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CONTROLLING THE GENERIC FORMAL FIBER OF
LOCAL DOMAINS AND THEIR POLYNOMIAL RINGS

PEIHONG JIANG, ANNA KIRKPATRICK, S. LOEPP,

SANDER MACK-CRANE AND S. TRIPP

ABSTRACT. Let T be a complete local ring with maxi-
mal ideal M , C a countable set of incomparable prime ideals
of T , and B1 and B2 sets of prime ideals of T [[x1, . . . , xn]]
with cardinality less than that of T . We present necessary
and sufficient conditions for the existence of a local domain
A with completion T , such that the generic formal fiber of
A has maximal elements equal to the ideals in C and the
generic formal fiber of A[x1, . . . , xn](M∩A,x1,...,xn) contains
every element of B1 but no element of B2. If T has charac-
teristic 0, we present necessary and sufficient conditions for
the existence of an excellent local domain A with the above
properties.

1. Introduction. Let A be a (Noetherian) local ring with maximal

ideal m and m-adic completion Â = T . If Q is a prime ideal of A,

then the formal fiber of A at Q is defined to be Spec (Â⊗A k(Q)) where
k(Q) is the field AQ/QAQ. As the formal fibers of a ring are known
to encode important geometric information about the ring (see, for
example, [9]), we want to understand the general behavior of formal
fibers. However, many open questions remain. For example, if T is a
complete (Noetherian) local ring and G a set of prime ideals of T , it
is unknown when there exists a (Noetherian) local integral domain A
such that the completion of A is T and such that the formal fiber of
A at the prime ideal (0) is exactly the set {(P ⊗A K) | P ∈ G} where
K = k((0)) is the quotient field of A. We note that the answer is,
in fact, known in the case that G has only countably many maximal
elements with respect to inclusion, and we will discuss that result in
more detail later (see Theorem 1.1).
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Consider the following more general open question. Let A → S be a
flat extension of (Noetherian) local rings. What is the relationship
between the formal fibers of A and the formal fibers of S? If we
knew the answer to this question, we could then gain insight into the
geometric behavior of S (or A) assuming we understand something
about the geometric behavior of A (or S). Sadly, however, very little is
known about the behavior of formal fibers for flat extensions. Suppose,
for example, that P is a nonmaximal prime ideal of A, and let S be the
localization of A at P . Almost nothing is known about the relationship
between the formal fibers of A and the formal fibers of S in this case.
In fact, even if A is a complete integral domain, we do not know the

dimension of the ring Ŝ⊗SK whereK is the quotient field of S. Heinzer,
Rotthaus and Sally have informally conjectured that, in this case, if the

height of P is at least two, then the dimension of the ring Ŝ ⊗S K is
two less than the height of P .

More is known in the case where S is a polynomial ring over
A. Specifically, let m be the maximal ideal of A, and let S =
A[x1, . . . , xn](m,x1,...,xn), where x1, x2, . . . , xn are indeterminates. In
[6], Loepp and Rotthaus show that if n = 1 and A is a universally
catenary (Noetherian) local integral domain such that the dimension

of the ring Ŝ ⊗S k((0)) is equal to the dimension of A, then the

dimension of the ring Â⊗Ak((0)) is exactly one less than the dimension
of A. They also show that the converse of the above statement is
not true. Along the same lines, in [7], Loepp and Weinberg show
that, in the case where A is an integral domain, it is possible to
simultaneously control the formal fiber of A at (0) and the formal
fiber of S = A[x1, . . . , xn](m,x1,...,xn) at (0) (see Theorem 1.2). As
an example, they construct an A where the dimension of the ring

Â ⊗A k((0)) is “small,” but the dimension of the ring Ŝ ⊗S k((0)) is
“large.”

We note here that the results mentioned in the previous two para-
graphs give insight into formal fibers at the zero ideal. It seems that
even less is known about formal fibers at nonzero prime ideals.

In this paper, we consider the previously mentioned case where A is
an integral domain and S = A[x1, . . . , xn](m,x1,...,xn), and we improve
the results of Loepp and Weinberg in [7]. For ease of notation, we will
use x to represent the indeterminates x1, . . . , xn. The generic formal
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fiber of A is defined to be the formal fiber of A at the zero ideal. In

other words, if Â = T and the quotient field of A is K, then the generic
formal fiber of A is Spec (T ⊗AK). We can identify this spectrum with
the set of prime ideals P ∈ SpecT such that P ∩ A = (0), and we will
treat this as an alternate definition; that is, the generic formal fiber of
a (Noetherian) local integral domain A can be thought of as the set
of prime ideals P ∈ SpecT such that P ∩ A = (0). Observe that the
generic formal fiber of A is determined by its maximal elements with
respect to inclusion, for if P ′ ⊆ P ∈ SpecT with P ∩ A = (0) then
P ′ ∩A = (0) as well.

We are interested in proving the existence of (Noetherian) local do-
mains A with a specified completion and generic formal fiber, such that
we can simultaneously restrict the generic formal fiber of A[x](M∩A,x)

(where M is the maximal ideal of Â). In Section 3, we present neces-
sary and sufficient conditions for the existence of such a ring A with
various restrictions on the generic formal fiber of A[x](M∩A,x). In each
theorem, it is fairly straightforward to show that the conditions are
necessary. To show that they are sufficient is far more difficult, and we
accomplish this by constructing the desired ring. This construction is
carried out in Section 2.

In this paper, all rings are commutative with unity. A ring with
a single maximal ideal will be called quasi-local ; we reserve the word
local for a Noetherian ring with a single maximal ideal. When we say
(R,M) is a local ring, we mean R is a local ring with maximal ideal
M . We use c to denote the cardinality of the continuum.

In [2], Charters and Loepp characterized complete local rings that
are the completion of a local domain with generic formal fiber having
finitely many maximal elements. In [1], Aiello, Loepp and Vu relaxed
the condition of finitely many maximal elements to countably many
maximal elements. We will make use of [1, Lemma 2.7] to allow
countably many maximal elements in our theorems as well. We shall
make extensive use of the techniques from [2, 1] in our construction,
and we repeat the main theorem from [1] here.

Theorem 1.1 ([1], Theorem 2.13). Let (T,M) be a complete local ring
with prime subring Π, and let G ⊂ SpecT be such that G is nonempty
and the number of maximal elements of G is countable. Then there
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exists a local domain A such that Â = T and the generic formal fiber of
A is exactly the elements of G if and only if T is a field and G = {(0)}
or the following conditions hold :

(i) M /∈ G, and G contains all the associated prime ideals of T .
(ii) If Q ∈ G and P ∈ SpecT with P ⊆ Q, then P ∈ G.
(iii) If Q ∈ G then Q ∩Π = (0).

This theorem allows us to prove the existence of a local domain A
with a generic formal fiber of our choosing, as long as the generic formal
fiber we specify has countably many maximal elements.

