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ANTI-HOMOMORPHISMS BETWEEN
MODULE LATTICES

PATRICK F. SMITH

ABSTRACT. We examine the properties of certain map-
pings between the lattice L(R) of ideals of a commutative
ring R and the lattice L(RM) of submodules of an R-module
M , in particular considering when these mappings are lat-
tice anti-homomorphisms. The mappings in question are the
mapping α : L(R) → L(RM) defined by setting for each
ideal B of R, α(B) to be the submodule of M consisting
of all elements m in M with Bm = 0 and the mapping
β : L(RM) → L(R) defined by β(N) is the annihilator in R
of N , for each submodule N of M .

1. Introduction. This paper is concerned with mappings, in par-
ticular anti-homomorphisms, between certain lattices. Let L and L′

be lattices. As usual, given a and b in L, the least upper bound and
the greatest lower bound of a and b are denoted by a ∨ b and a ∧ b,
respectively. Given mappings φ, θ from a lattice L to a lattice L′ we
write φ ≤ θ to mean that φ(a) ≤ θ(a) for all a ∈ L. Clearly, φ = θ if
and only if φ ≤ θ and θ ≤ φ.

A mapping φ from a lattice L to a lattice L′ is an anti-homomorphism,
provided

φ(a ∨ b) = φ(a) ∧ φ(b) and φ(a ∧ b) = φ(a) ∨ φ(b),

for all a, b ∈ L. In other words, a mapping φ from a lattice L to a lattice
L′ is an anti-homomorphism if and only if the mapping φ is a homo-
morphism from L to the opposite lattice of L′. A bijective (respectively,
injective, surjective) anti-homomorphism is called an anti-isomorphism
(respectively, anti-monomorphism, anti-epimorphism). The first result
is absolutely standard and easy to prove.
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Lemma 1.1. The following statements are equivalent for a bijection φ
from a lattice L to a lattice L′.

(i) φ is an anti-isomorphism.
(ii) φ(a ∨ b) = φ(a) ∧ φ(b) for all a, b ∈ L.
(iii) φ(a ∧ b) = φ(a) ∨ φ(b) for all a, b ∈ L.

Moreover, in this case the inverse mapping φ−1 : L′ → L is also an
anti-isomorphism.

Throughout this note, all rings will be commutative with identity,
and all modules will be unital. Let R be a ring, and let M be any
R-module. The collection of submodules of M form a lattice which we
shall denote by L(RM) with respect to the following definitions:

L ∨N = L+N and L ∧N = L ∩N,

for all submodules L and N of M . Note that L(RM) is a lattice with
least element the zero submodule, greatest element M and, for any
given submodules L and N of M ,

L ≤ N in L(RM) ⇐⇒ L ⊆ N in M.

In particular, we shall denote the lattice L(RR) of ideals of R by L(R).
We shall be interested in mappings between L(R) and L(RM).

For any ideal B of the ring R we shall denote by annM (B) the set
of all elements m ∈ M such that Bm = 0. Note that annM (B) is a
submodule of M . In addition, for any submodule N of M we denote
by annR(N) the set of all elements r ∈ R such that rN = 0 and note
that annR(N) is an ideal of R. Let A = annR(M), the annihilator of
M in R. By defining

(r +A)m = rm (r ∈ R, m ∈ M),

M becomes a faithful (R/A)-module with the property that a subset X
of M is an R-submodule of M if and only if X is an (R/A)-submodule
of M . Thus, the lattice L(RM) is identical to the lattice L(R/AM).
Note that

annR/A(N) = annR(N)/A

for every submodule N of M . In addition,

annM ((B +A)/A) = annM (B),
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for every ideal B of R. This implies that

annM (annR(N)) = annM (annR/A(N)),

for every submodule N of M .

Let L and N be any submodules of a module M over a general ring
R. Then (L :R N) will denote the set of elements r ∈ R such that
rN ⊆ L. Thus, (L :R N) = annR((N + L)/L) which is an ideal of the
ring R. In [17, 18], we investigate the mapping λ : L(R) → L(RM)
defined by λ(B) = BM for every ideal B of R and the mapping
µ : L(RM) → L(R) defined by µ(N) = (N :R M) for every submodule
N of M . It is proved that λ = λµλ and µ = µλµ. In [17, 18],
we examine when the mappings λ and µ are (lattice) homomorphisms
with different properties. The module M is called a λ-module in case
the mapping λ is a homomorphism and is called a µ-module if µ is a
homomorphism.

Now we define a mapping α : L(R) → L(RM) by

α(B) = annM (B),

for every ideal B of R and we define a mapping β : L(RM) → L(R) by

β(N) = annR(N),

for every submodule N of M . Let A = annR(M). We shall denote by α
the mapping from L(R/A) to L(RM) defined by α(B/A) = annM (B/A)
for every ideal B of R containing A. Note that, by our above remarks,
α(B/A) = annM (B) for every ideal B containing A. In addition,
we denote by β the mapping from L(R/AM) to L(R/A) defined by

β(N) = annR/A(N) for every submodule N of M . Our above remarks

show that β(N) = annR(N)/A for every submodule N of M . It follows
that, if π : R → R/A is the canonical projection, then α = απ and
β = πβ.

Note the following result.

Lemma 1.2. Let R be a ring, and let M be any R-module. Then, with
the above notation,

(a) α(C) ≤ α(B) for all ideals B and C of R with B ≤ C in L(R).
(b) β(N) ≤ β(L) for all submodules L and N of M with L ≤ N in

L(RM).
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(c) αβα = α.
(d) βαβ = β.

Proof. (a), (b). Clear.

(c). Let B be any ideal of R. Then BannM (B) = 0 so that

B ⊆ annR(annM (B)) = βα(B).

It follows that 1 ≤ βα. Similarly, 1 ≤ αβ. By (a), αβα(B) =
α(βα(B)) ≤ α(B). Thus, αβα ≤ α. On the other hand, 1 ≤ αβ
implies that α(B) ≤ αβ(α(B)) = αβα(B). This gives that α ≤ αβα,
and hence, α = αβα.

(d). Similar to (c). �

Lemma 1.2 has as an easy consequence the following result.

