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TYPE A QUIVER LOCI AND SCHUBERT VARIETIES
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Dedicated to the memory of Andrei Zelevinsky

ABSTRACT. We describe a closed immersion from each
representation space of a type A quiver with bipartite (i.e.,
alternating) orientation to a certain opposite Schubert cell
of a partial flag variety. This “bipartite Zelevinsky map”
restricts to an isomorphism from each orbit closure to
a Schubert variety intersected with the above-mentioned
opposite Schubert cell. For type A quivers of arbitrary
orientation, we give the same result up to some factors of
general linear groups.

These identifications allow us to recover results of
Bobiński and Zwara; namely, we see that orbit closures of
type A quivers are normal, Cohen-Macaulay and have ratio-
nal singularities. We also see that each representation space
of a type A quiver admits a Frobenius splitting for which all
of its orbit closures are compatibly Frobenius split.

1. Introduction.

1.1. Context and history. A quiver is a finite directed graph, and
a representation of a quiver is a choice of vector space for each vertex
and linear map for each arrow. When the underlying graph is a type A
Dynkin diagram, we say the quiver is of type A. Once the vector spaces
at each vertex are fixed, the collection of representations is an algebraic
variety. This “representation space” carries the action of a base change
group. A brief review of quiver representations is in Sections 2.1–2.3.

A type A quiver with all arrows in the same direction is called
equioriented, and the study of orbit closures (a.k.a. quiver loci) for
these quivers has a long and rich history. Here, a representation space
consists of all sequences of matrices (M1, . . . ,Mn) where Mi determines
a linear map from Kdi−1 to Kdi :

(1.1) Kd0
M1−−→ Kd1

M2−−→ · · · Mn−−→ Kdn .
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In this case, a quiver locus is described by imposing conditions on the
ranks of all possible products of one or more of these matrices.

Specifying that each product of two consecutive matrices is zero
determines a union of quiver loci known as a Buchsbaum-Eisenbud
variety of complexes. Varieties of complexes were studied extensively
starting in the 1970s, and, when irreducible, they were shown to be
normal, Cohen-Macaulay, and have rational singularities [13, 20, 14,
28, 34]. Abeasis, del Fra and Kraft extended these results to all
equioriented type A quiver loci in characteristic 0 [1].

Soon after, a connection between equioriented type A quiver loci
and Schubert varieties in type A flag varieties started to be uncov-
ered: Musili and Seshadri noticed that Buchsbaum-Eisenbud varieties
of complexes could be realized as open sets of unions of Schubert va-
rieties. This allowed them to transport techniques such as standard
monomial theory to study varieties of complexes [30]. For arbitrary
rank conditions of equioriented type A quivers, Zelevinsky gave an ex-
plicit set-theoretic identification of quiver loci with open subsets of
Schubert varieties [35]; this is now called the (equioriented) Zelevinsky
map. Lakshmibai and Magyar later showed that the Zelevinsky map is
a scheme-theoretic isomorphism [25]. Knutson, Miller and Shimozono
made great use of Zelevinsky’s map to paint several beautiful combi-
natorial pictures of the torus equivariant cohomology of type A quiver
loci [24]. Their paper is the main inspiration for our work.

For type A quivers of arbitrary orientation, Bobiński and Zwara
showed that orbit closures are normal and Cohen-Macaulay, with ra-
tional singularities [4], a result that is especially important for pro-
ducing K-theoretic formulas for quiver loci [10, 29, 11]. Bobiński
and Zwara’s technique is to use Auslander-Reiten theory to construct
Hom-controlled functors [36]. These functors ensure that any singular-
ity type appearing for an arbitrary orientation appears for a (typically
larger) equioriented quiver, and thus also for a Schubert variety (by the
Zelevinsky map). In fact, they later showed that the singularity types
appearing in type A quiver loci exactly coincide with singularity types
of Schubert varieties in type A flag varieties [5].

We end by remarking that quiver loci for Dynkin quivers are impor-
tant in the study of degeneracy locus formulas, a line of investigation
initiated by Buch and Fulton [12] to generalize the classical Thom-
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Porteous formula. They are also important in Lie theory, where they
lie at the foundation of Lusztig’s geometric realization of Ringel’s work
on quantum groups [26, 32].

1.2. Main results. In this paper we treat the bipartite orientation
(i.e., every vertex is either a source or a sink) as fundamental. This
is in contrast with previous approaches, which reduce problems for
arbitrary orientations to the equioriented setting.

..Kd0 .

Kd1

. Kd2.

Kd3

. Kd4.
· · · · · ·

. Kdn−2.

Kdn−1

. Kdn.
M1

.
M2

.
M3

.
M4

.
Mn−1

.
Mn

.

A representation of a bipartite, type A quiver, with dimension vector d=(d0, . . . , dn).

Our first main result is the construction of a Zelevinsky map in this
setting. The precise formulation is in Section 4.1; here, we summarize
its properties (see Theorem 4.12 for details).

Theorem 1.1. Let repQ(d) be a space of representations of a bipartite
quiver of type A, having fixed dimension vector d. Then there exists
an opposite Schubert cell Y in a partial flag variety, and a closed
immersion

(1.2) ζ : repQ(d) −→ Y

which scheme-theoretically identifies each orbit closure in repQ(d) with
a Schubert variety intersected with Y .

This identification can be realized combinatorially by the association
of a “bipartite Zelevinsky permutation” to each orbit closure; this is the
permutation which indexes the Schubert variety involved in the above-
mentioned intersection.

Remark 1.2. In the course of proving the theorem, we obtain the
ideal in K[repQ(d)] that scheme-theoretically defines a given orbit
closure. We learned after completing the first version of this article that
Riedtmann and Zwara have also found this ideal in their recent paper
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[31] using the method of Hom-controlled functors. See Remark 4.1 and
the discussion that precedes it for details.

Relating the geometry of quiver loci of arbitrarily oriented type A
quivers to those in the bipartite case is quite natural; this is our second
main result. The simplicity of our approach is in stark contrast to trying
to reduce the geometry of arbitrary orientations to the equioriented
case, which seems to be quite difficult. We paraphrase our result here,
with the detailed statement found in Theorem 5.3.

Theorem 1.3. Let repQ(d) be a representation space of an arbitrarily
oriented quiver of type A. Then there exists an open subset U of a
representation space of a certain bipartite quiver, along with a smooth,
GL(d)-equivariant projection π : U → repQ(d) that induces a contain-
ment preserving bijection on quiver loci.

From these two theorems, we recover one of Bobiński and Zwara’s
results. We also find a nice Frobenius splitting of each representation
space of a type A quiver (see Section 6 for the definition of Frobenius
splitting).

Corollary 1.4. Let Q be a type A quiver of arbitrary orientation, and
let d be a dimension vector for Q. Then the following hold :

(i) [4, Theorem 1.1]. All orbit closures in repQ(d) are normal and
Cohen-Macaulay. When working over a field of characteristic 0,
they also have rational singularities.

(ii) Over a perfect field of positive characteristic, there exists a Frobe-
nius splitting of repQ(d) that simultaneously compatibly splits all
orbit closures.

As mentioned above, Bobiński and Zwara obtain their results via
powerful representation-theoretic technology. Their approach allows
the expert in finite-dimensional algebras to quickly see that singularity
types are independent of orientation for type A and D quivers. In con-
trast, our methods are specific to type A quivers, but more explicit: we
show that each quiver locus is, up to a smooth factor, isomorphic to an
open subscheme of a Schubert variety. This identification follows from
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our two main theorems and the additional fact that the intersection
of a Schubert variety and an opposite Schubert cell is, up to an affine
space factor, isomorphic to an open neighborhood in a Schubert variety
(cf., [19, Proposition A.4] or [33, Lemma 3.2]). Consequently, local
properties of Schubert varieties are inherited by type A quiver loci. In
addition, our method is naturally suited to the use of combinatorics
in describing non-local properties of quiver loci such as their torus-
equivariant cohomology classes and orbit closure containment (i.e., de-
generation order).

Remark 1.5. This paper is meant to be self-contained and accessible
to both combinatorial algebraic geometers and representation theorists.
For this reason, some background and proofs have been included that
may seem overly detailed or trivial to experts in one field or the other.