As mentioned above, the problem we attack in this paper is the
existence of local domains A such that we can specify the completion
and generic formal fiber of A and simultaneously restrict the generic

formal fiber of A[x](M∩A,x) (where M is the maximal ideal of Â). There
are some obvious restrictions on the generic formal fiber of A[x](M∩A,x).

For Q ∈ Spec Â[[x]], if Q∩ Â is not in the generic formal fiber of A then
Q can never be in the generic formal fiber of A[x](M∩A,x). Similarly,

if Q ∩ Π[x] is not (0) (where Π is the prime subring of Â) then Q can
never be in the generic formal fiber of A[x](M∩A,x). We are interested

in controlling the prime ideals of Â[[x]] whose fate is unknown, i.e.,
those whose intersection with Π[x] is (0), and whose intersection with

Â lies in the generic formal fiber of A.

In [7], Loepp and Weinberg give a partial solution to this problem,
a version of which we repeat below.

Theorem 1.2 ([7], Theorem 13). Let (T,M) be a complete local ring
with prime subring Π. Suppose |T/M | ≥ c and that no integer of T is a
zero divisor. Let P ∈ SpecT and B1 ⊂ SpecT [[x]] with |B1| < |T/M |.
Then there exists a local domain A such that Â = T , the generic formal
fiber of A is local with maximal ideal P , and the generic formal fiber
of A[x](M∩A,x) contains every element of B1 if the following conditions
hold.

(i) P ̸= M and P contains all associated prime ideals of T .
(ii) P ∩Π = (0).
(iii) If Q ∈ B1 then Q ∩ T ⊆ P .
(iv) If Q ∈ B1 then Q ∩Π[x] = (0).
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Note that, although it is not explicitly stated in their paper, it is
not difficult to show that these four conditions are in fact necessary as
well.

Our Corollary 3.6 improves the above theorem by removing the
hypothesis that |T/M | ≥ c, relaxing the condition |B1| < |T/M | to
|B1| < |T |, and allowing the generic formal fiber of A to have countably
many maximal elements instead of just one.

In addition, given another set B2 ⊂ SpecT [[x]] with |B2| < |T |, our
Theorem 3.1 gives necessary and sufficient conditions to achieve the
above result and simultaneously ensure that no element of B2 is in the
generic formal fiber of A[x](M∩A,x). This gives us still more control
over the generic formal fiber of A[x](M∩A,x).

A closely related problem, which we also address, is to construct ex-
cellent local domains with a specified generic formal fiber. Charters and
Loepp in [2] accomplished this for complete local rings of characteris-
tic 0 and generic formal fibers with finitely many maximal elements.
In [1] Aiello, Loepp and Vu were able to relax the condition of finitely
many maximal elements to countably many maximal elements. We
state the relevant theorem from [1] here.

Theorem 1.3 ([1], Theorem 2.15). Let (T,M) be a complete local ring
containing the integers, and call its prime subring Π. Let G ⊂ SpecT
be such that G is nonempty and the set of maximal elements of G is

countable. Then there exists an excellent local domain A with Â = T
and such that A has generic formal fiber exactly G if and only if T is
a field and G = {(0)} or the following conditions hold :

(i) M /∈ G, and G contains all the associated prime ideals of T .
(ii) If Q ∈ G and P ∈ SpecT with P ⊆ Q, then P ∈ G.
(iii) If Q ∈ G, then Q ∩Π = (0).
(iv) T is equidimensional.
(v) TP is a regular local ring for all maximal elements P ∈ G.

For the existence of excellent local domains A with restrictions on
the generic formal fiber of A[x](M∩A,x), Weinberg and Loepp in [7] give
the following result.
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Theorem 1.4 ([7], Theorem 14). Let (T,M) be a complete regular
local ring with prime subring Π. Suppose T has dimension at least
two, contains the rationals, and has |T/M | ≥ c. Let P ∈ SpecT and
B1 ⊂ SpecT [[x]] such that |B1| < |T/M |. Then there exists an excellent

regular local ring A such that Â = T , the generic formal fiber of A is
local with P its maximal ideal and every element of B1 is in the generic
formal fiber of A[x](M∩A,x) if the following conditions hold.

(i) P ̸= M .
(ii) If Q ∈ B1 then Q ∩ T ⊆ P .
(iii) If Q ∈ B1 then Q ∩Π[x] = (0).

Again, though it is not explicitly stated, it is not difficult to show
that these conditions are necessary as well.

In Section 4, we use techniques from [2] to accomplish a similar
result under much weaker hypotheses. Corollary 4.3 has the same
conclusions as Theorem 1.4 except that the ring A may not be regular
local, and it improves the above result by removing the hypothesis that
T is a regular ring, removing the hypothesis that |T/M | ≥ c, relaxing
|B1| < |T/M | to |B1| < |T |, and allowing the generic formal fiber of A
to have countably many maximal elements instead of one.

In addition, in Theorem 4.1 we give similar necessary and sufficient
conditions to accomplish the above result and simultaneously specify a
set B2 ⊂ SpecT [[x]] with |B2| < |T | such that no element of B2 is in
the generic formal fiber of A[x](M∩A,x).

2. Construction. In this section, we will construct an integral
domain A with the desired properties. Our construction builds upon
the construction seen in [2] and includes modifications from [1]. The
general idea of this construction is as follows. Starting with the prime
subring of T , we adjoin a set of elements related to the ideals we want
to keep outside the generic formal fiber of A[x](M∩A,x) and then build
up a chain of subrings. Each subring is created by adjoining elements of
T to the previous subring in a way that will eventually yield a subring
whose completion is T . Each subring along the way also purposefully
dodges all nonzero elements of the prime ideals inG and B1 so that they
will be in the generic formal fiber of A and A[x](M∩A,x), respectively.
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The union of this chain of subrings is our local domain with desired
completion and generic formal fiber properties.

Certain variable names will be used consistently throughout this
paper, and we list them here to help the reader follow our construction.
We will use (T,M) to denote a complete local ring with prime subring
Π. We will construct a local domain A whose completion is T . The
set G contains prime ideals of T that we would like to be exactly the
generic formal fiber of A. The set C contains prime ideals of T that
we would like to be the maximal elements of the generic formal fiber
of A, that is, C contains exactly the maximal elements of G. The sets
B1 and B2 contain prime ideals of T [[x]]; we want the ideals in B1 to
be in the generic formal fiber of A[x](M∩A,x), and we want the ideals
in B2 not to be in the generic formal fiber of A[x](M∩A,x).

The following proposition, from [5], will be used to show that the
domain we construct has the completion we desire.

Proposition 2.1 ([5], Proposition 1). If (A,M ∩ A) is a quasi-local
subring of a complete local ring (T,M), the map A → T/M2 is onto,
and IT ∩ A = I for every finitely generated ideal I of A, then A is

Noetherian, and the natural homomorphism Â → T is an isomorphism.