Lemma 1.3. With the above notation, the following statements are
equivalent :

(i) α is a surjection.
(ii) αβ = 1.
(iii) N = annM (annR(N)) for every submodule N of M .
(iv) β is an injection.
(v) α is a surjection.
(vi) αβ = 1.
(vii) β is an injection.

Proof. (i) ⇒ (ii). By Lemma 1.2(c).

(ii) ⇒ (i), (iv). Clear.

(ii) ⇔ (iii). Clear.

(iv) ⇒ (ii). By Lemma 1.2(d).

(iii) ⇔ (v) ⇔ (vi) ⇔ (vii). We have noted above that

annM (annR(N)) = annM (annR/A(N)),

for every submodule N of M and thus (iii) ⇔ (v) ⇔ (vi) ⇔ (vii) all
follow from the equivalence of (i)–(iv). �
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The proof of the next result is similar to the proof of Lemma 1.3.
For the last part, note that if M is an R-module with A = annR(M),
then

α(A) = annM (A) = M = α(0).

Lemma 1.4. With the above notation, the following statements are
equivalent :

(i) α is an injection.
(ii) βα = 1.
(iii) B = annR(annM (B)) for every ideal B of R.
(iv) β is a surjection.

Moreover, in this case M is faithful.

Proposition 1.5. With the above notation, the mapping α is a bijec-
tion if and only if β is a bijection. In this case α and β are inverses of
each other and are both anti-isomorphisms.

Proof. By Lemmas 1.3 and 1.4 α is a bijection if and only if β is a
bijection and, in this case, α and β are inverses of each other. Moreover,
for all ideals B and C of R,

α(B ∨ C) = annM (B + C) = annM (B) ∩ annM (C)

= α(B) ∧ α(C).

By Lemma 1.1, α is an anti-isomorphism. The same proof proves that
β is also an anti-isomorphism. �

Next we recall the definition of trivial extensions. These will provide
a fruitful source of examples later. Let R be a ring, and let M be an
R-module. Then the trivial extension of M by R is the ring M n R
defined as follows. The set M n R consists of all ordered pairs (r,m),
with r ∈ R and m ∈ M , and addition and multiplication are defined
by

(r1,m1) + (r2,m2) = (r1 + r2,m1 +m2),

and
(r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1),

for all r1, r2 ∈ R and m1,m2 ∈ M . It is well known that M n R is a
commutative ring with zero (0, 0) and identity (1, 0). For any ideal B
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of R and submodule N of the R-module M , N nB will denote the set
of elements (b, x) with b ∈ B and x ∈ N . Note that N n B is an ideal
of M nR if and only if BM ⊆ N .

Let R be any ring, and let M be an R-module. We shall call M an
α-module in case the above mapping α : L(R) → L(RM) is an anti-
homomorphism. The R-module M is called a comultiplication module
in the case where α is a surjection. Thus, M is a comultiplication α-
module precisely when α is an anti-epimorphism. Note that M is a
comultiplication module provided that, for each submodule N of M ,
there exists an ideal B of R such that N = annM (B). Comultiplication
modules have been studied by a number of authors (see, for example,
[3, 4, 5, 8, 10, 14, 15]). In Theorem 4.3, we characterize when a
direct sum of modules is a comultiplication module.

We prove that if R is any ring, then every semisimple R-module
is an α-module (Corollary 2.9). In the case where R is a Dedekind
domain or a chain ring or the trivial extension X n S of the injective
envelope X of a simple S-module by a Dedekind domain S, then every
R-module is an α-module (Corollaries 2.14 and 2.15 and Example 3.15).
A ring R is von Neumann regular if and only if the mapping α is an
anti-monomorphism where M is the direct sum ⊕(R/P ) where P runs
through the collection of all prime ideals of R (Theorem 4.7).

2. The mapping α. Let R be a ring, and let M be an R-module.
Recall that we call M an α-module in case the mapping α : L(R) →
L(RM) defined by α(B) = annM (B) is a (lattice) anti-homomorphism.
Note the following result.

Lemma 2.1. The following statements are equivalent for an R-module
M .

(i) M is an α-module.
(ii) annM (B ∩ C) ⊆ annM (B) + annM (C) for all ideals B,C of R.
(iii) annM (B1 ∩ · · · ∩ Bn) = annM (B1) + · · · + annM (Bn) for every

positive integer n and ideals Bi (1 ≤ i ≤ n) of R.

Proof. (i) ⇒ (ii). Let B and C be any ideals of R. Then

annM (B ∩ C) = α(B ∧ C) = α(B) ∨ α(C)

= annM (B) + annM (C).
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(ii) ⇒ (iii). Let n be a positive integer, and let Bi (1 ≤ i ≤ n) be
any collection of ideals of R. Clearly, annM (Bi) ⊆ annM (B1∩· · ·∩Bn)
for each 1 ≤ i ≤ n. Hence,

annM (B1) + · · ·+ annM (Bn) ⊆ annM (B1 ∩ · · · ∩Bn).

However, by (ii) and induction,

annM (B1 ∩ · · · ∩Bn) ⊆ annM (B1) + · · ·+ annM (Bn).

This proves (iii).

(iii) ⇒ (i). Let B and C be any ideals of R. Then

α(B ∨ C) = annM (B + C) = annM (B) ∩ annM (C) = α(B) ∧ α(C).

Moreover, (iii) gives that

α(B ∧ C) = annM (B ∩ C) = annM (B) + annM (C) = α(B) ∨ α(C).

Thus, α is a homomorphism and M is an α-module. �

Lemma 2.1 has many consequences, and we give a few of these next.

Corollary 2.2. Let A be an ideal of a ring R. Then the cyclic R-
module R/A is an α-module if and only if (A :R B ∩ C) = (A :R
B) + (A :R C) for all ideals B and C of R.

Proof. Let G be any ideal of R. Then

annR/A(G) = {r +A : G(r +A) = 0}
= {r +A : Gr ⊆ A} = (A :R G)/A.

The result follows by Lemma 2.1. �

Corollary 2.3. Let R be a ring, and let an R-module M be an α-
module with A = annR(M). Then M = annM (B) + annM (C) for all
ideals B and C of R with B ∩ C ⊆ A.