2. Background. Let K be a field which will remain fixed through-
out the paper, thus usually omitted from the notation.

2.1. Quiver representations. A quiver Q is a finite directed graph.
The set of vertices of Q is denoted by Q0, and the set of arrows is
denoted by Q1. The vertex at the tail (starting point) of an arrow
a ∈ Q1 is denoted by ta, and the vertex at the head (ending point) is
denoted by ha.

A representation V of a quiver Q is an assignment of a finite-
dimensional vector space Vz to each vertex z ∈ Q0, and a linear map
Va : Vta → Vha to each arrow a ∈ Q1. There is a natural notion
of morphism between two representations of the same quiver. The
collection of all representations of a fixed quiver Q is equivalent to
the category of finite-dimensional modules over the “path algebra” of
Q, so all the standard operations on modules make sense for quiver
representations. See the text [2] for basics of quiver representations.

Let Q be a quiver of type A with bipartite orientation, so that every
vertex is either a source or a sink. We can always assume that Q has an
odd number of vertices and that each endpoint has an incoming arrow.
To cover other quivers, we add vertices to get a quiver of the form (2.1)
and take dimension 0 at the added vertices. This convention allows us
to simplify the presentation. Maps to or from zero-dimensional vector
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spaces are represented by matrices with 0 rows or columns, respectively.
We label the vertices and arrows of Q as follows:

(2.1)
..y0 .

x1

. y1.

x2

. y2.
· · · · · ·

.

xn−1

. yn−1.

xn

. yn.

α1

.
β1

.

α2

.
β2

.
βn−1

.

αn

.
βn .

We write J ⊆ Q to denote that J is an interval in Q, that is, a
connected subquiver of Q. Then the indecomposable representations
of Q are in bijection with intervals in Q. Explicitly, let IJ be the
representation defined at each vertex z by

(2.2) (IJ)z =

{
K z ∈ J

0 otherwise,

with the identity map for each arrow in J , and the other maps zero.
These constitute a complete set of isomorphism classes of indecompos-
able representations of Q [16]. The Krull-Schmidt property of rep(Q)
implies that each V ∈ rep(Q) has an essentially unique expression as

(2.3) V ≃
⊕
J⊆Q

sJ IJ , sJ ∈ Z≥0,

where sJ is the multiplicity of the summand IJ in V .

2.2. Projective representations. To study quiver representations
from a geometric point of view, we want to encode the data of the
Krull-Schmidt decomposition (2.3) into rank conditions on certain
matrices. To do this, we will need to replace certain representations
with projective presentations, which we now explain (see [2, subsection
III.2] for more detail).

The category of representations of a quiver is equivalent to the
category of finite-dimensional modules over a certain ring [2, Corol-
lary III.1.7]. With this in mind, the terminology of modules over rings
can be applied to quiver representations. In particular, a projective
representation P is one whose associated module is projective, mean-
ing that HomQ(P, ?) is an exact functor.

The indecomposable projective representations of any quiver are
in bijection with its vertices, and we write P (z) for the projective
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associated to a vertex z. Concretely, the vector space which P (z)
associates to a vertex v has a basis which can be identified with the
set of paths from z to v. The map over an arrow a takes a path and
concatenates the arrow a to it. Given two vertices v, w, the set of paths
from w to v can be naturally identified with a basis of the vector space
HomQ(P (v), P (w)). Therefore, a map between arbitrary projectives is
given by a matrix whose entries are linear combinations of paths in Q.

The projective P (z) represents the functor “restrict to the vertex
z.” That is, there is a functorial isomorphism HomQ(P (z), V ) ∼= Vz.

Furthermore, when HomQ(?, V ) is applied to the morphism P (z)
a−→

P (w) associated to an arrow w
a−→ z in Q, we get the following

commutative diagram of vector spaces.

(2.4)

..

HomQ(P (w), V )

.

HomQ(P (z), V )

.Vw

. Vz

.

HomQ(a, V )

. Va.

∼=

.

∼=

An arbitrary map between projectives Φ: P 1 → P 0 is given by a matrix
whose entries are linear combinations of paths. Applying HomQ(?, V )
replaces each entry of the matrix of Φ with the corresponding linear
combination of maps appearing over arrows of Q in V .

2.3. Representation spaces of a quiver. A dimension vector
d : Q0 → Z≥0 for a quiver Q is an assignment of a nonnegative integer
to each vertex of Q. For a fixed d, define the associated representation
space to be

(2.5) repQ(d) :=
∏

a∈Q1

Matd(ha),d(ta)(K),

where Matm,n(K) denotes the algebraic variety of matrices with m
rows, n columns, and entries inK. Each V = (Va)a∈Q1 in repQ(d) gives
a representation of Q, and so repQ(d) parametrizes representations of

Q with vector space Kd(z) at vertex z ∈ Q0.
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There is a base change group

(2.6) GL(d) :=
∏
z∈Q0

GLd(z)(K)

whose action at each vertex induces an action on repQ(d). Explicitly, if
g = (gz)z∈Q0 is an element of GL(d), and V = (Va)a∈Q1 is an element
of repQ(d), then

(2.7) g · V = (ghaVag
−1
ta )a∈Q1 .

Two points V,W ∈ repQ(d) lie in the same orbit if and only if V and
W are isomorphic as representations of Q.

Clearly, repQ(d) is isomorphic to affine space of dimension∑
a∈Q1

d(ha)× d(ta),

and the coordinate ring K[repQ(d)] is generated by the coordinates
that pick out the matrix entries. In the case of interest in this paper,
where Q is bipartite of type A, labeled as in (2.1), we write Ai and Bi

for matrices over αi and βi with variable entries. That is, these matrices
have entries in K[repQ(d)] such that evaluating Ai (respectively, Bi)
at a point V ∈ repQ(d) gives the matrix Vαi (respectively, Vβi) over
the arrow αi (respectively, βi).

2.4. Schubert varieties. Here we present the basic facts about Schu-
bert varieties that we need, following our main reference [24, Section 1].
Throughout, Q denotes a bipartite quiver of type A, labeled as in (2.1).
We fix a dimension vector d, and let dx :=

∑
i d(xi), dy :=

∑
i d(yi)

and d := dx + dy.

Let G := GLd(K), and let P be the parabolic subgroup of
block lower triangular matrices where the diagonals have block sizes
d(y0),d(y1), . . . ,d(yn), d(xn), d(xn−1), . . . ,d(x1). Let B+ (respec-
tively, B−) denote the subgroup of upper (respectively, lower) triangu-
lar matrices in G. Schubert cells are B+-orbits in the partial flag variety
P\G for the B+-action by right multiplication, and Schubert varieties
are the closures of these orbits. Analogously, opposite Schubert cells
are B−-orbits and opposite Schubert varieties are their closures.
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Let W := Sd, the symmetric group on d letters, and consider a
permutation v ∈ W as a matrix with a 1 in position (i, v(i)), and
zeros elsewhere. Let WP := Sd(y0) × · · · × Sd(x1) (a standard parabolic
subgroup) be considered as a subgroup of W consisting of permutation
matrices down the block diagonal. For any v ∈W , the coset (WP )v has
a unique element of minimal length [3, Corollary 2.4.5]. Recall that
the length l(v) of v ∈ Sd is the number of pairs (i, j) ∈ {1, . . . , d} ×
{1, . . . , d} with the property that i < j but v(i) > v(j). Let WP

denote the set of these minimal length coset representatives. Schubert
(or opposite Schubert) cells are indexed by the elements in WP ; given
v ∈ WP , let X◦

v denote the Schubert cell P\PvB+, and let Xv

denote its closure. Similarly, let Xv
◦ denote the opposite Schubert cell

P\PvB−, and let Xv denote its closure.

Throughout this paper, we will be interested in the permutation:

(2.8) w :=

(
0 1dy

1dx 0

)
∈WP ,

where 1dy denotes a size dy identity matrix. The opposite Schubert
cell Xw

◦ = P\PwB− is isomorphic to the space of matrices of the form

(2.9)

(
∗ 1dy

1dx 0

)
where ∗ denotes a block of arbitrary entries. We name the space of
these matrices Y w

◦ and note that the isomorphism from Y w
◦ to Xw

◦ is
the map which sends a matrix to its coset mod P .