We will use Lemma 2.2 in various places throughout the construc-
tion, and state it here without proof.

Lemma 2.2. Let T be an integral domain and I a nonzero ideal of T .
Then |I| = |T |.

We will use the following definition to simplify our work with
cardinalities.

Definition. Let S be a set. Then Γ(S) = sup(|S|,ℵ0).

The following lemma, adapted from [3, Lemma 2.5], will be used to
control the cardinality of unions of subrings and sets.
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Lemma 2.3 ([3], Lemma 2.5). Suppose H is a set of sets and λ a
cardinal number. If Γ(h) ≤ λ for all h ∈ H, and Γ(H) ≤ λ, then
Γ(

∪
h∈H h) ≤ λ.

The next lemma gives us a handle on the cardinality of the quotient
of T by any nonmaximal prime ideal.

Lemma 2.4 ([2], Lemma 2.3). Let (T,M) be a complete local ring of
dimension at least one. Let P be a nonmaximal prime ideal of T . Then
|T | = |T/P | ≥ c.

The following lemma is a more powerful version of the prime avoid-
ance lemma, which will allow us to choose elements which are transcen-
dental over subrings by avoiding cosets of algebraic elements. We use
transcendental elements to ensure that our subrings avoid the ideals we
want to put in the generic formal fiber.

Lemma 2.5 ([1], Lemma 2.7). Let (T,M) be a complete local ring
of dimension at least one. Let C be a countable set of nonmaximal
prime ideals of T , and let D be a subset of T such that |D| < |T |.
Let I be an ideal of T such that I ̸⊆ P for all P ∈ C. Then
I ̸⊆

∪
{r + P |r ∈ D,P ∈ C}.

There are certain properties that all the subrings we construct must
share, and for easy access we record them in the definition below.

Definition. Let (T,M) be a complete local ring and C a set of prime
ideals of T . Let B1 be a set of prime ideals of T [[x]]. Suppose that
(R,R∩M) is a quasi-local subring of T such that |R| < |T |, R∩P = (0)
for all P ∈ C, and R[x]∩Q = (0) for allQ ∈ B1. Then we call R a small,
C and B1 avoiding subring of T and will denote it by SCBA-subring.

The following lemma, derived from [2, Lemma 2.5], enables us to
adjoin a specific element of a quotient of T while we are constructing
our local domain A. We use this to obtain the property that A → T/J
is onto for all ideals J such that J ̸⊆ P for all P ∈ C, which
satisfies one hypothesis of Proposition 2.1 and therefore is a step toward
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showing that our constructed domain has the desired completion. It is
also crucial to our proof that A can be made excellent under certain
circumstances.

Lemma 2.6. Let (T,M) be a complete local ring of dimension at least
one, C a countable set of nonmaximal prime ideals of T , and B1 a set
of prime ideals of T [[x]] such that |B1| < |T | and for each Q ∈ B1,
Q∩T ⊆ P for some P ∈ C. Let J be an ideal of T such that J * P for
all P ∈ C. Let R be an SCBA-subring of T and u + J ∈ T/J . Then
there exists an infinite SCBA-subring S of T such that R ⊆ S ⊆ T ,
Γ(R) = Γ(S), and u+J is in the image of the map S → T/J . Moreover,
if u ∈ J , then S ∩ J ̸= (0).

Proof. Note that if P ∈ C, R ∩ P = (0), and so R embeds in T/P ,
and a coset of P being algebraic over R is well defined. For each
P ∈ C, let D(P ) be a full set of coset representatives of the cosets t+P
that make (u + t) + P algebraic over R. Similarly, R[x] ∩ Q = (0)
for each Q ∈ B1, and so R[x] embeds in T [[x]]/Q, and a coset of Q
being algebraic over R[x] is well defined. For each Q ∈ B1, define D(Q)

to be a full set of coset representatives of the elements t + (Q ∩ T )
in T/(Q ∩ T ) that make (u + t) + Q in T [[x]]/Q algebraic over R[x].
Note also for t, t′ ∈ T , t + (Q ∩ T ) = t′ + (Q ∩ T ) if and only if
(u + t) +Q = (u + t′) +Q. The only if direction ensures that D(Q) is
well defined, and the if direction ensures that the cardinality of D(Q) is
the number of elements of T [[x]]/Q algebraic over R[x] (in particular,
D(Q) is no bigger than this cardinality).

We know |R| < |T | and |T | ≥ c, so |R[x]| < |T |. For the same
reason (and the fact that every polynomial has finitely many solutions),
|R[x]| = |D(P )| < |T | for each P ∈ C and |R[x]| = |D(Q)| < |T | for
each Q ∈ B1. Similarly, note that the set of elements algebraic over R
has the same cardinality as R.

Let D = (
∪

P∈C D(P )) ∪ (
∪

Q∈B1
D(Q)). Now

∪
P∈C D(P ) is a

countable union of sets each with cardinality at most that of R[x],
so by Lemma 2.3, it has cardinality at most that of R[x]. Also,∪

Q∈B1
D(Q) is a union of |B1| sets, each of cardinality at most that

of R[x]. Letting λ = max(|B1|, |R[x]|), we use Lemma 2.3 to see that
|
∪

Q∈B1
D(Q)| ≤ λ < |T |. Finally, we use Lemma 2.3 one last time to

note |D| ≤ λ < |T |.
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By construction, D ⊂ T . Now we can use Lemma 2.5 with I = J
and our C and D. This gives us an element y ∈ J such that
y /∈

∪
{r + P | r ∈ D,P ∈ C}. We claim that S = R[u + y](R[u+y]∩M)

is the desired SCBA-subring. It is easy to see that Γ(R) = Γ(S), and
thus |S| < |T |.

Suppose that f ∈ R[u + y] ∩ P for some P ∈ C. Then f =
rn(u+y)n+ · · ·+r1(u+y)+r0 ∈ P where ri ∈ R. But, by avoiding the
sets D(P ), we chose y such that (u+ y)+P is transcendental over R in
T/P . Therefore, ri + P = 0 + P (i.e., ri ∈ P ) for each i, but ri ∈ R,
also. Thus, ri ∈ R∩P = (0), and f = 0. Therefore, R[u+y]∩P = (0),
and this implies S ∩ P = (0). Furthermore, if u ∈ J , then u + y ∈ J .
Since (u + y) + P is transcendental over R, we have that S is infinite
and u+ y ̸= 0. But u+ y ∈ S ∩ J , so S ∩ J ̸= (0).

