By assumption, R/(a, b, c) was chosen so that the second syzygy module
for R/(a, b, c) was not free. The assumption was made possible by
Bruns’s theorem (see [10, Corollary 3.13] or the original paper [3]).
Thus, the ∗-orthogonal set in which each member had order ideal m
cannot be extended to a larger one having the same property.

When one deletes the “∗-orthogonal” requirement on the set of
minimal generators that have order ideal equal to m, then one can
construct modules in which an entire minimal generating set has this
property. By way of example, we set R = k[[x, y, z, w]] where the
coefficient field has characteristic different from 2. We define the
four-generated module E of rank 3 via the minimal free presentation
0 → R → R4 → E → 0 where 1 7→ ⟨zw, xz, yw, xy⟩, and let
e1, e2, e3, e4 represent the images in E of the usual standard basis
elements e1, e2, e3, e4, respectively, for R4. Then the collection e1 +
e4, e1 − e4, e2 + e3, e2 − e3 is the desired minimal generating set. We
calculate the order ideal for e1 + e4 from the relation

zw(e1 + e4) + xze2 + ywe3 + (xy − zw)e4 = 0

and rely on symmetry of relation and argument for the remaining
three. (Note: zwe1 + xze2 + ywe3 + xye4 = 0 is given as a result of
the free presentation.) A straightforward calculation shows m(zw) ⊆
(xz, yw, xy − zw), that is, m = ann (zw) modulo the ideal (xz, yw, xy
- zw). From Proposition 1.3 (i), we get m = OE(e1 + e4). Similar
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arguments work for the remaining minimal generators e1 − e4, e2 +
e3, e2 − e3.

Since the ideal (zw, xz, yw, xy) = (y, z)∩(x,w) has height 2, we note
that the module E is a first syzygy module (i.e., E is torsion free) but
not a second syzygy module. Finally we remark that the order ideals
for the minimal generating set e1, e2, e3, e4 are the collection of height 2
prime ideals (x, y), (y, w), (x, z) and (z, w), respectively.

In closing, we make two additional observations about ∗-orthogonal
sets. Although the center of our attention in this article concerns
order ideals of minimal generators, on occasion we have dropped that
assumption when discussing ∗-orthogonal sets, e.g., see Theorem 2.4.
However, if a proposed order ideal OE(e) is not contained in m2 when
E has no free summands (e.g., say OE(e) * m2), then e is necessarily
a minimal generator. Moreover, if E∗ has no free summands then
OE(e) * m2 implies e is also a minimal generator of E∗∗. Our final
observation of this section concerns ∗-orthogonal sets and free bases.

Proposition 2.9. Let E be a torsion free module of rank n, and
suppose e1, . . . , en is a ∗-orthogonal set of height ≥ 2. Then E is a
free module with bases e1, . . . , en.

Proof. Our conclusion follows directly from Theorem 2.4. Since the
factor module E/F must satisfy the Serre condition (S1), i.e., E/F is
torsion free, it must be that E/F = 0. �

3. Application of the theory of order ideals to binomial
behavior of syzygy rank. Given an R-homomorphism φ : M → N ,
we refer to φ as a proper map provided the induced map φ : M/mM →
N/mN is a nonzero homomorphism; that is, φ is proper provided
1
⊗

φ : k
⊗

M → k
⊗

N is nonzero. More simply put, a map
φ : M → N is proper provided there is a minimal generatorm ∈ M that
is mapped by φ to a minimal generator n ∈ N . So φ(m) = n ∈ N−mN .
The central questions addressed here go as follows: given a short exact
sequence 0 → k → T → T ′ → 0, how can one decide whether the
induced maps of syzygy modules are proper or not? And, if one can
ascertain the answer, how does this information impact ranks of syzygy
modules? Our initial observation begins with the following obvious fact
about order ideals.
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Lemma 3.1. Let φ : M → N be a homomorphism of R-modules such
that φ(m) = n. Then ON (n) ⊆ OM (m).

The next step is to be able to compute order ideals for syzygy
modules. To this end, we state the following proposition.

Proposition 3.2. Let 0 → E → F → M → 0 be short exact in which
the middle term F is a free R-module.

(a) If e ∈ E, then OF (e) ⊆ OE(e) and OF (e) is completely determined
by any coordinate representation of e in F .

(b) If Ext1R(M,R) = 0, then equality OF (e) = OE(e) holds.

Proof. Part (a) follows directly from (3.1) and the fact OF (e) is
generated by the coordinates of e relative to (any) R-basis for F .