Proof. By Lemma 2.1,

M = annM (B ∩ C) = annM (B) + annM (C). �

Recall that a moduleM is called hollow in the case whereM ̸= L+N
for any proper submodules L,N .
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Corollary 2.4. Let R be a ring, and let an R-module M be a hollow
α-module with A = annR(M). Let B and C be ideals of R such that
B ∩ C ⊆ A. Then B ⊆ A or C ⊆ A.

Proof. By Corollary 2.3, either M = annM (B) or M = annM (C).
Thus, BM = 0 and B ⊆ A or CM = 0 and C ⊆ A. �

Corollary 2.5. Let M be a module over a ring R such that Rm is an
α-module for each element m ∈ M . Then M is an α-module.

Proof. Let B and C be ideals of R. Let m ∈ annM (B ∩ C). By
hypothesis and Lemma 2.1,

m ∈ annRm(B ∩ C) = annRm(B) + annRm(C)

⊆ annM (B) + annM (C).

Thus, annM (B ∩ C) ⊆ annM (B) + annM (C). By Lemma 2.1, M is an
α-module. �

We next consider some examples of α-modules.

Proposition 2.6. Let R be a ring, and let an R-module M = ⊕i∈I Mi

be a direct sum of submodules Mi (i ∈ I). Then M is an α-module if
and only if Mi is an α-module for all i ∈ I.

Proof. Suppose first that Mi is an α-module for all i ∈ I. Let B and
C be any ideals of R. Then

annM (B ∩ C) = ⊕i∈I [annMi(B ∩ C)]

= ⊕i∈I [annMi(B) + annMi(C)]

= [⊕i∈I annMi(B)] + [⊕i∈I annMi(C)]

= annM (B) + annM (C).

By Lemma 2.1, M is an α-module.
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Conversely, suppose that M is an α-module. Let i ∈ I, and let
K = Mi. Given any ideals B and C of R we have:

annK(B ∩ C) = K ∩ [annM (B ∩ C)] = K ∩ [annM (B) + annM (C)]

= [K ∩ annM (B)] + [K ∩ annM (C)]

= annK(B) + annK(C).

Thus, annK(B∩C) = annK(B)+annK(C) for all ideals B and C of R.
By Lemma 2.1, K is an α-module. It follows that Mi is an α-module
for every i ∈ I. �

Let R be any ring. An R-module M is called prime in the case when
M is non-zero and whenever rm = 0 for some r ∈ R, 0 ̸= m ∈ M then
rM = 0. It is well known that the module M is prime if and only if
A = annR(M) is a prime ideal of R and the (R/A)-moduleM is torsion-
free. In particular, if P is any prime ideal of R, then the R-module R/P
is prime. There is an extensive literature on the topic of prime modules
over commutative rings (see, for example, [6, 9, 11, 12, 13]).

Proposition 2.7. Let R be any ring. Then every prime R-module is
an α-module.

Proof. Let M be a prime R-module. Let B and C be ideals of R.
Let m ∈ annM (B ∩ C). Then (B ∩ C)m = 0, and hence, B(Cm) = 0.
Either Cm = 0 or BM = 0, in which case Bm = 0. In any case,
m ∈ annR(B)∪ annR(C) ⊆ annR(B) + annR(C). By Lemma 2.1, M is
an α-module. �

Corollary 2.8. Let R be any ring. Then every direct sum of prime
R-modules is an α-module.

Proof. By Propositions 2.6 and 2.7. �

Corollary 2.9. Let R be any ring. Then every semisimple R-module
is an α-module.

Proof. By Corollary 2.8 because every simpleR-module is prime. �

Next we consider the case of domains.
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Lemma 2.10. Let R be a domain, and let M be an R-module with
torsion submodule T . Then M is an α-module if and only if T is an
α-module.

Proof. Let G be any non-zero ideal of R. Clearly, annM (G) =
annT (G). Apply Lemma 2.1. �

Corollary 2.11. Let R be a domain, and let M be an R-module whose
torsion submodule is semisimple. Then M is an α-module.

Proof. By Lemma 2.10 and Corollary 2.9. �

Next we investigate rings R with the property that every R-module
is an α-module.

Theorem 2.12. The following statements are equivalent for ideals B
and C of a ring R.

(i) annM (B ∩ C) = annM (B) + annM (C) for every R-module M .
(ii) annM (B ∩ C) = annM (B) + annM (C) for every cyclic R-module

M .
(iii) R = (B :R C) + (C :R B).

Proof. (i) ⇒ (ii). Clear.

(ii) ⇒ (iii). Let M denote the cyclic R-module R/(B ∩ C). By
hypothesis,

R/(B ∩ C) = annM (B ∩ C) = annM (B) + annM (C).

But it is easy to check that

annM (B) = {r + (B ∩ C) : Br ⊆ (B ∩ C)} = (C :R B)/(B ∩ C).

Similarly, annM (C) = (B :R C)/(B ∩ C). It follows that R = (B :R
C) + (C :R B).

(iii) ⇒ (i). There exist elements u ∈ (B :R C) and v ∈ (C :R B) such
that 1 = u + v. Let M be any R-module, and let m ∈ annM (B ∩ C).
Note that B(vm) = (vB)m ⊆ (B ∩ C)m = 0 so that vm ∈ annM (B).
Similarly, um ∈ annM (C). Thus, m = vm + um ∈ annM (B) +
annM (C). We have proved that annM (B∩C) ⊆ annM (B)+annM (C).
Hence, annM (B ∩ C) = annM (B) + annM (C). �
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Corollary 2.13. Let R be a ring. Then the following statements are
equivalent :

(i) Every R-module is an α-module.
(ii) Every cyclic R-module is an α-module.
(iii) R = (B :R C) + (C :R B) for all ideals B and C of R.

Proof. By Lemma 2.1 and Theorem 2.12. �

Corollary 2.14. A Noetherian domain R is Dedekind if and only if
every R-module is an α-module.