Now suppose that g ∈ R[u + y][x] ∩ Q for some Q ∈ B1. Note
R[u+ y][x] = R[x][u+ y] so we can write g = sn(u+ y)n + · · ·+ s1(u+
y) + s0 ∈ Q where si ∈ R[x]. We chose y /∈

∪
{r + P | r ∈ D,P ∈ C},

and so (u+ y) +Q ∈ T [[x]]/Q is transcendental over R[x]. Therefore,
si + Q = 0 + Q, and si ∈ R[x] ∩ Q = (0) for each i. Thus, g = 0,
and R[u+ y][x] ∩Q = (0), and this implies that S[x] ∩Q = (0) for all
Q ∈ B1. �

In order to use Proposition 2.1, we also must have that IT ∩A = I
for all finitely generated ideals I of A. The following lemma, which
follows the structure of [2, Lemma 2.6], will enable us to construct A
with this property.

Lemma 2.7. Let (T,M) be a complete local ring of dimension at least
one. Let C be a countable set of nonmaximal prime ideals of T such
that if U ∈ AssT , then U ⊆ P for some P ∈ C. Let B1 be a set
of prime ideals of T [[x]] with |B1| < |T | such that for all Q ∈ B1,
Q∩T ⊆ P for some P ∈ C. Let R be an SCBA-subring of T . Suppose
that I is a finitely generated ideal of R and d ∈ IT ∩ R. Then there
exists an SCBA-subring S of T such that R ⊆ S ⊆ T , Γ(R) = Γ(S),
and d ∈ IS.

Proof. We will induct on the number of generators of I. Suppose
I = aR. Now if a = 0, then d = 0, and thus S = R is the desired
SCBA-subring of T . So consider the case where a ̸= 0. In this case,
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d = au for some u ∈ T . We claim that S = R[u](R[u]∩M) is the
desired SCBA-subring. To see this, first note that Γ(R) = Γ(S),
so |S| < |T |. Now let f ∈ R[u] ∩ P where P ∈ C. Then f =
rnu

n + · · · + r1u + r0 ∈ P , with ri ∈ R. Multiplying through by
an, we get anf = rn(au)

n + · · · + r1a
n−1(au) + r0a

n, and it follows
that anf = rnd

n + · · · + r1a
n−1d + r0a

n ∈ P ∩ R = (0). But a ∈ R,
R ∩ P = (0) for every P ∈ C, and all associated prime ideals of T are
contained in an element of C. It follows that a is not a zero divisor in
T , yielding f = 0, and R[u](R[u]∩M) ∩ P = (0) for all P ∈ C.

We also show that S[x] ∩ Q = (0) for all Q ∈ B1. If Q ∈
B1 and g ∈ R[u][x] ∩ Q = R[x][u] ∩ Q, then g = rnu

n + · · · +
r1u + r0 ∈ Q, where ri ∈ R[x]. Multiplying through by an, we
get ang = rn(au)

n + · · · + r1a
n−1(au) + r0a

n, and it follows that
ang = rnd

n + · · ·+ r1a
n−1d+ r0a

n ∈ Q ∩R[x] = (0). Now, as a is not
a zerodivisor in T , it is also not a zerodivisor in T [[x]]. It must be the
case then that g = 0, giving us that S is the desired SCBA-subring of
T .

Now let I be an ideal of R that is generated by m > 1 elements, and
suppose that the lemma holds true for all ideals of R generated by m−1
elements. Let I = (y1, . . . , ym)R, with y1, . . . , ym a minimal generating
set for I. Then d = y1t1+y2t2+ · · ·+ymtm for some t1, t2, . . . , tm ∈ T .
By adding 0, we have the equality d = y1t1 + y1y2t − y1y2t + y2t2 +
· · · + ymtm = y1(t1 + y2t) + y2(t2 − y1t) + y3t3 + · · · + ymtm for any
t ∈ T . Let x1 = t1 + y2t and x2 = t2 − y1t, where we will choose the
element t later.

Now, let P ∈ C. If (t1 + y2t) + P = (t1 + y2t
′) + P , then it must be

the case that y2(t− t′) ∈ P . But y2 ∈ R, R∩P = (0) and y2 ̸= 0, so we
have t− t′ ∈ P . Thus, t+P = t′ +P . The contrapositive of this result
indicates that if t+ P ̸= t′ + P , then (t1 + y2t) + P ̸= (t1 + y2t

′) + P .
Similarly, for Q ∈ B1, if (t1 + y2t) +Q = (t1 + y2t

′) +Q, then it must
be the case that y2(t − t′) ∈ Q. But y2 ∈ R[x], R[x] ∩ Q = (0), and
y2 ̸= 0, so we have t − t′ ∈ Q, resulting in t + Q = t′ + Q. Again,
the contrapositive of this result gives that if t + Q ̸= t′ + Q, then
(t1 + y2t) +Q ̸= (t1 + y2t

′) +Q.

For each P ∈ C, let D(P ) be a full set of coset representatives of
the cosets t + P that make x1 + P algebraic over R. Similarly, for
each Q ∈ B1, define D(Q) to be a full set of coset representatives of
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the elements t + (Q ∩ T ) in T/(Q ∩ T ) that make x1 + Q in T [[x]]/Q
algebraic over R[x].

If we define D = (
∪

P∈C D(P )) ∪ (
∪

Q∈B1
D(Q)), then, by a similar

argument to that in Lemma 2.6, we get that |D| < |T |. We can
use Lemma 2.4 with I = T to find an element t ∈ T such that
x1 + P is transcendental over R for every P ∈ C and x1 + Q is
transcendental over R[x] for every Q ∈ B1. It can easily be shown
(as in the proof of Lemma 2.5) that R′ = R[x1](R[x1]∩M) is an SCBA-
subring of T , with Γ(R) = Γ(R′). Now let J = (y2, . . . , ym)R′ and
d∗ = d − y1x1. Then d∗ ∈ JT ∩ R′, so we can use our induction
assumption to draw the conclusion that there exists an SCBA-subring
S of T such that R′ ⊆ S ⊆ T , Γ(R′) = Γ(S), and d∗ ∈ JS. Thus
d∗ = y2s2 + · · · + ymsm for some s2, . . . , sm ∈ S. It follows that
d = y1x1+y2s2+· · ·+ymsm ∈ IS, and thus S is the desired subring. �

The following definition is used to tell whether an element of a well-
ordered set is a successor or a limit, which will be useful in constructing
chains of SCBA-subrings.

Definition. Let Ω be a well-ordered set and α ∈ Ω. We define
γ(α) = sup{β ∈ Ω | β < α}.

Lemma 2.8, based on [2, Lemma 2.7], allows us to construct SCBA-
subrings with many of the properties we desire A to possess.