Let Z be a matrix of the form shown in (2.9) that has indeterminates
in the block labeled ∗. Let v ∈ WP . From [15, Section 6] (see also
[33] and [24, subsection 1.3]), the intersection Xv ∩Xw

◦ is isomorphic
to a subvariety of Y w

◦ obtained by imposing conditions on the ranks
of certain submatrices of Z. Following [33], we call an intersection of
a Schubert variety with an opposite Schubert cell a Kazhdan-Lusztig
variety. Let Zp×q denote the northwest submatrix of Z consisting of
the top p rows and left q columns. Let

Iv := ⟨minors of size (1 + rank vp×q) in Zp×q | p, q ∈ {1, . . . , d}⟩.

Then, Xv ∩Xw
◦ is isomorphic to the subvariety

Yv := SpecK[Y w
◦ ]/Iv.
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Note that Yv is non-empty if and only if v ≤ w in Bruhat order. When
Yv is non-empty, it has dimension l(w)− l(v) = dxdy − l(v), where l(v)
denotes the length of the permutation v ∈WP .

We end this section by recalling another useful result of Fulton; the
ideal Iv has a much smaller generating set than the one given above.
To a permutation v ∈ Sd, assign a d × d grid with a × placed in
position (i, v(i)). The set of locations (or boxes) in the grid that have
a × neither directly north nor directly west is the diagram of v. The
number of boxes in the diagram is the length of v. Fulton’s essential
set Ess(v) is the set of those (i, j) ∈ {1, . . . , d} × {1, . . . , d} such that
neither (i + 1, j) nor (i, j + 1) is in the diagram of v. By [15, Section
3], we have

Iv = ⟨minors of size (1 + rank vp×q) in Zp×q | (p, q) ∈ Ess(v)⟩.

3. Describing orbits using rank conditions.

3.1. From orbits to ranks of matrices. In this section, we con-
struct a collection of matrices with the property that the ranks of these
matrices completely determine orbits in repQ(d). These matrices nat-
urally arise from minimal projective resolutions of the (non-projective)
indecomposable representations of Q.

Define MQ to be the matrix with entries in K[repQ(d)] built in block
form as

(3.1) MQ =


A1

A2 B1

A3 B2

. .
.

. .
.

An Bn−1

Bn

 ,

with 0 entries in the unlabeled blocks. (Recall that in the last paragraph
of Section 2.3 we have associated to each arrow γ of Q a matrix with
entries in K[repQ(d)].) For an interval J = [γ, δ] ⊆ Q having leftmost
arrow γ and rightmost arrow δ (for an interval {v} with no arrows, one
should take M{v} to have d(v) rows and 0 columns), let MJ be the
submatrix of MQ whose upper right block is associated to γ and whose
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lower left block is associated to δ. For example, we have
(3.2)

M[α3,β6] =


A3

A4 B3

A5 B4

A6 B5

B6

 and M[β2,α4] =

(
A3 B2

A4 B3

)
.

Each MJ has entries in the coordinate ring K[repQ(d)], and evaluating
at V ∈ repQ(d) has the effect of replacing each Ak with Vαk

and Bk

with Vβk
.

The rank of such a matrix is invariant under the action of the base
change group, so each interval J defines a function which is constant
on orbits.

(3.3) rJ : repQ(d) −→ Z≥0, rJ (V ) = rankMJ(V ).

Proposition 3.1. Two representations V,W ∈ repQ(d) lie in the same
GL(d)-orbit if and only if rJ(V ) = rJ (W ) for all intervals J ⊆ Q.

Proof. We prove the proposition by showing that there is a bijection
f of the set of intervals in Q with itself such that, for any V ∈ repQ(d)
and interval J ⊆ Q, we have
(3.4)
rJ(V ) + dimHomQ(If(J), V ) = a constant depending on d but not V.

Thus, knowing the dimensions of all Hom spaces from indecomposables
into a given V is equivalent to knowing the values rJ(V ) for all J . Given
this, the following result of Auslander then implies that knowing these
ranks is equivalent to knowing the orbit of a representation: V and W
lie in the same orbit if and only if dimHomQ(X,V ) = dimHomQ(X,W )
for all indecomposable X ∈ rep(Q) (cf., [6]).

Given an interval J , we replace all matrices Ai, Bi in MJ with the
formal arrows αi, βi to get a matrix ΦJ . Then, as reviewed in Sec-
tion 2.2, this defines morphism ΦJ : P

1 → P 0 between two projective
representations of Q. An interval containing a single vertex v and no
arrows corresponds to the map 0 → P (v) with projective cokernel.
The explicit decomposition of P 1 and P 0 into indecomposables is easy
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but notationally cumbersome, as it depends on whether each of the
endpoints of J is of type x or y.

For example, the case that J is of the form J = [αi, βj ] gives

(3.5) Φ[αi,βj ] =


αi

αi+1 βi

αi+2 βi+1

. .
.

. .
.

αj βj−1

βj

 ,

which is a homomorphism

(3.6) P 1 =

j⊕
k=i−1

P (yk)
Φ[αi,βj ]−−−−−→ P 0 =

j⊕
k=i

P (xk).

Then it is straightforward to see that cokerΦ[αi,βj ] ≃ I[βi,αj ]. In
essence, each row with two non-zero entries glues two projectives at
a y-type vertex, and the first and last row kill the vector spaces at the
interval endpoints, yi−1 = hαi and yj = hβj .

The bijection on intervals is given by setting f(J) = J ′ where
IJ ′ ≃ cokerΦJ ; for example, we have f([αi, βj ]) = [βi, αj ] from the
preceding paragraph. Since we only need to know that the bijection
exists, and f only appears in this proof, details of the other cases
are omitted. This bijection shows that the collection {ΦJ} is a set of
projective resolutions of all indecomposables {IJ}.

These allow us to compute all dimHomQ(IJ , V ). Given V ∈
repQ(d), apply the functor HomQ(?, V ) to the resolution

(3.7) 0→ P 1 ΦJ−−→ P 0 → If(J) −→ 0

to get the exact sequence
(3.8)

0 −→ HomQ(If(J)], V ) −→ HomQ(P
0, V )

HomQ(ΦJ ,V )−−−−−−−−→ HomQ(P
1, V ).

Then (again from Section 2.2) we can naturally identify HomQ(ΦJ , V )
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with MJ(V ) via the diagram

(3.9)

..

HomQ(P
0, V )

.

HomQ(P
1, V )

.⊕
k Vxk
. ⊕

k Vyk
.

HomQ(ΦJ , V )

.
MJ(V )

.

∼=

.

∼=

(where the precise collection of Vi in the bottom row depends on the
interval type). Then this diagram along with (3.8) shows that
(3.10)

rJ (V )+dimHomQ(If(J), V ) = rankMJ (V )+dimkerMJ (V ) =
∑
k

d(xk),

which gives equation (3.4) of the proposition and completes the proof.
�

3.2. Quiver rank arrays. By Proposition 3.1, an orbit is completely
determined by an array of nonnegative integers. This array of numbers
is the focus of this section.

Definition 3.2. A quiver rank array is a function

(3.11) r : {intervals in Q} −→ Z≥0

such that there exists V ∈ repQ(d) with rJ = rJ(V ) for all intervals J .
In this case we say that V satisfies the quiver rank array r.

For the remainder of the paper, we use the following notation.

Notation. Because orbits are in one-to-one correspondence with
quiver rank arrays, we let Or denote the orbit determined by the quiver
rank array r, and we let Or denote its closure.

Remark 3.3. Quiver rank arrays are partially ordered in the standard
way for functions, namely, r′ ≤ r when r′J ≤ rJ for all intervals J ⊆ Q.

At the end of the next section, we will see that Or′ is contained in Or

if and only if r′ ≤ r (see Theorem 4.12).
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The remainder of this section is concerned with the question of when
a given function r : {intervals in Q} → Z≥0 is actually a quiver rank
array. To begin, we let IJ′ denote the indecomposable representation
supported on the interval J ′, and we let #J ′ denote the number of
arrows in the interval J ′. Observe that

(3.12) rJ (IJ ′) =

⌈
#(J ∩ J ′)

2

⌉
,

where we use ⌈x⌉ to denote the least integer that is greater than or
equal to x. Therefore, if V ∈ rep(Q) is isomorphic to the direct sum of
indecomposables

V ∼=
⊕
J ′⊆Q

sJ ′ IJ′ , sJ′ ∈ Z≥0,

we see that

(3.13) rJ(V ) =
∑
J ′⊆Q

sJ ′

⌈
#(J ∩ J ′)

2

⌉
.