Proof. By Corollary 2.13 and [7, Theorem 25.2]. �

Given a ring R, we shall call an R-module M a chain module in
case the submodules of M are linearly ordered. That is, M is a chain
module if and only if L ⊆ N or N ⊆ L for all submodules L,N of M .
The ring R is called a chain ring in the case where the R-module R is a
chain module. A ring R is called local if R contains a unique maximal
ideal. Clearly, chain rings are local.

Corollary 2.15. A ring R is a chain ring if and only if R is local and
every R-module is an α-module.

Proof. Suppose first that R is a chain ring. Then R is a local
ring. Let B and C be any ideals of R. Then B ⊆ C, and hence
(C :R B) = R, or else C ⊆ B and in this case (B :R C) = R. In any
case, R = (B :R C) + (C :R B). By Corollary 2.13 every R-module
is an α-module. Conversely, suppose that R is a local ring such that
every R-module is an α-module. Let G and H be ideals of R. By
Corollary 2.13, R = (G :R H)+ (H :R G). But R is a local ring so that
R = (G :R H), and hence H ⊆ G, or else R = (H :R G) and in this
case G ⊆ H. This proves that R is a chain ring. �

A ring R need not be a chain ring nor a Dedekind domain in order
that every R-module be an α-module. For example, we have the
following result.

Proposition 2.16. Let a ring R = R1 ⊕ · · · ⊕ Rn be a direct sum of
subrings Ri (1 ≤ i ≤ n), for some positive integer n. Suppose that, for
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each 1 ≤ i ≤ n, every Ri-module is an α-module. Then every R-module
is an α-module.

Proof. Let B and C be any ideals of R. Then B = B1 ⊕ · · · ⊕ Bn

for some ideal Bi of Ri for all 1 ≤ i ≤ n. Similarly, C = C1 ⊕ · · · ⊕ Cn

for some ideal Ci of Ri for each 1 ≤ i ≤ n. This implies that

(B :R C) = (B1 :R1 C1)⊕ · · · ⊕ (Bn :Rn Cn),

and
(C :R B) = (C1 :R1 B1)⊕ · · · ⊕ (Cn :Rn Bn).

By Corollary 2.13, Ri = (Bi :Ri Ci) + (Ci :Ri Bi) for all 1 ≤ i ≤ n.
Thus, (B :R C) + (C :R B) = R1 ⊕ · · · ⊕ Rn = R. We have proved
that R = (B :R C) + (C :R B) for all ideals B,C of R, and hence, by
Corollary 2.13, every R-module is an α-module. �

3. The mapping β. Let R be a ring, and let M be an R-module.
Recall that β is the mapping from L(RM) to L(R) defined by β(N) =
annR(N) for every submodule N of M . The module M is called a
β-module in case β is an anti-homomorphism. The proof of the next
result is very similar to that of Lemma 2.1 and so is omitted.

Lemma 3.1. Let R be any ring. Then the following statements are
equivalent for an R-module M .

(i) M is a β-module.
(ii) annR(L ∩N) ⊆ annR(L) + annR(N) for all submodules L and N

of M .
(iii) annR(L1∩· · ·∩Ln) = annR(L1)+· · ·+annR(Ln) for every positive

integer n and submodules Li (1 ≤ i ≤ n) of M .

Corollary 3.2. For any ring R, every submodule of a β-module over
R is also a β-module.

Proof. By Lemma 3.1. �

Corollary 3.3. Let R be any ring. Then the R-module R is an α-
module if and only if it is a β-module.

Proof. By Lemmas 2.1 and 3.1. �
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In contrast to Corollary 2.9, we note the following fact.

Corollary 3.4. Let R be a ring, and let M be any R-module such that
there exists a non-zero R-module X with the property that the R-module
X ⊕X embeds in M . Then the R-module M is not a β-module.

Proof. There exist submodules L and N of M such that L ∩N = 0
and L ∼= N ∼= X. Thus, annR(L ∩ N) = R ̸= annR(X) = annR(L) +
annR(N). Apply Lemma 3.1. �

We next look at homomorphic images and have the following result.

Theorem 3.5. The following statements are equivalent for a module
M over a general ring R.

(i) Every homomorphic image of M is a β-module.
(ii) Every submodule of M is a µ-module.
(iii) R = (L :R N) + (N :R L) for all submodules L and N of M .

Proof. (i) ⇒ (iii). Let L and N be any submodules of M . Then
M/(L ∩N) is a β-module. By Lemma 3.1,

R = annR((L/(L ∩N)) ∩ (N/(L ∩N)))

= annR(L/(L ∩N)) + annR(N/(L ∩N))

= (N :R L) + (L :R N).

(iii) ⇒ (i). Let K be any proper submodule of M . Let M denote
the R-module M/K. Let L and N be any submodules of M . Then
there exist submodules L and N of M , each containing K, such that
L = L/K and N = N/K. Note that

annR(L ∩N) = annR((L ∩N)/K) = (K :R L ∩N).

By hypothesis, R = (N :R L) + (L :R N), and hence

(K :R L ∩N) = (K :R L ∩N)(N :R L)

+ (K :R L ∩N)(L :R N)

⊆ (K :R L) + (K :R N)

= annR(L) + annR(N).
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By Lemma 3.1, the R-module M is a β-module.

(ii) ⇔ (iii). By [17, Lemma 3.14]. �

Corollary 3.6. Let R be any ring. If an R-module M is a chain
module, then every homomorphic image of M is a β-module. Moreover,
the converse holds if R is a local ring.

Proof. Suppose that M is a chain module. Let L and N be submod-
ules of M . Then L ⊆ N or N ⊆ L. Without loss of generality, L ⊆ N .
Then L ∩N = L, and we have the following:

annR(L ∩N) = annR(L) = annR(L) + annR(N),

because annR(N) ⊆ annR(L). By Proposition 3.5, every homomorphic
image of M is a β-module.

Conversely, suppose that R is a local ring and every homomorphic
image of M is a β-module. Let L and N be any submodules of M . By
Proposition 3.5, R = (L :R N) + (N :R L). Because R is a local ring,
either R = (L :R N) and N ⊆ L or R = (N :R L) and L ⊆ N . It
follows that M is a chain module. �

We now look at direct sums of modules. Note the following result.