Lemma 2.8. Let (T,M) be a complete local ring of dimension at least
one with prime subring Π. Let C be a countable set of nonmaximal
prime ideals of T such that if U ∈ AssT , then U ⊆ P for some P ∈ C.
Let J be an ideal of T with J * P for all P ∈ C. Let B1 be a set
of prime ideals of T [[x]] with |B1| < |T | such that if Q ∈ B1 then
Q ∩ T ⊆ P for some P ∈ C and Q ∩ Π[x] = (0). Let u + J ∈ T/J .
Suppose R is an SCBA-subring. Then there exists an infinite SCBA-
subring S of T such that the following conditions hold :

(i) R ⊆ S ⊆ T .
(ii) Γ(R) = Γ(S).
(iii) If u ∈ J , then S ∩ J ̸= (0).
(iv) u+ J is in the image of the map S → T/J .
(v) For every finitely generated ideal I of S, we have IT ∩ S = I.
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This result follows directly from the proof of [2, Lemma 2.7], using
Lemma 2.6 above in place of [2, Lemma 2.5] in the proof, with the
exception of the second conclusion, which we must prove. We recreate
the proof from [2] below, largely verbatim, making the necessary
modifications.

Proof. First apply Lemma 2.6 to find an infinite SCBA-subring R′

of T such that R ⊆ R′ ⊆ T , Γ(R) = Γ(R′), u+ J is in the image of the
map R′ → T/J , and if u ∈ J , then R′ ∩ J ̸= (0). We will construct the
desired S such that R′ ⊆ S ⊆ T and Γ(R′) = Γ(S) which will ensure
that the first four conditions of the lemma hold true. Let

Ω = {(I, d)|I is a finitely generated ideal of R′ and d ∈ IT ∩R′}.

Letting I = R′, we can see that |Ω| ≥ |R′|. Conversely, since R′

is infinite, the number of finitely generated ideals of R′ is |R′|, and
therefore |R′| ≥ |Ω|, giving us the equality |R′| = |Ω|. Moreover, as R′

is an SCBA-subring, we have |Ω| = |R′| < |T |. Well order Ω so that
it does not have a maximal element, and let 0 denote its first element.
We will now inductively define a family of SCBA-subrings of T , one
for each element of Ω. Let R0 = R′, and let α ∈ Ω. Assume that Rβ

has been defined for all β < α. If γ(α) < α and γ(α) = (I, d), then
define Rα to be the SCBA-subring obtained from applying Lemma 2.7
to Rγ(α) and our C, B1, I, and d. In this manner, Rα will have the
properties that Rγ(α) ⊆ Rα ⊆ T , Γ(Rγ(α)) = Γ(Rα), and d ∈ IRα. If
γ(α) = α, define Rα =

∪
β<α Rβ . In this case, note that, for all β < α,

Γ(Rβ) = Γ(R′) = Γ(R0). Also note |{β|β < α}| ≤ |Ω|.

Note that, in both cases, Rα is an SCBA-subring of T , with the
property that Γ(Rα) = Γ(R0). Now let R1 =

∪
α∈Ω Rα. We know that

|Ω| = |R′| and Γ(Rα) = Γ(R′) for every α ∈ Ω, so by Lemma 2.3, we
know that Γ(R1) ≤ Γ(R′); but R′ ⊂ R1 so Γ(R1) = Γ(R′). Moreover,
as Rα∩P = (0) for every P ∈ C and every α ∈ Ω, we have R1∩P = (0)
for every P ∈ C. Similarly, Rα[x] ∩Q = (0) for every Q ∈ B1 and for
every α ∈ Ω. It follows that R1 is an SCBA-subring. Furthermore,
notice that if I is a finitely generated ideal of R0 and d ∈ IT ∩ R0,
then (I, d) = γ(α) for some α ∈ Ω with γ(α) < α. It follows from the
construction that d ∈ IRα ⊆ IR1. Thus, IT ∩ R0 ⊆ IR1 for every
finitely generated ideal I of R0.



254 JIANG, KIRKPATRICK, LOEPP, MACK-CRANE AND TRIPP

Following this same pattern, build an SCBA-subring R2 of T such
thatR1 ⊆ R2 ⊆ T , Γ(R1) = Γ(R2), and IT∩R1 ⊆ IR2 for every finitely
generated ideal I of R1. Continue to form a chain R0 ⊆ R1 ⊆ R2 ⊆ · · ·
of SCBA-subrings of T such that IT ∩ Rn ⊆ IRn+1 for every finitely
generated ideal I of Rn.

We now claim that S =
∪∞

i=1 Ri is the desired SCBA-subring. To
see this, first note that S is indeed an SCBA-subring, that R ⊆ S ⊆ T ,
and that Γ(R′) = Γ(S). Now set I = (y1, . . . , yk)S, and let d ∈ IT ∩S.
Then there exists an N ∈ N such that d, y1, . . . , yk ∈ RN . Thus,
d ∈ (y1, . . . , yk)T ∩RN ⊆ (y1, . . . , yk)RN+1 ⊆ IS. From this it follows
that IT ∩ S = I, so the fifth condition of the lemma holds. �

Using Proposition 2.1, Lemma 2.9 provides a construction of a
domain whose completion has the properties we desire. Properties 2
and 4, which we have not mentioned yet, will be key in proving A is
excellent.

Lemma 2.9. Let (T,M) be a complete local ring of dimension at least
one with prime subring Π. Let G be a set of nonmaximal prime ideals
of T such that G contains the associated prime ideals of T and the
set of maximal elements of G, call it C, is countable. Let B1 be a
set of prime ideals of T [[x]] with |B1| < |T | such that if Q ∈ B1, then
Q∩T ⊆ P for some P ∈ C and Q∩Π[x] = (0). Let B2 be a set of prime
ideals of T [[x]], with |B2| < |T |. Suppose also that there exists a set
W ⊆ T such that each ideal in B2 contains a nonzero polynomial with
coefficients in W . Also suppose that Π[W ]∩P = (0) for all P ∈ G, and
Π[W ][x]∩Q = (0) for all Q ∈ B1. Moreover, suppose that if p ∈ SpecT
with p ⊆ P for some P ∈ G then p ∈ G. Also suppose that for each
prime ideal P ∈ G, P contains no nonzero integers of T . Then there
exists a local domain A such that

(i) Â = T .
(ii) If p is a nonzero prime ideal of A, then T ⊗A k(p) ∼= k(p) where

k(p) = Ap/pAp.
(iii) The generic formal fiber of A is exactly the elements of G, having

maximal elements the elements of C.
(iv) If I is a nonzero ideal of A, then A/I is complete.
(v) The elements of B1 are contained in the generic formal fiber of

A[x](M∩A,x). And
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(vi) The elements of B2 are not contained in the generic formal fiber
of A[x](M∩A,x).

Much of this proof comes from the construction of [2, Lemma 2.8],
with several key distinctions. As such, that proof is constructed below,
largely identically to its form in [2], but adapted as necessary.