Part (b) follows from the “dual exactness” 0 → M∗ → F ∗ → E∗ → 0
that results when Ext1R(M,R) = 0. Note every R-homomorphism
E → R extends to F → R in this case. So OF (e) = OE(e). �

The above simple observations can be very useful in computing order
ideals for syzygy modules in the following context. Let F• → T be a
minimal free R-resolution of a module T having finite length. Let Ek =
Syzk(T ) for each index k in this free resolution. Then OE(e) = OF (e),
for e ∈ Ek and 1 ≤ k ≤ dimR − 1. Moreover, if e ∈ Ek −mEk, then
OF (e) can be determined from its basis representation in Fk−1 (we are
assuming here that matrix representations for the differential maps in
F• are given.) For example, if T = k, then all of the order ideals of
minimal generators in the syzygy modules are linear in the sense each
is minimally generated by elements in m − m2. In this special case,
we use the notation “Wk” to denote the kth syzygy module (unique
up to isomorphism) for the residue field k. A short exact sequence
0 → T ′ → T → T ′′ → 0 of R-modules induces via the horseshoe
construction a short exact sequence of free resolutions which in turn
induces a finite sequence of short exact sequences of syzygy modules
0 → E′

k → Lk

⊕
Ek → E′′

k → 0 where the free R-modules “Lk”
are necessary since the middle free resolution in the horseshoe lemma
construction may not be minimal. Under appropriate conditions, we
obtain a useful factorization diagram in this setting. A version of this
result was informally discussed in our article [12, Section 4].
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Theorem 3.3. Let 0 → E′ → L
⊕

E → E′′ → 0 be a short exact
sequence of R-modules in which L is R-free.

(a) If the induced map E → E′′ is not proper, then there is an induced
commutative diagram

0 // Z��

��

// L��

��

// E′′ // 0

0 // E′

����

// L⊕ E

����

// E′′ // 0

E E

in which the middle column is split exact and the first column is
exact.

(b) If E′ is without nontrivial free R-summands, then the first row is
a minimal free presentation of E′′.

Proof.

(a) Under the standing hypothesis, no minimal generator of E can map
to a minimal generator of E′′; thus Image (E → E′′) ⊆ mE′′. It
follows that the induced map L → E′′ is necessarily surjective and
so the commutative diagram as described above follows as well.

(b) The upper left square of the commutative diagram in part (a) shows
that any shared free summand of Z → L will likewise produce a
shared free summand of Z → E′ having the same rank. Thus,
claim (b) follows. �

Corollary 3.4. We suppose that 0 → k → T → T ′ → 0 is nonsplit,
E′

k = Syzk(T
′) has a generating set for which no order ideal contains a

linear R-sequence of length k− 1, and Ek = Syzk(T ) has no nontrivial
free summands. Then, for k ≥ 2, there is a short exact sequence
0 → Wk → Ek → E′

k → 0.

Remark 3.5. The assumption that the short exact sequence 0 → k →
T → T ′ → 0 is not split is natural here since the split exact case is
easily analyzed.
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Proof. Since 0 → k → T → T ′ → 0 is nonsplit, then k ⊆ mT which
implies there is a short exact sequence of syzygy modules (∗)0 → E1 →
E1

′ → k → 0. Applying the usual horseshoe construction to obtain
simultaneous free R-resolutions for short exact sequence (∗) one has
short exact sequences for k ≥ 2, 0 → Ek → Lk

⊕
Ek

′ → Wk−1 → 0,
where Lk is a free R-module. If there is a k ≥ 2 so that Ek

′ has
a generating set for which no element has an order ideal containing
a linear R-sequence of length k − 1, then those minimal generators
must map to mWk−1 which implies Image (Ek

′ → Wk−1) ⊆ mWk−1.
Therefore, applying our factorization theorem, gives a short exact
sequence 0 → Wk → Ek → E′

k → 0. �

The most obvious situation to apply Corollary 3.4 is the case for
which ℓ(T ) < ∞. For 1 ≤ k < dimR, the kth syzygy module Ek will
not have nontrivial free R-summands. Working under the assumption
that we know the matrix representations for the differential d.′ in the
R-free resolution F ′

• → T ′, we may apply (3.4) in instances where the
entries for d′k lie in m2.

Example 3.6. Let R = k[[x1, x2, x3, x4, x5]], and set J = x1
2m +

(x2
2, x3

2, x4
2, x5

2). Note the containment J ⊂ (x1
2, x2

2, x3
2, x4

2, x5
2) =

I is strict and 0 → I/J → R/J → R/I → 0 is exact with I/J ∼= k.
Since the differentials for the R-free resolution for R/I can be defined
over k[[x1

2, x2
2, x3

2, x4
2, x5

2]], one may apply the conclusion of Corol-
lary 3.4 to obtain that rank Syzk(R/J) = 2

(
4

k−1

)
for k = 2, 3, 4.

For more discussion on the binomial behavior of syzygy rank and
Betti numbers for modules of finite length, one may consult the articles
of Herzog and Kühl [14], Evans and Griffith [11], Charalambous [5]
and Charalambous and Evans [6].

Acknowledgments. The authors thank the referee for a careful
reading of their manuscript that produced essential corrections and
sharper arguments.
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14. J. Herzog and M. Kühl, On the Betti numbers of finite pure and linear
resolutions, Comm. Alg. 12 (1984), 1627–1646.

15. R. Lazarsfeld and M. Popa, Derviation complex, BGG correspondence, and
numerical inequalities for compact Kähler manifolds, Invent. 182 (2010), 605–633.

16. A. Pareschi and M. Popa, Strong generic vanishing and a higher-

dimensional Castelnuovo-de Franchis inequality, Duke Math. J. 150 (2009), 269–
285.

17. J.-P. Serre, Sur les modules projectifs. Seminaire Dubriel-Piscot, 13, Paris,

1960–61.

611 Harding Drive, Urbana, IL 61801
Email address: geevans64@gmail.com

2705 Holcomb Dr., Urbana, IL 61802
Email address: pgriffit@illinois.edu