This is the bipartite analogue of the lace to rank formula (1.2) from
[24]. Inverting the relation (3.13) provides a way to check when a
function

r : {intervals in Q} → Z≥0

is actually a quiver rank array (i.e., when there is a V ∈ repQ(d) that
satisfies r). To give this rank to lace formula, we introduce some ad
hoc notation (used only in Lemma 3.4): let J be an arbitrary interval
of Q, and let JL (respectively, JR) denote the interval obtained by
shifting J one edge to the left (respectively, right). If shifting the
interval would take it outside of Q, we simply truncate it to lie within
Q. (Alternatively, we can think of this as working with a longer quiver
with dimension vector 0 at the new vertices.)

Lemma 3.4. Let V ∈ repQ(d), let J be an interval with at least one
arrow and let sJ(V ) denote the multiplicity of the indecomposable IJ in
the Krull-Schmidt decomposition of V . Then, we have

(3.14) sJ (V ) = (−1)#J(rJL
(V ) + rJR

(V )− rJL∩JR
(V )− rJL∪JR

(V )).

Proof. Notice that rJ (V1 ⊕ V2) = rJ (V1) + rJ(V2), for any repre-
sentations V1, V2 ∈ rep(Q). So, it suffices to check that the righthand
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side of (3.14) is 1 when V = IJ and is 0 when V = IJ ′ for J ′ ̸= J .
Furthermore, it is enough to check the values of the righthand side of
(3.14) when V = IJ ′ for J ′ a subinterval of JL∪JR. To this end, divide
JL ∪ JR into five intervals:

I1 := JL − (J ∩ JL), I2 := J − (J ∩ JR), I3 := JL ∩ JR,

I4 := J − (J ∩ JL), I5 := JR − (J ∩ JR).

We must check that the righthand side of (3.14) takes the value 1 when
the leftmost arrow of J ′ lies in interval I2 and the rightmost arrow lies
in interval I4, and takes the value 0 in all the other cases. We do one
of these easy checks and leave the remainder to the reader.

Suppose that V = IJ , so that the leftmost arrow of J is in I2 and
the rightmost arrow is in I4. If #J is even (and is nonzero), then
rJL

(V ) = rJR
(V ) = rJL∪JR

(V ) = rJ (V ) and rJL∩JR
(V ) = rJ(V ) − 1.

If #J is odd, then rJL(V ) = rJR(V ) = rJR∩JL = rJ(V ) − 1 and
rJL∪JR

(V ) = rJ (V ). In either case, the right hand side of equation
(3.14) is 1. �

Remark 3.5. Using equation (3.14), we can recover the Krull-Schmidt
decomposition of V ∈ repQ(d). Indeed, equation (3.14) gives the multi-
plicities of the indecomposables supported on the various intervals with
at least one arrow. The multiplicities of the remaining indecomposables
(i.e., those supported on a single vertex of Q) can then be computed
because the dimension vector d is fixed.

The following corollary is now immediate.

Corollary 3.6. The function r : {intervals in Q} → Z≥0 is a quiver
rank array if and only if the quantity

(−1)#J (r(JL) + r(JR)− r(JL ∩ JR)− r(JL ∪ JR))

is nonnegative for each interval J ⊆ Q.

4. A Zelevinsky map for bipartite type A quivers. Given a
quiver rank array r (see Definition 3.2), let Ir denote the ideal in the
coordinate ring K[repQ(d)] defined by

(4.1) Ir :=
⟨
minors of size (1 + rJ) in MJ

∣∣ J ⊆ Q
⟩
.
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Let Ωr := Spec(K[repQ(d)]/Ir) be the corresponding closed subscheme
of repQ(d).

In this section, we show that the orbit closure Or is scheme-
theoretically isomorphic to Ωr, and we show that both of these schemes
are isomorphic to a Kazhdan-Lusztig variety in an opposite Schubert
cell. This gives an identification of the poset of orbit closures with a
particular subset of a symmetric group under Bruhat order (see Theo-
rem 4.12).

Remark 4.1. As was mentioned in the introduction, Riedtmann and
Zwara have also recently proved that Ωr

∼= Or using the method of
Hom-controlled functors (cf., [31]).

This section is outlined as follows:

• In Section 4.1, we define a closed immersion from each quiver
representation space to an opposite Schubert cell of a partial
flag variety. We call this the Zelevinsky map in analogy with the
equioriented setting, since it also converts quiver rank arrays
to rank conditions on certain northwest submatrices of the cell
(cf., [24, subsection 1.3] for the equioriented case, and also
[35, 25]). More precisely, it identifies each Ωr with a subscheme
NWb(r) ⊆ Y w

◦ defined by the vanishing of certain minors of
northwest submatrices.
• Section 4.2 is a combinatorial interlude; in analogy with the
equioriented setting [24, Definition 1.7], we define a Zelevinsky
permutation v(r) associated to a quiver rank array r.
• In Section 4.3, we show that the subscheme NWb(r) from Sec-
tion 4.1 is isomorphic to the Kazhdan-Lusztig variety Xv(r) ∩
Xw

◦ . This gives our main result: we see that Ωr is reduced,
irreducible and isomorphic to Or. We also get a formula for its
dimension.

4.1. From quiver rank arrays to northwest block rank condi-
tions. Let MQ be the matrix defined in (3.1), so evaluating MQ at a
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ζ(V ) =



..

.. .. .. ..Vα1 ..1d(y0) .. ..

.. .. ..Vα2 ..Vβ1 .. ..1d(y1) ..

.. ... .
.

... .
.

..Vαn ..Vβn−1 ..

..Vβn .. .. .. .. .. .. ..1d(yn)

..1d(xn) .. ..

.. ..1d(xn−1) .. ..

.. .. ..

.. .. ..

.. .. .. ..1d(x1)

.

0


Figure 1. Image of the Zelevinsky map.

representation

(4.2) V =
..Vy0
.

Vx1

. Vy1

.

Vx2

. Vy2

.
· · · · · ·

.

Vxn−1

. Vyn−1

.

Vxn

. Vyn

.
Vα1

.
Vβ1

.
Vα2

.
Vβ2

.
Vβn−1

.
Vαn

.
Vβn

gives a “snake matrix” MQ(V ) containing all the maps in V . Define
the Zelevinsky map ζ by

(4.3) ζ : repQ(d) −→ Y w
◦ , V 7−→

(
MQ(V ) 1dy

1dx 0

)
.

Expanding this out into block form is useful to see what the map
does (Figure 1). This map is the closed immersion given by the
homomorphism of K-algebras

(4.4) ζ∗ : K[Y w
◦ ] −→ K[repQ(d)]

with kernel Id, the ideal generated by setting appropriate entries of
(2.9) to zero.

Notice that matrices in Y w
◦ are naturally partitioned into 2n + 1

blocks of rows and columns. We label these blocks in the standard way
by 1, 2, . . . , 2n+ 1, from top to bottom and left to right. For a matrix
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Z ∈ Y w
◦ , denote by Zi×j the northwest justified submatrix of Z whose

southeast corner is the block in block row i and block column j.

Lemma 4.2. For any V ∈ repQ(d), the ranks of all ζ(V )i×j depend
only on the orbit of V .

Proof. Using Figure 1, we see how the GL(d)-action on repQ(d) is
essentially translated into row and column operations within blocks of
Y w
◦ . So it does not change the ranks of block submatrices. �

Definition 4.3. Let r be a quiver rank array and V ∈ Or. The block
rank matrix associated to r is the (2n+1)×(2n+1) matrix b(r) defined
by

b(r)i,j = rank (ζ(V )i×j) .

The following proposition summarizes the content of Appendix 6.
Its proof is separated from the main body of the paper because it is
somewhat technical and uses different notation than the rest of this
section.

Proposition 4.4. The combinatorial data in a quiver rank array r
and northwest block rank matrix b(r) are equivalent, in the sense that
a matrix Z ∈ Y w

◦ satisfies

rankZi×j = b(r)i,j for all i, j

if and only if Z = ζ(V ) for some V satisfying r.

The following example illustrates the essential features of how the
Zelevinsky map converts a quiver rank array to a northwest block rank
matrix.