Proof. First observe that, since |B2| < |T | and a polynomial has
finitely many coefficients, we can reduce the size of W if necessary to
achieve |W | < |T | while still maintaining the condition that, if Q ∈ B2,
then Q contains a nonzero polynomial with coefficients in W . Also,
reducing the size of W will not make any other hypotheses of this
lemma false unless they were false already. Denote this reduction of W
by W ′, and note that |W ′| < |T |.

Next define

Ω = {u+ J ∈ T/J |J an ideal of T with J ̸⊆ P for all P ∈ G}.

We claim that |Ω| ≤ |T |. We define Λ = {J |J is an ideal of T with
J ̸⊆ P for all P ∈ G}. Since T is infinite and Noetherian, |Λ| ≤ |T |.
For any ideal J of T , |T/J | ≤ |T |. Observe Ω =

∪
J∈Λ T/J , and so by

Lemma 2.3, we see |Ω| ≤ |T |.
Well order Ω so that each element has fewer than |Ω| predecessors.

Let 0 denote the first element of Ω. Let R′
0 = Π[W ′], and let R0 be

equal to R′
0 localized at R′

0 ∩M . Thus, R0 is a SCBA-subring.

Now, recursively define a family of SCBA-subrings as follows, start-
ing with R0. Let λ ∈ Ω and assume that Rβ has already been de-
fined for all β < λ. Then γ(λ) = u + J for some ideal J of T with
J ̸⊆ P for all P ∈ G and thus for all P ∈ C. If γ(λ) < λ, use
Lemma 2.8 to obtain an SCBA-subring Rλ such that Rγ(λ) ⊆ Rλ ⊆ T ,
u+ J ∈ Image (Rλ → T/J), and for every finitely generated ideal I of
Rλ the property IT ∩Rλ = I holds. If γ(λ) = λ, define Rλ =

∪
β<λ Rβ .

Then we have Rλ is a SCBA-subring for all λ ∈ Ω. We claim that
A =

∪
λ∈Ω Rλ is the desired domain.

From [2, Lemma 2.8], we know that conclusions (i)–(iv) are satisfied.
Thus, we just need to show that the generic formal fiber of A[x](M∩A,x)

contains all elements of B1 and no elements of B2. Since each Rλ
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is an SCBA-subring, Rλ[x] ∩ Q = (0) for all Q ∈ B2, and therefore
A[x](M∩A,x) ∩Q = (0) for each Q ∈ B1.

Note that if Q ∈ B2, then Q contains a nonzero polynomial with
coefficients in W ′, and therefore in A. This polynomial is in Q ∩
A[x](M∩A,x), so the intersection is non-empty and no prime ideals in
B2 are in the generic formal fiber of A[x](M∩A,x), as desired. �

3. Main theorem. Using the last several lemmas, we are now able
to construct a local domain A that possesses the properties we desire.

Theorem 3.1. Let (T,M) be a complete local ring with prime subring
Π. Let G be a set of prime ideals of T such that the set of maximal
elements of G, which we call C, is countable. Let B1 and B2 be sets
of prime ideals of T [[x]], each with cardinality strictly smaller than

|T |. Then there exists a local domain A such that Â = T , the generic
formal fiber of A is exactly the elements of G, the generic formal fiber
of A[x](M∩A,x) contains every ideal in B1 and no ideal in B2 if and
only if the following conditions hold :

(i) Either T is a field and G = {0}, or
(a) M /∈ G, and G contains all the associated prime ideals of T .
(b) If Q ∈ G and P ∈ SpecT with P ⊆ Q, then P ∈ G.
(c) If Q ∈ G, then Q ∩Π = (0).

(ii) If Q ∈ B1, then Q ∩ T ∈ G.
(iii) If Q ∈ B1, then Q ∩Π[x] = (0).
(iv) There exists a subset W ⊂ T such that

(a) If Q ∈ B2 then there is a nonzero polynomial in Q with
coefficients in W .

(b) If P ∈ C then Π[W ] ∩ P = (0).
(c) If Q ∈ B1 then Π[W ][x] ∩Q = (0).

Proof. We will first prove that the four above conditions are nec-

essary. Suppose there exists a local domain A such that Â = T , the
generic formal fiber of A is exactly G, and the generic formal fiber of
A[x](M∩A,x) contains all elements of B1 and no elements of B2. The ne-
cessity of the first condition follows from the fact that this theorem is a
generalization of [1, Theorem 2.13], and the first condition is necessary
there.
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We will now prove that, for all Q ∈ B1, Q∩ T ⊆ P for some P ∈ C.
First note that A ⊆ A[x](M∩A,x) ⊆ T [[x]]. We know that Q is in the
generic formal fiber of A[x](M∩A,x), and so Q ∩ A[x](M∩A,x) = (0). It
follows that Q∩A = Q∩A[x](M∩A,x)∩A = (0). But Q∩A = (Q∩T )∩A
so Q ∩ T is in the generic formal fiber of A, i.e. Q ∩ T ∈ G.

We also know that, since T is the completion of A, the unity
element of A must be in T , so A and T have the same prime subring.
This means that Π[x] is necessarily in A[x](M∩A,x). Therefore, since
Q ∩A[x](M∩A,x) = (0) for all Q ∈ B1, we know that Q ∩Π[x] = (0).

For the fourth condition, W = A is a set of the required form. We
knowQ∩A[x](M∩A,x) ̸= (0) for allQ ∈ B2, so there is a nonzero element
of Q that is also in A[x](M∩A,x). An arbitrary element of A[x](M∩A,x)

looks like z = f(x)/g(x) for f(x), g(x) ∈ A[x] ⊂ T [[x]]. Thus, if z ∈ Q,
then f(x) ∈ Q as well, by the strong closure property of ideals. As
f(x) ∈ A[x](M∩A,x), all the coefficients of f(x) are in A, as desired.
Furthermore, since Π is a subring of A, we have Π[W ] = Π[A] = A.
The fact that the generic formal fiber of A is exactly the elements of
C verifies condition (iv) (b); the fact that the generic formal fiber of
A[x](M∩A,x) contains every element of B1 verifies (iv) (c). Thus, as
desired, all four of the given conditions are necessary.

We will now prove the sufficient direction. Suppose the above four
conditions are satisfied. Either T is a field with G = {(0)}, in which
case A = T is the desired domain, or we can apply Lemma 2.9 (since
(i) (a) implies the dimension of T is at least one) to construct the
desired domain A. �

Consider the following very simple application of the preceding
theorem.

Example 3.2. Let T = Q[[w, y, z]], and thus T [[x]] = Q[[x,w, y, z]].
Let

C = {⟨y⟩},
G = {⟨0⟩, ⟨y⟩},
B1 = {⟨y⟩},
B2 = {⟨zx+ w⟩},
W = {w, z}.
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We show that T , G, B1, and B2 satisfy the hypotheses of The-
orem 3.1. By construction, the entire first hypothesis is satisfied.
The second hypothesis is obviously true by our choice of B1, since
Q ∩ T = ⟨y⟩ for all Q ∈ B1. The third condition is easily satisfied as
well, as Π[x] contains only polynomials with integer coefficients in x.
Clearly, y does not divide any such nonzero polynomial, and y divides
every element of ⟨y⟩, so Π[x] ∩ ⟨y⟩ = (0).