Lemma 3.7. Let B1, B2, C1 and C2 be ideals of a ring R such that

R = B1 + C2 = B2 + C1.

Then
(B1 + C1) ∩ (B2 + C2) = (B1 ∩B2) + (C1 ∩ C2).

Proof. It is clear that (B1∩B2)+(C1∩C2) ⊆ (B1+C1)∩ (B2+C2).
Next, note that B1+C1 = (B1+C1)(B2+C1) ⊆ B1B2+C1, and hence,
B1 +C1 = B1B2 +C1. Similarly, B2 +C2 = B2 +C1C2. Therefore, we
have by the modular law,

(B1 + C1) ∩ (B2 + C2) = (B1B2 + C1) ∩ (B2 + C1C2)

= [(B1B2 + C1) ∩B2] + C1C2

= B1B2 + (B2 ∩ C1) + C1C2.
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However, R = B1 + C2 = B2 + C1 implies that

B2 ∩ C1 = B2C1 = B2C1(B1 + C2) ⊆ B1B2 + C1C2.

It follows that (B1 + C1) ∩ (B2 + C2) ⊆ B1B2 + C1C2 ⊆ (B1 ∩ B2) +
(C1 ∩ C2). �

Theorem 3.8. Let R be any ring, and let an R-module M = M1 ⊕
· · · ⊕ Mk be the direct sum of submodules Mi (1 ≤ i ≤ k) for some
positive integer k. Then M is a β-module if and only if Mi is a β-
module for each 1 ≤ i ≤ k and R = annR(Mi) + annR(Mj) for all
integers 1 ≤ i < j ≤ k.

Proof. Suppose first that M is a β-module. By Corollary 3.2, the
submodule Mi is a β-module for all 1 ≤ i ≤ k. Moreover, for all
1 ≤ i < j ≤ k, Lemma 3.1 gives that R = annR(Mi ∩ Mj) =
annR(Mi) + annR(Mj).

Conversely, suppose the submodules Mi (1 ≤ i ≤ k) satisfy the
stated conditions. By induction on k, it is sufficient to prove the result
when k = 2. Let L and N be any submodules of M . Let x ∈ L. Then
x = x1 + x2 for some x1 ∈ M1 and x2 ∈ M2. There exist elements a1
and a2 in R such that 1 = a1 + a2, a1M1 = 0 and a2M2 = 0. It follows
that x1 = (1− a1)x1 = a2x1 = a2x ∈ L ∩M1. Similarly, x2 ∈ L ∩M2,
so that x ∈ (L∩M1)+(L∩M2). If L1 = L∩M1 and L2 = L∩M2, then
L1 is a submodule of M1, L2 is a submodule of M2 and L = L1 ⊕ L2.
Similarly, N = N1 ⊕N2 for some submodules N1 of M1 and N2 of M2.
Let Bi = annR(Li) (i = 1, 2), and let Ci = annR(Ni) (i = 1, 2). Note
that

R = annR(M1) + annR(M2) ⊆ annR(L1) + annR(N2) = B1 + C2.

Thus, R = B1 + C2. Similarly, R = B2 + C1. Next, L ∩ N =
(L1∩N1)⊕(L2∩N2), and hence, we have by hypothesis and Lemma 3.1,

annR(L ∩N) = annR(L1 ∩N1) ∩ annR(L2 ∩N2)

= [annR(L1) + annR(N1)] ∩ [annR(L2) + annR(N2)]

= (B1 + C1) ∩ (B2 + C2).

But Lemma 3.7 now gives

(B1 +C1)∩ (B2 +C2) ⊆ (B1 ∩B2)+ (C1 ∩C2) = annR(L)+ annR(N).



582 PATRICK F. SMITH

We have proved that annR(L ∩ N) ⊆ annR(L) + annR(N) for all
submodules L and N of M . By Lemma 3.1, the R-module M is a
β-module. �

Recall that, for any ring R, an R-module U is called uniform in the
case where U is non-zero and X ∩ Y ̸= 0 for all non-zero submodules
X and Y of U . Recall further that a submodule L of an R-module M
is essential provided L∩N ̸= 0 for every non-zero submodule N of M .
We shall apply Theorem 3.8 to modules over Dedekind domains. First
we note a simple fact.

Lemma 3.9. Let R be a ring, and let M be an R-module such that
M is a β-module. Then every submodule L of M with annR(L) = 0 is
essential in M .

Proof. Let N be any submodule of M with L ∩ N = 0. By
Lemma 3.1, R = annR(L ∩ N) = annR(L) + annR(N) = annR(N).
It follows that N = 0. Hence, L is an essential submodule of M . �

Proposition 3.10. Let R be any domain, and let M be a non-zero
R-module. Then M is a β-module which is not a torsion R-module if
and only if M is a torsion-free uniform module.

Proof. Suppose that M is a β-module which is not a torsion module.
Let m be any element of M which is not a torsion element. Then
Rm ∼= R so that Rm is a uniform module. Moreover, annR(Rm) = 0
implies that Rm is essential in M by Lemma 3.9. Thus, M is a uniform
module and is torsion-free. Conversely, suppose thatM is a torsion-free
uniform module. Then M is definitely not a torsion module. Clearly,
β(K) = 0 for every non-zero submodule K of M , and it easily follows
that β is a homomorphism because M is uniform. Thus, M is a β-
module. �

The next result characterizes β-modules over a Dedekind domain.
Recall that Corollary 2.14 shows that every module over a Dedekind
domain is an α-module. If R is any ring, B an ideal of R and M any
R-module, then we denote by A(M,B) the set of all elements m in M
such that Bnm = 0 for some positive integer n. Note that A(M,B) is
a submodule of M for every ideal B of R.
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Theorem 3.11. Let R be a Dedekind domain which is not a field, and
let F denote the field of fractions of R. Then an R-module M is a
β-module if and only if either

(a) M embeds in the R-module F , or
(b) M ∼= E(U), the injective envelope of a simple R-module U , or

(c) M ∼= (R/P k1
1 ) ⊕ · · · ⊕ (R/P kn

n ) for some positive integers n, ki
(1 ≤ i ≤ n) and distinct maximal ideals Pi (1 ≤ i ≤ n) of R.