Example 4.5. Let Q be the quiver

(4.5) Q =
..y0 .

x1

. y1.

x2

. y2.

x3

. y3.

α1

.
β1

.

α2

.
β2

.

α3

.
β3
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and let d be a dimension vector. Then for any V ∈ repQ(d), we have
that ζ(V ) is a block matrix of the form

0 0 Vα1 1d(y0) 0 0 0
0 Vα2

Vβ1
0 1d(y1) 0 0

Vα3 Vβ2 0 0 0 1d(y2 ) 0
Vβ3 0 0 0 0 0 1d(y3 )

1d(x3 ) 0 0 0 0 0 0
0 1d(x2 ) 0 0 0 0 0
0 0 1d(x1 ) 0 0 0 0


.

Suppose that d = (1, 2, 3, 2, 3, 2, 1). Then this determines that b(r)
must have the form

0 0 ∗ 1 1 1 1
0 ∗ ∗ ∗ 4 4 4
∗ ∗ ∗ ∗ ∗ 7 7
∗ ∗ ∗ ∗ ∗ ∗ 8
2 ∗ ∗ ∗ ∗ 9 10
2 4 ∗ ∗ 8 11 12
2 4 6 7 10 13 14


.

The values which are italicized come from Z being an element of the
cell Y w

◦ (cf., “cell conditions” Lemma 6). The values which are bold
ensure zero blocks in the northwest quadrant so that Z is in the image
of ζ (cf., “image conditions” Lemma 6). The entries labeled ∗ are
determined by r, and this data is equivalent to specifying an orbit (cf.,
“orbit conditions” Lemma 6). For example, consider the orbit of the
representation V with

Vα1 =
(
1 0

)
, Vβ1 =

0 1
0 0
1 0

 , Vα2 =

0 1
0 0
0 0

 ,

Vβ2
=

1 0
0 1
0 0

 , Vα3
=

0 0
0 0
0 0

 , Vβ3
=

(
0 1

)
.

Plugging this into the above, the associated block rank matrix is
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calculated to be

b(r) =



0 0 1 1 1 1 1
0 1 2 3 4 4 4
0 2 4 5 6 7 7
1 3 5 6 7 8 8
2 4 6 7 8 9 10
2 4 6 7 8 11 12
2 4 6 7 10 13 14


.

The quiver rank array r can be recovered from the normal entries of
this matrix by the formulas of Lemma 6.

Any block rank matrix naturally determines a closed subscheme of
Y w
◦ .

Definition 4.6. Let r be a quiver rank array and

Z =

(
∗ 1dy

1dx 0

)
a generic matrix of Y w

◦ . Define the northwest block rank ideal to be
the ideal

Ib(r) := ⟨minors of size (b(r)i,j + 1) in Zi×j | 1 ≤ i, j ≤ 2n+ 1⟩.

Define the northwest block rank variety to be NWb(r) := Spec(K[Y w
◦ ]/

Ib(r)).

Proposition 4.7. Let r be a quiver rank array. The Zelevinsky map ζ
restricts to a scheme-theoretic isomorphism from Ωr to NWb(r) (i.e.,

(ζ∗)−1(Ir) = Ib(r)).

Proof. The proof proceeds essentially along the same lines as Ap-
pendix 6, but working with minors in matrices of variables instead of
ranks of matrices of scalars. It is seen there that the generators of Ib(r)
coming from a block rank matrix have 3 types.

Those coming from a “cell condition” entry of b(r) (see Lemma 6,
or italicized entries in Example 4.5) give minors of (2.9) which are
identically zero, because the sizes of these minors are larger than the
corresponding submatrix.
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The “image condition” type entries in b(r) (see Lemma 6, or bold
entries in Example 4.5) gives minors that cut NWb(r) down to lie in
the scheme-theoretic image of ζ. This collection of minors generates
the kernel Id of the induced map on coordinate rings.

Thus, working modulo Id, we may assume that all remaining gener-
ators of Ib(r) are minors of:
(4.6)

Z̃ =



..

.. .. .. ..A1 ..1d(y0) .. ..

.. .. ..A2 ..B1 .. ..1d(y1) ..

.. ... .
.

... .
.

..An ..Bn−1 ..

..Bn .. .. .. .. .. .. ..1d(yn)

..1d(xn) .. ..

.. ..1d(xn−1) .. ..

.. .. ..

.. .. ..

.. .. .. ..1d(x1)

.

0


where, as usual, there is a zero in every blank location.

The remaining generators come from the “orbit conditions” (see
Lemma 6, or normal entries in Example 4.5). For each block position
(i, j), the lemma associates a certain interval J ⊆ Q, and all such J arise
this way. Then one checks using the same linear algebra discussed in
the proof of Lemma 6 that ζ∗ induces a bijection between the prescribed
size minors of Z̃i×j and the minors of another size in MJ , which are
the generators of Ir. This bijection, taken over all (i, j), gives that
(ζ∗)−1(Ir) = Ib(r). �

4.2. A Zelevinsky permutation for the bipartite setting. In
this section we follow ideas similar to those in [24] to construct the
permutation v(r) representing the Kazhdan-Lusztig variety with which
we ultimately identify Ωr.

Proposition 4.8. Let r be a quiver rank array, and let b(r) be
the associated block rank matrix of Definition 4.3. Then there exists
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a unique d × d permutation matrix v(r) that satisfies the following
conditions:

(i) the number of ones in block (i, j) of v(r) is equal to

b(r)i,j + b(r)i−1,j−1 − b(r)i,j−1 − b(r)i−1,j

where b(r)i,j = 0 if i or j is outside of the range [1, 2n+ 1];
(ii) the ones are arranged from northwest to southeast across each

block row ;
(iii) the ones are arranged from northwest to southeast down each block

column.

In analogy with the equioriented setting, we call the permutation
v(r) the Zelevinsky permutation associated to r. Before the proof, we
continue Example 4.5.

Example 4.9. One constructs v(r) from b(r) by working from the
northwest corner filling in each block, moving either down or across.
The Zelevinsky permutation associated to the r in Example 4.5 is below,
where the empty blocks contain all zeros.

(4.7) v(r) =



1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

1 0
0 1 0
0 0 1

0 1 0
0 0 1

0 1 0
0 0 1


Proof of Proposition 4.8. We must show that the number of 1s in a

given block row (respectively, block column) is equal to the height of
that block row (respectively, width of that block column). This is all
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that is needed to prove the proposition, since conditions (ii) and (iii)
determine a unique arrangement of the 1s within each block.

From condition (i), the number of ones in block row i is

2n+1∑
j=1

(b(r)i,j + b(r)i−1,j−1 − b(r)i,j−1 − b(r)i−1,j) =

b(r)i,2n+1 − b(r)i−1,2n+1 = height of block i.

The computation for columns is completely analogous. �

We record some useful properties of the Zelevinsky permutation in
the following lemma.

Lemma 4.10. For any quiver rank array r, the following hold.

(i) The Zelevinsky permutation v(r) is the minimal length element in
its (WP ,WP )-double coset.

(ii) Every essential box in Ess(v(r)) occurs in the southeast corner of
a block.

(iii) The Zelevinsky permutation v(r) has length

2n+1∑
i=2

2n∑
j=1

(b(r)i−1,n+1 − b(r)i−1,j)×

(b(r)i,j + b(r)i−1,j−1 − b(r)i,j−1 − b(r)i−1,j).

Proof. Parts (i) and (ii) follow immediately from the definition of
v(r), since these happen precisely when the ones in the corresponding
permutation matrix appear northwest to southeast in each block row
and column.

For (iii), observe that, given a permutation v ∈ Sd, the length of v
can be read off from the associated permutation matrix. The length of
v is the number of pairs of ones with the property that one of the ones
appears northeast of the other. Thus, the length l(v(r)) is

2n+1∑
i=2

2n∑
j=1

(#1s strictly NE of block (i, j)) (#1s in block (i, j)),

which gives the stated formula. �
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4.3. Identifying orbit closures with Kazhdan-Lusztig vari-
eties. Recall from Section 2.4 that v(r) defines a closed subscheme of
Yv(r) ⊆ Y w

◦ , which is isomorphic to the Kazhdan-Lusztig variety
Xv(r) ∩Xw

◦ in P\G.

Proposition 4.11. For each quiver rank array r, the Zelevinsky map
restricts to an isomorphism from Ωr to Yv(r). Consequently, each Ωr is
reduced and irreducible.