Finally note that (iv) (a) is satisfied by construction, and (iv) (b)
and (iv) (c) are both satisfied in a similar way as the previous prime
subring conditions. Thus, the given sets satisfy the four hypotheses
of Theorem 3.1, and so we can construct a local domain A whose
completion is T , such that A has a local generic formal fiber with
maximal element ⟨y⟩. Furthermore, we can simultaneously ensure that
the generic formal fiber of A[x](M∩A,x) contains ⟨y⟩ but does not contain
⟨zx+ w⟩.

The following example is a better illustration of the level of control
we have over the generic formal fibers of A and A[x](M∩A,x).

Example 3.3. Let T = Q[[y1, y2, z1, z2, z3, z4]], and so T [[x]] =
Q[[x, y1, y2, z1, z2, z3, z4]]. Let

C = {⟨y1 + yk2 ⟩ | k ∈ Z+},
G = C ∪ {⟨0⟩},
E = {⟨z1x+ zk2 ⟩ | k ∈ Z+},
F = {⟨z3x+ zk4 ⟩ | k ∈ Z+},
WE = {z1, z2, z22 , z32 , . . .},
WF = {z3, z4, z24 , z34 , . . .}.

Note first that T is a complete local ring with maximal ideal M =
⟨y1, y2, z1, z2, z3, z4⟩. The conditions are not difficult to verify, so we
can use Theorem 3.1.

Applying Theorem 3.1 with B1 = E, B2 = F , W = WF results in

a local domain A such that Â = T , the generic formal fiber of A is
exactly the elements of G, every element of E is in the generic formal
fiber of A[x](M∩A,x), and no element of F is in the generic formal fiber
of A[x](M∩A,x).
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Interestingly, we can also apply Theorem 3.1 with B1 = F , B2 = E,

W = WE , which results in a local domain A such that Â = T , the
generic formal fiber of A is exactly the elements of G, every element of
F is in the generic formal fiber of A[x](M∩A,x), and no element of E is
in the generic formal fiber of A[x](M∩A,x).

In the following corollary, all the conditions are the same except
we substitute the condition |B2| < |T | with the condition |W | < |T |.
While the new theorem gives us more control over |B2|, we do not know
that the condition |W | < |T | is necessary.

Corollary 3.4. Let (T,M) be a complete local ring with prime subring
Π. Let G be a set of nonmaximal prime ideals of T such that the set of
maximal elements of G, which we call C, is countable. Let B1 and B2

be sets of prime ideals of T [[x]] with |B1| < |T |. Then there exists a local

domain A such that Â = T , the generic formal fiber of A is exactly the
elements of G, the generic formal fiber of A[x](M∩A,x) contains every
ideal in B1 and no ideal in B2 if the following conditions are satisfied :

(i) Either T is a field and G = {0} or
(a) M /∈ G, and G contains all the associated prime ideals of T .
(b) If Q ∈ G and P ∈ SpecT with P ⊆ Q, then P ∈ G.
(c) If Q ∈ G, then Q ∩Π = (0).

(ii) If Q ∈ B1 then Q ∩ T ∈ G.
(iii) If Q ∈ B1 then Q ∩Π[x] = (0).
(iv) There exists a subset W ⊂ T such that

(a) |W | < |T |.
(b) If Q ∈ B2 then there is a nonzero polynomial in Q with

coefficients in W .
(c) If P ∈ C then Π[W ] ∩ P = (0).
(d) If Q ∈ B1 then Π[W ][x] ∩Q = (0).

Proof. Since |W | < |T |, the proof of the sufficient direction of
Theorem 3.1 also proves this corollary. �

To illustrate when Corollary 3.4 is more powerful than Theorem 3.1,
we give an example where |B2| = |T | but |W | is finite.



260 JIANG, KIRKPATRICK, LOEPP, MACK-CRANE AND TRIPP

Example 3.5. Let T = Q[[y, z1, . . . , z6]], and thus T [[x1, . . . , x6]] =
Q[[x1, . . . , x6, y, z1 . . . , z6]]. Let

C = {⟨y⟩},
B1 = {⟨y⟩},
I = ⟨z1x1 + z2x2⟩,
J = ⟨z1x1 + z2x2, z3x3 + z4x4, z5x5 + z6x6⟩,
B2 = {Q ∈ SpecT [[x1, . . . , x6]] | I ⊆ Q ⊆ J},
W = {z1, z2}.

Note first that the prime subring of T is simply Z, and I is a prime
ideal of height 1 because it is generated by an irreducible polynomial.
Also note that J and ⟨z1x1 + z2x2, z3x3 + z4x4⟩ are both prime ideals
of T [[x1, . . . , x6]]. Since ⟨z1x1+z2x2, z3x3+z4x4⟩ is contained in J and
contains I, J has height 3. Call R = T [[x1, . . . , x6]]/I and M = J/I.
Then (T [[x1, . . . , x6]]/I)(J/I) = RM is a local domain of dimension 2.

Suppose |SpecRM | < |RM |. Note that |RM | = |R| = |R/M | =
|RM/MRM | because localizing does not change the cardinality of an
infinite ring (first and third equalities), and M is a non-maximal prime
ideal of the complete local ring R so Lemma 2.4 shows the second
equality. Now |SpecRM | < |RM/MRM | so we can use [4, Lemma 3]
with (T,M) = (RM ,MRM ), C = SpecRM\{MRM}, D = {0} and
I = MRM to show that there is an m ∈ MRM such that m is
not contained in any prime ideal of RM except MRM . But this
is a contradiction, because m is a non-unit in an integral domain,
so it must be contained in some prime ideal of height one. Thus
|SpecRM | ≮ |RM |.

The elements of Spec (T [[x1, . . . , x6]]/I)(J/I) = SpecRM correspond
one-to-one with the prime ideals Q of T [[x1, . . . , x6]] that satisfy I ⊆
Q ⊆ J , which are exactly the elements of B2. This shows |B2| ≮
|RM | = |(T [[x1, . . . , x6]]/I)(J/I)| = |T [[x1, . . . , x6]]|. In particular, we
cannot use Theorem 3.1 for this case, because |B2| = |T |. But, clearly,
|W | < |T |, so we can use Corollary 3.4 instead.