Proof. Suppose first that M is a β-module. If M is not torsion, then
M is a torsion-free uniform R-module (Proposition 3.10), and hence,
M embeds in RF . Suppose that M is a torsion module. Then M has
essential socle, and hence annR(P ) ̸= 0 for some maximal ideal P of R.
Let Pi (i ∈ I) denote the collection of all maximal ideals P of R such
that annR(P ) ̸= 0. Let Vi = A(M,Pi) (i ∈ I). Note that, in this case,
M = ⊕i∈I Vi. By Corollary 3.4, the submodule Vi has simple socle Ui

(say) for each i ∈ I. Suppose that annR(Vj) = 0 for some j ∈ I. By
Lemma 3.9, Vj is an essential submodule of M , and hence, M = Vj and
M embeds in E(Uj). But annR(M) = 0 now gives that M ∼= E(Uj).

This leaves the case that annR(Vi) ̸= 0 for all i ∈ I. Suppose that
the index set I is infinite. Let j ∈ I. Then the set I \{j} is infinite. Let
W = ⊕i∈I\{j} Vi, let S denote the socle of W , and let A = annR(S).
Then A = ∩i∈I\{j} Pi. If A ̸= 0, then the ring R/A is Artinian, and
hence, R/A has only a finite number of maximal ideals. But Pi/A is
a maximal ideal of the ring R/A for each i ∈ I \ {j}, a contradiction.
Thus, A = 0, and hence, Vj = 0 by Lemma 3.9, a contradiction. It
follows that the set I is finite. Without loss of generality, we can
suppose that I = {1, 2, . . . , n} for some positive integer n.

Let 1 ≤ i ≤ n. Note that Vi embeds in E(Ui). But annR(Vi) ̸= 0

gives that Vi
∼= R/P ki

i for some positive integer ki. Thus, M ∼=
(R/P k1

1 )⊕ · · · ⊕ (R/P kn
n ), as required.

Conversely, suppose that M satisfies (a), (b) or (c). If (a) holds,
then M is a β-module by Proposition 3.10. If (b) holds, then it is
well known that M is a chain module, and hence, M is a β-module by
Corollary 3.6. If (c) holds, then the R-module R/P ki

i is a chain module
for each 1 ≤ i ≤ n and hence M is a β-module by Corollary 3.6 and
Theorem 3.8. Thus, in any case M is a β-module. �
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Corollary 3.12. Let R be a Dedekind domain, and let M be an R-
module such that M is not torsion-free and the mapping β : L(RM) →
L(R) is a homomorphism. Then, the mapping β is a monomorphism.

Proof. By Theorem 3.11 and [1, Theorem 3.9], the above mapping
α is a surjection, and by Lemma 1.3, the mapping β is an injection. �

Now we return to consider rings with the property that every module
is an α-module. Recall that, if a ring R is a domain, then an R-module
M is called divisible in the case where M = cM = {cm : m ∈ M} for
every non-zero element c of R. Every injective R-module is divisible
(see, for example, [16, Proposition 2.6]) and clearly every homomorphic
image of a divisible module is divisible. We look again at trivial
extensions. Note the following result.

Lemma 3.13. Let S be a domain, let X be a divisible S-module, and
let R be the trivial extension X n S. Let B be any ideal of R. Then
B = X n I for some ideal I of S or B = Y n 0 for some submodule Y
of X.

Proof. Suppose that B ⊆ X n 0. Then, it is easy to see that
B = Y n 0 for some submodule Y of X. Now suppose that B * X n 0.
Then B contains an element (s, x) for some 0 ̸= s ∈ S, x ∈ X. Next
X n 0 = (X n 0)(s, x) ⊆ B. It is easy to prove that, in this case, there
exists an ideal I of S such that B = X n I. �

Theorem 3.14. Let S be a domain, let X be a divisible S-module, and
let R = XnS be the trivial extension of X by S. Then every R-module
is an α-module if and only if :

(a) every S-module is an α-module, and
(b) every homomorphic image of X is a β-module.

Proof. Suppose first that R has the property that every R-module
is an α-module. Let I and J be any ideals of S. Let B = X n I and
C = X n J . Then B and C are ideals of R. By Corollary 2.13, R =
(B :R C) + (C :R B). It is easy to check that B :R C) = X n (I :S J)
and (C :R B) = X n (J :S I). It follows that S = (I :S J) + (J :S I).
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We have proved that S = (I :S J) + (J :S I) for all ideals I, J of S.
By Corollary 2.13, every S-module is an α-module. This proves (a).

Now let Y and Z be any submodules of the S-module X. Let
G = Y n 0 and H = Z n 0. Then G and H are ideals of R. Note
that (G :R H) = X n (Y :S Z) and (H :R G) = X n (Z :S Y ). By
Corollary 2.13, R = (G :R H)+ (H :R G) = X n [(Y :S Z)+ (Z :S Y )],
and hence, S = (Y :S Z) + (Z :S Y ). We have proved that
S = (Y :S Z) + (Z :S Y ) for all submodules Y and Z of X. By
Theorem 3.5, every homomorphic image of the S-module X is a β-
module. This proves (b).

Conversely, suppose that (a) and (b) hold. Let E and F be any
ideals of R. If E ⊆ F or F ⊆ E, then R = (E :R F ) + (F :R E). Now
suppose that E * F and F * E. By Lemma 3.13, either E+F ⊆ Xn0
or Xn0 ⊆ E ∩F . In the first case, E = U n0 and F = V n0 for some
submodules U , V of the S-module X. Then

(E :R F ) + (F :R E) = [X n (U :S V )] + [X n (V :S U)]

= X n S = R,

because S = (U :S V ) + (V :S U) by (b) and Theorem 3.5. Now
suppose that X n 0 ⊆ E ∩ F . Then E = X n E′ and F = X n F ′ for
some ideals E′, F ′ of S. In this case,

(E :R F ) + (F :R E) = [X n (E′ :S F ′)] + [X n (F ′ :S E′)]

= X n S = R,

because S = (E′ :S F ′) + (F ′ :S E′) by (a) and Corollary 2.13. In any
case, R = (E :R F ) + (F :R E), and this holds for all ideals E and F
of R. By Corollary 2.13, every R-module is an α-module. �

Note that, if S is a Dedekind domain, then it is well known that the
injective envelope of any simple S-module is a chain module.