Proof. By Proposition 4.7, the Zelevinsky map restricts to an iso-
morphism from Ωr to NWb(r) := SpecK[Y w

◦ ]/Ib(r), the northwest
block rank variety (see Definition 4.6). So, to prove the proposition,
it suffices to show that Ib(r) is equal to the ideal Iv(r) that scheme-
theoretically defines Yv(r).

By construction, the rank of each northwest block submatrix v(r)i×j

is equal to b(r)i,j . Thus, Ib(r) ⊆ Iv(r). The reverse inclusion follows
from the fact that the essential boxes of v(r) lie in the southeast corner
of blocks (Lemma 4.10). This guarantees that the only minors needed
to generate Iv(r) come from block rank conditions. Therefore, by [15,
Section 3], we have Iv(r) ⊆ Ib(r). So ζ restricts to a scheme-theoretic
isomorphism

(4.8) Ωr
ζ−→ Yv(r) ≃ Xv(r) ∩Xw

◦ .

The last statement of the proposition now follows because Kazhdan-
Lusztig varieties are reduced and irreducible (cf. [33, Corollary 3.3]).

�

The following theorem is the main result of this section.

Theorem 4.12.

(i) The orbit closure Or is scheme-theoretically isomorphic to Ωr,
so the Zelevinsky map identifies orbit closures in repQ(d) with
Kazhdan-Lusztig varieties in P\G.

(ii) For two quiver rank arrays r and r′, we have

Or′ ⊆ Or ⇐⇒ r′ ≤ r⇐⇒ v(r′) ≥ v(r).

(iii) Let v(repQ(d)) be the Zelevinsky permutation associated to the
maximal quiver rank array (i.e., the dense orbit). Then, the poset
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of orbit closures in repQ(d), partially ordered by inclusion, is anti-
isomorphic with the subposet of the symmetric group Sd, under
Bruhat order, consisting of permutations π satisfying both (a)
w ≤ π ≤ v(repQ(d)), and (b) π is a minimal length (WP ,WP )-
double coset representative in Sd.

Proof. By definition, the GL(d)-invariant variety Ωr contains pre-
cisely those orbits Or′ such that r′ ≤ r. Because each Ωr is reduced
(by Proposition 4.11), we see that Ωr′ is a subscheme of Ωr if and only
if r′ ≤ r. Furthermore, Or is the only orbit in Ωr that is not also
contained in some lower-dimensional subvariety (namely some other
Ωr′). Thus, Or is dense in Ωr, and Or

∼= Ωr (again, since Ωr is re-
duced). This proves (i) and the leftmost equivalence in (ii). The rest
of (ii) follows from the Zelevinsky map identification of Ωr with Yv(r)

in Proposition 4.11.

To prove (iii), first notice that the poset of orbit closures can at least
be identified with a subposet of those π that satisfy both (i) and (ii).
Indeed, each Zelevinsky permutation v(r) satisfies (ii) by definition,
and satisfies condition (i) because Yv(r) is a non-empty subvariety of
ζ(repQ(d)) (by Proposition 4.11). On the other hand, suppose that
π ∈ Sd satisfies both conditions (i) and (ii). By (i), Yπ is a non-
empty subvariety of ζ(repQ(d)) and, by (ii), all essential boxes of π
occur in the southeast corner of a block. Thus, Yπ is the northwest
block rank variety NWb(r) for the quiver rank array r associated to

ζ−1(M) ∈ repQ(d), for any M ∈ Yπ (the choice of M doesn’t matter
by Proposition 4.4). Applying Proposition 4.7, item (i) then completes
the proof. �

This gives a formula for dimensions of an orbit closure in terms of
its block rank matrix.

Corollary 4.13. The orbit closure Or has dimension

dxdy −
2n+1∑
i=2

2n∑
j=1

(b(r)i−1,n+1 − b(r)i−1,j)×

(b(r)i,j + b(r)i−1,j−1 − b(r)i,j−1 − b(r)i−1,j).
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Proof. Because Or is isomorphic to the Kazhdan-Lusztig variety
Xv(r) ∩ Xw

◦ , it has dimension l(w) − l(v(r)). Applying Lemma 4.10
yields the desired result. �

5. Arbitrary orientations in type A. Let Q be a type A quiver
with arbitrary orientation. Choose one end of the quiver and go across
labeling the vertices z0, z1, . . . , zn and the arrows γ1, γ2, . . . , γn. We

will define a bipartite, type A quiver Q̃ which has orbit closures with
geometry closely connected to that of Q. The approach we take is
that of “shrinking bijective arrows,” following Bongartz [7, subsection
5.2]. We present a representative example before giving the precise
definition.

Example 5.1. Let Q be the quiver:

(5.1)

..

z0

.

z1

. z2.

z3

.

z4

.

γ1

.

γ2

.
γ3.

γ4

Then Q̃ will contain two new vertices w1, w3, and two new arrows δ1, δ3.

(5.2)
..

z0

.w1.

z1

. z2.

w3

. z3.

z4

.

γ1

. δ1.

γ2

.
γ3.

δ3

.
γ4

.

In general, Q̃ is defined by the following local insertions of vertices

and arrows: for each intermediate vertex of the form zi−1
γi−→ zi

γi+1−−−→,
add an intermediate sink wi and arrow δi in the configuration

(5.3)
..

zi−1

.wi.

zi

.
γi . δi

.

For each intermediate vertex of the form zi−1
γi←− zi

γi+1←−−−, add an
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intermediate source wi and arrow δi in the configuration

(5.4)
..zi−1 .

wi

. zi.

γi

.

δi
.

For a dimension vector d for Q, define d̃ as the natural lifting

d̃(zi) := d(zi) and d̃(wi) := d(zi).

Let G∗ =
∏

GLd̃(wi)
(K) be the base change group at the added

vertices, so that

(5.5) GL(d̃) = G∗ ×GL(d).

Throughout this section, we denote a typical element of repQ̃(d̃) by

Ṽ = (Vδi)× (Vγi), and an element of GL(d̃) by g̃ = (gwi)× (gzi).

Proposition 5.2. Let Q be a quiver of type A, and let Q̃ be the

associated bipartite quiver defined above. Then there is a GL(d̃)-stable

open set U ⊂ repQ̃(d̃) and a morphism

(5.6) π : U → repQ(d)

which is equivariant with respect to the natural projection of base change
groups

GL(d̃)→ GL(d),

and also a principal G∗-bundle.

Proof. Let U be the GL(d̃)-stable open set where the map over
each δi is an isomorphism, so that U ≃ G∗ × repQ(d) is an algebraic

variety. Since the action of GL(d̃) = G∗ × GL(d) on U is not just
the factor-wise one, we have to incorporate a slight twist into π to get
equivariance.

For Ṽ ∈ U , define matricesXγi = Vγi when zi−1
γi−→ zi or zi−1

γi←− zi.

We set Xγi = V −1
δi

Vγi or Xγi = VγiV
−1
δi

when γi is involved in a

local configuration of type (5.3) or (5.4), respectively. Then define the
projection map by

(5.7) π : U −→ repQ(d), Ṽ 7−→ (Xγi),



292 RYAN KINSER AND JENNA RAJCHGOT

which we will check is equivariant with respect to the natural projection

GL(d̃)→ GL(d).

Let g̃ ∈ GL(d̃) and Ṽ ∈ U . For arrows in Q̃ of the form zi−1
γi−→ zi

or zi−1
γi←− zi in Q̃, it is straightforward to see that the factor of g̃ · Ṽ

indexed by γi is either gziVγi
g−1
zi−1

or gzi−1
Vγi

g−1
zi , which agrees with

that factor in (gzi) · π(Ṽ ). The remaining arrows are involved in a
local configuration of type (5.3) or (5.4); we just write out the check
for the first type because the second follows mutatis mutandis. Over

Q̃, the action of g̃ sends the pair (Vγi , Vδi) to (gwiVγig
−1
zi−1

, gwiVδig
−1
zi ).

Then π collapses this pair to gziV
−1
δi

Vγig
−1
zi−1

in the factor indexed by

γi, which agrees with that factor in (gzi) · π(Ṽ ). So π is equivariant.