It is easy to verify the conditions on P and B1. This is an interesting
example because B2 also satisfies the conditions on B1: for any Q ∈ B2,
Q ∩ T ⊆ J ∩ T ⊆ ⟨x1, . . . , x6⟩ ∩ T = ⟨0⟩ ⊂ P and Q ∩ Z[x1, . . . , x6] ⊆
J ∩ Z[x1, . . . , x6] ⊆ ⟨z1, . . . , z6⟩ ∩ Z[x1, . . . , x6] = ⟨0⟩. Thus, each ideal
in B2 can individually be put inside or outside the generic formal fiber
of A[x1, . . . , x6].
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Now we show the rest of the conditions are satisfied. Condition (i)
is true since for all Q ∈ B2, z1x1+z2x2 ∈ Q and therefore Q contains a
non-zero polynomial with coefficients in W . Condition (ii) is satisfied
as Z[W ] ∩ P = Z[x1, x2] ∩ ⟨y⟩ = ⟨0⟩. And, condition (iii) holds since
Z[W ][x1, . . . , x6] ∩ ⟨y⟩ = Z[x1, . . . , x6] ∩ ⟨y⟩ = ⟨0⟩.

As shown above, all the conditions are satisfied, and the corollary

tells us that there is a local domain A such that Â = T , the generic
formal fiber of A is local with maximal ideal P and the generic formal
fiber of A[x1, . . . , x6] contains B1 but no element of B2. Note that we
can also construct A to be an excellent ring, which we will show later
in Section 4.

Consider now the following corollary, which only controls which
elements of SpecT [[x]] belong to the generic formal fiber of A[x](M∩A,x),
but has much simpler conditions than Theorem 3.1.

Corollary 3.6. Let (T,M) be a complete local ring with prime subring
Π. Let G be a set of nonmaximal prime ideals of T such that the set
of maximal elements of G, which we call C, is countable. Let B1 be a
set of prime ideals of T [[x]], with cardinality strictly smaller than |T |.
Then there exists a local domain A such that Â = T , the generic formal
fiber of A is exactly the elements of G, and the generic formal fiber
of A[x](M∩A,x) contains every ideal in B1 if and only if the following
conditions are met :

(i) Either T is a field and G = {0} or
M ̸∈ G, and G contains all the associated prime ideals of T .
If Q ∈ G and P ∈ SpecT with P ⊆ Q, then P ∈ G.
If Q ∈ G, then Q ∩Π = (0).

(ii) If Q ∈ B1 then Q ∩ T ∈ G.
(iii) If Q ∈ B1 then Q ∩Π[x] = (0).

Proof. Let B2 = ∅ and W = ∅, and apply Theorem 3.1. �

4. Making A excellent. We would like to understand when a
complete local ring (T,M) is the completion of an excellent local
domain A such that both the generic formal fiber of A and A[x](M∩A,x)

can be controlled. To that end, we have the following result.
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Theorem 4.1. Let (T,M) be a complete local ring of characteristic 0
with prime subring Π. Let G be a set of prime ideals of T such that the
set of maximal elements of G, which we call C, is countable. Let B1

and B2 be sets of prime ideals of T [[x]], each with cardinality strictly
smaller than |T |. Then there exists an excellent local domain A such

that Â = T , the generic formal fiber of A is exactly the elements of G,
and the generic formal fiber of A[x](M∩A,x) contains every ideal in B1

and no ideal in B2 if and only if the following conditions are met :

(i) Either T is a field and G = {0}, or
(a) M /∈ G, and G contains all the associated prime ideals of T .
(b) If Q ∈ G and P ∈ SpecT with P ⊆ Q, then P ∈ G.
(c) If Q ∈ G, then Q ∩Π = (0).
(d) T is equidimensional.
(e) TP is a regular local ring for all P ∈ C,

(ii) If Q ∈ B1 then Q ∩ T ∈ G.
(iii) If Q ∈ B1 then Q ∩Π[x] = (0).
(iv) There exists a subset W ⊂ T such that

(a) If Q ∈ B2 then there is a nonzero polynomial in Q with
coefficients in W ,

(b) If P ∈ C then Π[W ] ∩ P = (0),
(c) If Q ∈ B1 then Π[W ][x] ∩Q = (0).

Proof. This result follows directly from the proof of [2, Theorem
4.1], using Lemma 2.9 above in place of [2, Lemma 2.8] in the proof. �

Note that, in the previous examples, all the conditions stated in
the above theorem are satisfied. Therefore, the local domains A
constructed were indeed also excellent. It is worthwhile to give a
concrete example of a case where such an excellent domain A does
not exist.

Example 4.2. Let T = Q[[y1, y2, z1, z2, z3, z4]]/⟨y21 , y22⟩. Thus, we have
T [[x]] = Q[[x, y1, y2, z1, z2, z3, z4]]/⟨y21 , y22⟩.

Moreover, let

C = {⟨z1 + zk2 , y1, y2⟩ | k ∈ Z+}.
B1 = {⟨z1x+ zk2 , y1, y2⟩ | k ∈ Z+}.
B2 = {⟨z3x+ zk4 , y1, y2⟩ | k ∈ Z+}.
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W = {z3, zk4 | k ∈ Z+}.

Note that, unlike the previous examples, T in this example is not a
domain. However, AssT = {⟨y1, y2⟩}, which is contained in all elements
of C. Therefore condition (i) (a) of Theorem 3.1 is satisfied. All other
conditions of Theorem 3.1 can be checked similarly to Example 3.2, and
therefore we can apply Theorem 3.1 to show a local domain A exists,
which need not be excellent. To see that A can never be excellent,
notice that we have nilpotent elements y1 and y2 in TP for all P ∈ C.
But all regular rings are reduced, so TP cannot be regular local. Since
T fails to satisfy Theorem 4.1 (i) (e), an excellent local domain A does
not exist.

As in Corollary 3.6, if we give up the possibility of specifying prime
ideals to be outside the generic formal fiber of A[x](M∩A,x), then we can
specify prime ideals to be in its generic formal fiber with much simpler
conditions.

Corollary 4.3. Let (T,M) be a complete local ring of characteristic 0
with prime subring Π. Let G be a set of prime ideals of T such that the
set of maximal elements of G, which we call C, is countable. Let B1 be
a set of prime ideals of T [[x]] with cardinality strictly smaller than |T |.
Then there exists an excellent local domain A such that Â = T , the
generic formal fiber of A is exactly the elements of G, and the generic
formal fiber of A[x](M∩A,x) contains B1 if and only if the following
conditions are met.

(i) Either T is a field and G = {0}, or
(a) M /∈ G, and G contains all the associated prime ideals of T .
(b) If Q ∈ G and P ∈ SpecT with P ⊆ Q, then P ∈ G.
(c) If Q ∈ G, then Q ∩Π = (0).
(d) T is equidimensional.
(e) TP is a regular local ring for all maximal elements.

(ii) If Q ∈ B1, then Q ∩ T ⊆ P for some P ∈ C.
(iii) If Q ∈ B1, then Q ∩Π[x] = (0).

Proof. Let B2 = ∅ and W = ∅, and apply Theorem 4.1. �
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