Example 3.15. Let S be any Dedekind domain, let U be a simple
S-module, and let X denote the injective envelope of U . Let R denote
the ring X n S. Then every R-module is an α-module.

Proof. By Corollary 2.14, every S-module is an α-module. The S-
module X is a chain module, and hence, every homomorphic image
of X is a β-module (Corollary 3.6). Finally, the S-module X is a
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divisible module, and hence, by Theorem 3.14, every R-module is an
α-module. �

Finally, in this section, we briefly consider semisimple modules.

Proposition 3.16. The following statements are equivalent for a
semisimple module M over a ring R.

(i) M is a β-module.
(ii) M is a µ-module.
(iii) R = annR(L) + annR(N) for all submodules L and N of M with

L ∩N = 0.

Proof. (i) ⇒ (iii). By Lemma 3.1.

(iii) ⇒ (i). Suppose that (iii) holds. There exist an index set I
and simple submodules Ui (i ∈ I) of M such that M = ⊕i∈I Ui. Let
Pi = annR(Ui) for each i ∈ I. Now let K be any non-zero submodule
of M . By the argument used in the sufficiency part of the proof of
Theorem 3.8 we obtain that

K = ⊕i∈I (K ∩ Ui) = ⊕i∈I′ Ui

for some non-empty subset I ′ of I.

Now let L and N be any non-zero submodules of M . There exists
a non-empty subset I1 of I such that L = ⊕i∈I1 Ui, and there exists a
non-empty subset I2 of I such that N = ⊕i∈I2 Ui. Clearly, L ∩ N =
⊕i∈I1∩I2 Ui, and hence, if B = annR(L ∩N), then B = ∩i∈I1∩I2 Pi. It
is also clear that

annR(L) = ∩i∈I1 Pi = B ∩ C,

where C = ∩i∈I1\I2 Pi = annR(⊕i∈I1\I2 Ui). Similarly, annR(N) =
B ∩D where D = annR(⊕i∈I2\I1 Ui). By hypothesis R = C +D, and
hence,

annR(L ∩N) = B = B(C +D) = BC +BD ⊆ (B ∩ C) + (B ∩D)

= annR(L) + annR(N).

By Lemma 3.1, M is a β-module.

(ii) ⇔ (iii). By [17, Proposition 3.16]. �
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An example of a semisimple β-module is given in [17, Example 3.17].
On the other hand, if I is an infinite collection of primes in Z, the ring
of rational integers, then the Z-module ⊕p∈I (Z/Zp) is not a β-module
by Proposition 3.16. Note further that, if R is a domain, then, for every
non-zero ideal B of R, the R-module B is a β-module by Lemma 3.1,
but if R is not Prüfer there exist finitely generated ideals of R which
are not µ-modules over R by [17, Theorem 3.13]. On the other hand,
for any ring R, the R-module R is a µ-module, but if S is a ring and
M any non-zero S-module, then the ring R = (M ⊕ M) n S has the
property that the R-module R is not a β-module by Corollary 3.4.
Thus, although the classes of β-modules and µ-modules coincide for
semisimple modules, in general, there is no relationship between them.

4. Anti-monomorphisms and anti-epimorphisms. Let R be
a ring and M an R-module. The mapping α : L(R) → L(RM)
defined by α(B) = annM (B), for every ideal B of R, can be an anti-
homomorphism (that is, M is an α-module) without it being either an
anti-monomorphism or an anti-epimorphism. For example, let R be
a domain which is not a field, and let M be a non-zero torsion-free
R-module. By Corollary 2.11, M is an α-module. For any non-zero
ideal B of R, α(B) = annM (B) = 0 and α(0) = annM (0) = M . Let a
be a non-zero element of R which is not a unit. Then Ra ̸= Ra2, but
α(Ra) = α(Ra2). Thus, α is not an injection. Note next that M is not
a simple R-module. Let K be any proper non-zero submodule of M .
Then K ̸= α(C) for any ideal C of R. Thus, α is not a surjection.

Next let R be any ring which is not a field, and let U be any simple
R-module with P = annR(U). In this case, for any ideal B of R,
α(B) = annU (B) = U if B ⊆ P and α(B) = 0 otherwise. We
have already seen that U is an α-module (Corollary 2.9). However,
α(0) = α(P ) = U shows that α is not an injection. But α is
clearly a surjection. Thus, α is an anti-epimorphism but not an anti-
monomorphism. Later, we shall give an example to show that the
mapping α can be an anti-monomorphism but not an anti-epimorphism.

Recall that a module M is a comultiplication module for a ring
R when the mapping α : L(R) → L(RM) is a surjection (but not
necessarily an anti-epimorphism). We next consider when the direct
sum of modules is a comultiplication module. First, we prove two
lemmas:
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Lemma 4.1. Let R be a ring, and let an R-module M = M1⊕M2 be a
direct sum of submodules M1, M2. Suppose that M is a comultiplication
module. Then annM2(annR(M1)) = 0.

Proof. Let B = annR(M1). By [1, Theorem 1.5], we have:

M1 = annM (B) = annM1(B)⊕ annM2(B),

and hence annM2(B) = 0, as required. �

Lemma 4.2. Let R be a ring, and let an R-module M = M1 ⊕M2 be
a direct sum of submodules M1, M2 such that annM1(annR(M2)) = 0
and M1 is a comultiplication module. Let a submodule N = N1 ⊕ N2

of M be a direct sum of submodules N1 of M1 and N2 of M2. Let
Bi = annR(Ni) (i = 1, 2). Then π1(annM (B1 ∩ B2)) ⊆ N1, where
π1 : M → M1 is the canonical projection.

Proof. Suppose that m ∈ M satisfies (B1 ∩ B2)m = 0. There
exist elements mi ∈ Mi (i = 1, 2) such that m = m1 + m2. Clearly
(B1 ∩ B2)m1 = 0 and, in this case, B2(B1m1) = 0. But N2 ⊆ M2

implies that annR(M2) ⊆ annR(N2) = B2, which in turn implies that

B1m1 ⊆ annM1(B2) ⊆ annM1(annR(M2)) = 0.