The equivariance of π with respect to projection G∗ × GL(d) →
GL(d) implies that the factor G∗ acts on fibers of π. So we just need
to see that the action is free and transitive on fibers to conclude that we
have a principal G∗-bundle. But this is clear because each fiber of π can

be identified with G∗ with the action of the factor G∗ × {1} ⊂ GL(d̃)
by left multiplication. �

Theorem 5.3. The projection π from Proposition 5.2 gives a bijection
between orbits in U and orbits in repQ(d); the same is true for orbit

closures. Consequently, each orbit closure O ⊆ repQ(d) for an arbitrary
type A quiver is isomorphic to an open subvariety of an orbit closure of

repQ̃(d̃) of a bipartite quiver, up to a smooth factor. Namely, we have

(5.8) π−1(O) ≃ G∗ ×O.

Proof. Equivariance gives that orbits go to orbits, and transitivity

of the G∗ ⊂ GL(d̃) action on fibers gives that there is only one GL(d̃)-
orbit mapping to each orbit in repQ(d). This extends by continuity to a
bijection on orbit closures. The definition of π gives the decomposition
in the last statement. �

6. Consequences for the geometry of orbit closures of type
A quivers. Let Q be a quiver of type A with arbitrary orientation, and
let d be a dimension vector for Q. In this section, we use our previous
work to recover the results of Bobiński and Zwara that orbit closures in
repQ(d) are normal, Cohen-Macaulay, and have rational singularities
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(see [4, Theorem 1.1]). In addition, we show that orbit closures in a
fixed repQ(d) are all simultaneously compatibly Frobenius split.

Let O ⊆ repQ(d) be an orbit closure. By Theorems 4.12 and 5.3,
there is a product of general linear groups G∗ with the property that
O × G∗ is isomorphic to an open subvariety of a Kazhdan-Lusztig
variety. Furthermore, by [19, Proposition A.4] or [33, Lemma 3.2],
there is an affine space An of appropriate size for which O ×G∗ × An

is isomorphic to an open neighborhood in a Schubert variety.

Proposition 6.1. (compare with [4, Theorem 1.1]). Orbit closures in
repQ(d) are normal and Cohen-Macaulay.

Proof. Let O be an orbit closure, and let G∗ and n be as in the
discussion preceding the proposition. Because Schubert varieties are
normal and Cohen-Macaulay (cf., [8, Section 2]), O×G∗×An is normal
and Cohen-Macaulay. Thus, O is normal and Cohen-Macaulay (cf., for
example, [27, Section 23] on flat morphisms). �

Recall that a variety X defined over a field of characteristic 0 has
rational singularities if it is normal, and if there exists a non-singular
variety Y along with a proper, birational morphism f : Y → X
satisfying

(6.1) Rif∗OY = 0.

Note that if one resolution of singularities of X satisfies equation (6.1),
then all do. (See, for example, [22, page 50] for further information.)

Proposition 6.2. (compare with [4, Theorem 1.1]). If the ground field
K has characteristic 0, then orbit closures in repQ(d) have rational
singularities.

Proof. Let X ⊆ repQ(d) be an orbit closure, and let f : Y → X be a
resolution of singularities. Since X is normal, we need only show that

Rif∗OY = 0, for all i > 0.

Because X is affine, this is equivalent to showing that Hi(Y,OY ) = 0
for all i > 0 (see [18, III.8.5]).
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Now, let G∗ be a product of general linear groups, chosen as in
Theorem 5.3, and let n be such that X ×G∗ × An is isomorphic to an
open subset of a Schubert variety. Then

f × Id : Y × (G∗ × An) −→ X × (G∗ × An)

is a resolution of singularities. Because Schubert varieties have rational
singularities (cf., [8, Section 2]), X×G∗×An has rational singularities.
Therefore, since X ×G∗ × An is affine, we have

Hi(Y ×G∗ × An,OY �OG∗×An) = 0, for all i > 0.

Applying the Künneth formula for sheaf cohomology (see [21, Propo-
sition 9.2.4]), we see that

(6.2)
⊕

i1+i2=i

Hi1(Y,OY )⊗Hi2(G∗×An,OG∗×An) = 0, for all i > 0.

Since G∗ ×An is affine, we have that Hi(G∗ ×An,OG∗×An) = 0 for all
i > 0, and so (6.2) becomes

Hi(Y,OY )⊗H0(G∗ × An,OG∗×An) = 0, for all i > 0,

which ensures that Hi(Y,OY ) = 0 for all i > 0. �

For the remainder of the section, suppose that K is a perfect field
of characteristic p > 0. We now show that orbit closures in a fixed
repQ(d) are all simultaneously compatibly Frobenius split.

Recall that a K-algebra R (or, equivalently, SpecR) is Frobenius
split if there exists an additive map ϕ : R → R, satisfying both
ϕ(apb) = aϕ(b), for all a, b ∈ R, and ϕ(1) = 1. An ideal I ⊆ R
is compatibly split by ϕ : R → R if ϕ(I) ⊆ I. Notice that if I is
compatibly split, then ϕ : R → R descends to a Frobenius splitting of
R/I. These definitions sheafify, and we may talk about Frobenius split
schemes, and their compatibly split subschemes. See [9, Chapter 1] for
the basics for Frobenius splitting.

Proposition 6.3. If the ground field K is perfect of characteristic
p > 0, then there exists a Frobenius splitting ϕ : repQ(d) → repQ(d)
that simultaneously compatibly splits all orbit closures.
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We thank Karen E. Smith for showing us how to go from the bipartite
case to the general case in the proof that follows.

Proof. There is a Frobenius splitting of P\G which compatibly splits
all Richardson varieties6 (see [9, Chapter 2], also [23]). In particular,
the opposite Schubert variety Xw, for w as in (2.8), has an induced
Frobenius splitting, and so the opposite Schubert cell Xw

◦ does as well
(since it is an open subvariety of Xw; see [9, Lemma 1.1.7]). Notice
that the Kazhdan-Lusztig varieties of the form Xv ∩Xw

◦ , v ∈WP and
l(v) < l(w), are a subset of all compatibly split subvarieties of Xw

◦ .
Applying Theorem 4.12 then yields the desired result in the bipartite
type A setting.

Next suppose that Q is a type A quiver with arbitrary orientation.
Fix a dimension vector d, and let G∗ be the product of general linear
groups as in Theorem 5.3. Since each O×G∗ is isomorphic to an open
subset of a Kazhdan-Lusztig variety of the form Xv ∩ Xw

◦ , there is a
Frobenius splitting

ϕ : K[repQ(d)]⊗K K[G∗] −→ K[repQ(d)]⊗K K[G∗]

for which all O × G∗ (among other subvarieties) are compatibly split.
We have:

(6.3)

..

K[repQ(d)]

.

K[repQ(d)]⊗K K[G∗]

.K[repQ(d)]. K[repQ(d)]⊗K K[G∗].

i

. π.

ϕ

where i denotes the map r 7→ r ⊗ 1K[G∗], and π denotes the map
r ⊗ s 7→ s(g0)r, for a fixed g0 ∈ G∗. An easy check shows that the
composition of the three maps in the diagram is a Frobenius splitting
of repQ(d), and that this composition restricts to a Frobenius splitting

of each orbit closure O (since ϕ restricts to a Frobenius splitting of each
O ×G∗). �

Remark 6.4. The actual chronology of this work is in some sense the
opposite of the final presentation: it began with computing examples
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of Frobenius splittings of quiver loci, which revealed the form of our
bipartite Zelevinsky map.

Appendix.

A.1. Converting quiver ranks to northwest ranks. We retain
the notation of the main body of the article, with one exception: for
matrices in Y w

◦ , we label the block rows and columns by vertices of Q0

in the natural way suggested by the positions of the identity matrices.
Namely, the columns are labeled xn, . . . , x1, y0, y1, . . . , yn from left to
right, while the rows are labeled y0, . . . , yn, xn, . . . , x1 from top to
bottom. In this section, for two vertices v, v′ of Q, we denote by Zv×v′

the northwest justified submatrix of Z whose southeast corner is the
block in block row v and block columns v′.

Lemma A.1 (Cell conditions). For any Z ∈ Y w
◦ , the following

northwest block submatrices automatically have maximal rank:

(i) for pairs 0 ≤ i ≤ j ≤ n, rankZxi×xj =
∑i

k=0 d(yk);

(ii) for pairs 1 ≤ i ≤ j ≤ n, rankZyi×yj =
∑n

k=j d(xk);

(iii) for 0 ≤ j ≤ n, rankZx1×yj = dx +
∑j

k=0 d(yk);

(iv) for 1 ≤ i ≤ n, rankZxi×yn
= dy +

∑n
k=j d(xk).

Proof. This is clear from inspecting Figure 1. �

Lemma A.2 (Image conditions). A matrix Z ∈ Y w
◦ is in the image

of ζ if and only if both of the following conditions hold:

(NW) for 0 ≤ i ≤ n− 2 and i+ 2 ≤ j ≤ n,

rankZyi×xj = 0;

(SE) for 2 ≤ i ≤ n and i− 1 ≤ j ≤ n− 1,

rankZxi×yj
=

n∑
k=i

d(xk) +

j∑
k=0

d(yk).
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Zxi×yj =



..

.. .. .. .. ..1d(y0) .. ..

.. .. .. .. .. ..
. . . ..

.. .. .. .. .. .. ..1d(yj)

.. .. .. ..♣

..1d(xn) .. ..

.. ..
. . . ..

.. .. ..1d(xi)

.

*
.

0


.

Figure 2. Condition (SE).

Proof. By definition, Z is in the image of ζ if and only if the
submatrix Zyn×x1 has the “snake” form MQ(V ) seen in Figure 1.
Condition (NW) obviously corresponds to the zeros in the northwest of
MQ(V ). To get the zero entries in the southeast, consider a northwest
justified submatrix Zxi×yj

from condition (SE), as seen in Figure 2. By
clearing rows and columns, we see that this matrix has rank precisely∑n

k=i d(xk)+
∑j

k=0 d(yk) if and only if all entries is the region marked
♣ are zero. By varying i between 2 and n and j between i − 1 and
n− 1, we get all of the blocks of zeros in the lower part of MQ(V ). �

Finally, given that a matrix satisfies the cell and image conditions
of the previous two lemmas, we record how ζ translates quiver rank
conditions to northwest block rank conditions.

Lemma A.3 (Orbit conditions). A representation V ∈ repQ(d)
satisfies r if and only if ζ(V ) satisfies the conditions:

(I1) for 2 ≤ i ≤ n and 1 ≤ j ≤ i− 1,

rank ζ(V )xi×xj = r[αj ,βi−1] +
n∑

k=i

d(xk),
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and for 1 ≤ j ≤ n,

rank ζ(V )yn×xj
= r[αj ,βn];

(I2) for 2 ≤ i ≤ n and 0 ≤ j ≤ i− 2,

rank ζ(V )xi×yj = r[βj+1,βi−1] +

n∑
k=i

d(xk) +

j∑
k=0

d(yk),

and, for 0 ≤ j ≤ n− 1,

rank ζ(V )yn×xj = r[βj+1,βn] +

j∑
k=0

d(yk);

(I3) for 0 ≤ i ≤ n− 1 and 1 ≤ j ≤ i+ 1,

rank ζ(V )yi×xj = r[αj ,αi+1];

(I4) for 1 ≤ i ≤ n− 1 and 0 ≤ j ≤ i− 1,

rank ζ(V )yi×yj = r[βj+1,αi+1] +

j∑
k=0

d(yk).

Proof. Recall that “V satisfies r” means that rankMJ (V ) = rJ for
all intervals J ⊆ Q. There are four types of intervals, depending on the
type of the first and last arrow, α or β. In each case, we need to show
that rankMJ(V ) = rJ if and only if the corresponding rank condition
of type (I1)–(I4) on ζ(V ) holds. Up to a shift, these correspond to each
of the four quadrants the southeast corner of a northwest block matrix
lies in.

First consider an interval of the form J = [αi, αj ]. In this case,
MJ(V ) is already identical to the northwest submatrix of ζ(V )yi×xj ,
up to some extra rows and columns of zeros. So it is clear that the
ranks agree. The same is true for intervals of the form [αi, βn].

Now consider an interval of the form J = [αj , βi−1], where 2 ≤
i ≤ n. To get the rank of MJ(V ) from ζ(V ), we must take the
northwest submatrix ζ(V )xi×xj that includes some identity blocks from
the southwest. When computing ranks, these identity blocks clear the
columns above them, and add a constant to the rank of the submatrix
MJ(V ) involved in the definition of quiver rank array.
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(6.4)



..

.. .. .. ..Vα1 ..1d(y0) .. ..

.. .. ..Vα2 ..Vβ1 .. ..1d(y1) ..

.. ... .
.

... .
.

..Vαn ..Vβn−1 ..

..Vβn .. .. .. .. .. .. ..1d(yn)

..1d(xn) .. ..

.. ..1d(xn−1) .. ..

.. .. ..

.. .. ..

.. .. .. ..1d(x1)

.

0


Figure 3. Condition (I1)

As a concrete example, consider the matrix in Figure 3. The dashed
line outlines the northwest block matrix ζ(V )xn−1×x2 , and for any V
the rank of this submatrix is

rankM[α2,βn−2](V ) + d(xn) + d(xn−1).

The correspondence for other types of intervals can be verified in the
same way. �

These three lemmas show that the collection of all northwest block
rank conditions is equivalent to the cell, image, and orbit conditions.
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10. Anders Skovsted Buch, Grothendieck classes of quiver varieties, Duke Math.

J. 115 (2002), 75–103.

11. , Quiver coefficients of Dynkin type, Michigan Math. J. 57 (2008),
93–120.

12. Anders Skovsted Buch and William Fulton, Chern class formulas for quiver
varieties, Inv. Math. 135 (1999), 665–687.

13. David A. Buchsbaum and David Eisenbud, Generic free resolutions and a
family of generically perfect ideals, Adv. Math. 18 (1975), 245–301.

14. Corrado De Concini and Elisabetta Strickland, On the variety of complexes,
Adv. Math. 41 (1981), 57–77.

15. William Fulton, Flags, Schubert polynomials, degeneracy loci, and determi-

nantal formulas, Duke Math. J. 65 (1992), 381–420.

16. Peter Gabriel, Unzerlegbare Darstellungen, I, Manuscr. Math. 6 (1972), 71–
103; correction, ibid. 6 (1972), 309.

17. Chuck Hague, On the B-canonical splittings of flag varieties, J. Algebra
323 (2010), 1758–1764.

18. Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977.



TYPE A QUIVER LOCI AND SCHUBERT VARIETIES 301

19. David Kazhdan and George Lusztig, Representations of Coxeter groups and
Hecke algebras, Invent. Math. 53 (1979), 165–184.

20. George R. Kempf, Images of homogeneous vector bundles and varieties of
complexes, Bull. Amer. Math. Soc. 81 (1975), 900–901.

21. , Algebraic varieties, Lond. Math. Soc. Lect. Note 172, Cambridge

University Press, Cambridge, 1993.

22. George R. Kempf, Finn Faye Knudsen, D. Mumford and B. Saint-Donat,

Toroidal embeddings, I, Lect. Notes Math. 339, Springer-Verlag, Berlin, 1973.

23. Allen Knutson, Thomas Lam and David E Speyer, Projections of Richardson
varieties, arxiv:1008.3939.

24. Allen Knutson, Ezra Miller and Mark Shimozono, Four positive formulae
for type A quiver polynomials, Inv. Math. 166 (2006), 229–325.

25. V. Lakshmibai and Peter Magyar, Degeneracy schemes, quiver schemes, and
Schubert varieties, Inter. Math. Res. Not. 12 (1998), 627–640.

26. George Lusztig, Canonical bases arising from quantized enveloping algebras,

J. Amer. Math. Soc. 3 (1990), 447–498.

27. Hideyuki Matsumura, Commutative ring theory, second edition, Cambr.
Stud. Adv. Math. 8, Cambridge University Press, Cambridge, 1989.

28. V.B. Mehta and V. Trivedi, Variety of complexes and F -splitting, J. Alg.
215 (1999), 352–365.

29. Ezra Miller, Alternating formulas for K-theoretic quiver polynomials, Duke
Math. J. 128 (2005), 1–17.

30. C. Musili and C.S. Seshadri, Schubert varieties and the variety of complexes,
in Arithmetic and geometry, Vol. II, Progr. Math. 36, Birkhäuser, Boston, MA,
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