Thus, m1 ∈ annM1(B1) = N1 by [1, Theorem 1.5]. �

The following result generalizes [1, Theorem 3.1].

Theorem 4.3. Let R be a ring, and let the R-module M = ⊕i∈I Mi

be a direct sum of submodules Mi (i ∈ I). Then the R-module M is a
comultiplication module if and only if

(a) the R-module Mj is a comultiplication module for all j ∈ I,
(b) N = ⊕i∈I (N ∩Mi) for every submodule N of M , and
(c) annMj

(annR(⊕i ̸=j Mi)) = 0 for all j ∈ I.

Proof. Suppose first that the R-module M is a comultiplication
module. Then (a) and (b) follow by [1, Lemma 2.1] and (c) by
Lemma 4.1.

Conversely, suppose that (a), (b) and (c) hold. Let N be any
submodule of M , and let Ni = N ∩ Mi (i ∈ I). By (b), N =
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⊕i∈I Ni. Let Bi = annR(Ni) (i ∈ I), and let B = ∩i∈I Bi. Then
BN = ⊕i∈I BNi = 0, so that N ⊆ annM (B). Let m ∈ annM (B).
Let j ∈ I, and let πj : M → Mj denote the canonical projection. If
C = ∩i ̸=j Bi, then B = Bj∩C and C = annR(⊕i ̸=j Ni). By (a), Mj is a
comultiplication module and, by (c), annMj (⊕i ̸=j Mi) = 0. Therefore,
we can apply Lemma 4.2 to obtain πj(m) ∈ Nj . It follows that
m ∈ ⊕i∈I Ni = N . Hence, annM (B) ⊆ N , and we have proved that
N = annM (B). It follows that the R-module M is a comultiplication
module. �

Corollary 4.4. Let R be a ring, and let an R-module M = ⊕i∈I Mi

be a direct sum of submodules Mi (i ∈ I) such that R = annR(Mj) +
annR(⊕i ̸=j Mi) for all j ∈ I. Then the R-module M is a comultiplica-
tion module if and only if the R-module Mi is a comultiplication module
for all i ∈ I.

Proof. It is not difficult to show that the module M satisfies (b) and
(c) in Theorem 4.3, and, therefore, the result follows immediately from
Theorem 4.3. �

Given a ring R, an R-module M is a comultiplication α-module if
and only if the mapping α : L(R) → L(RM) is an anti-epimorphism.
Combining Proposition 2.6 and Theorem 4.3 we have the next result
without further proof.

Corollary 4.5. Let R be a ring, and let the R-module M = ⊕i∈I Mi

be a direct sum of submodules Mi (i ∈ I). Then the R-module M is a
comultiplication α-module if and only if :

(a) the R-module Mj is a comultiplication α-module for all j ∈ I,
(b) N = ⊕i∈I (N ∩Mi) for every submodule N of M , and
(c) annMj (annR(⊕i ̸=j Mi)) = 0 for all j ∈ I.

Proposition 4.6. Let R be a ring, and let an R-module M = ⊕i∈I Ui

be a direct sum of simple submodules Ui (i ∈ I) for some non-empty
index set I. Let Pi = annR(Ui) (i ∈ I). Then M is a comultiplication
α-module if and only if R = Pj + (∩i ̸=j Pi) for all j ∈ I.

Proof. By Corollaries 2.9 and 4.4. �
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Now we look at a situation when the mapping α is an anti-
monomorphism. Let R be any ring, and let B be any ideal of R.
Then V(B) will denote the collection of all prime ideals P of R with
B ⊆ P . Note that V(R) is the empty set and V(0) is the collection of
all prime ideals of R. This brings us to the following result.

Theorem 4.7. Let R be a ring, and let M denote the R-module
⊕P∈V(0) (R/P ). Then the following statements are equivalent :

(i) R is von Neumann regular.
(ii) The mapping α : L(R) → L(RM) is an anti-monomorphism.
(iii) The mapping α : L(R) → L(RM) is an injection.

Proof. (i) ⇒ (ii). Because R is a von Neumann regular ring, every
prime ideal of R is maximal. Next note that M is an α-module by
Corollary 2.9. Let B be any ideal of R. Then α(B) = annM (B) =
⊕P∈V(B) (R/P ). If C is any ideal of R with α(C) = α(B), then
V(B) = V(C). But this implies

B = ∩P∈V(B) P = ∩P∈V(C) P = C,

by [2, Example 18, number 23]. Thus, α(B) = α(C) implies that
B = C. It follows that α is an anti-monomorphism.

(ii) ⇒ (iii). Clear.

(iii) ⇒ (i). Suppose that the mapping α : L(R) → L(RM) is an
injection. Let a ∈ R. Then V(Ra) = V(Ra2), and hence,

α(Ra) = ⊕P∈V(Ra) (R/P ) = ⊕P∈V(Ra2) (R/P ) = α(Ra2).

Because α is an injection, the ideal Ra = Ra2, and hence, a = aba for
some b ∈ R. Thus, R is a von Neumann regular ring. �

This allows us to produce examples to show that the mapping α can
be an anti-monomorphism without being an anti-epimorphism.

Corollary 4.8. Let R be a von Neumann regular ring, let Pi (i ∈
I) denote the collection of all maximal ideals of R, and let M =
⊕i∈I (R/Pi). Then the mapping α : L(R) → L(RM) is an anti-
monomorphism. Moreover, α is an anti-epimorphism (and hence an
anti-isomorphism) if and only if R is semiprime Artinian.
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Proof. By Theorem 4.7, α is an anti-monomorphism. Now suppose
that the R-module M is a comultiplication module. Let j ∈ I. By
Proposition 4.6, R = Pj + (∩i ̸=j Pi). But ∩i∈I Pi = 0. Thus, Pj = Rej
for some idempotent element ej of R. We have proved that every
maximal ideal of R is generated by an idempotent. Thus, R has no
proper essential ideals and hence is semiprime Artinian. Conversely, if
R is semiprime Artinian, then α is a surjection by Proposition 4.6. �
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