INTERPOLATION IN AFFINE AND PROJECTIVE SPACE OVER A FINITE FIELD

MICHAEL HELLUS AND ROLF WALDI

ABSTRACT. Let s(n,q) be the smallest number s such that any n-fold \mathbb{F}_q -valued interpolation problem in \mathbb{F}_{q}^k has a solution of degree s, that is: for any pairwise different \mathbb{F}_q -rational points P_1,\ldots,P_n , there exists a hypersurface H of degree s defined over \mathbb{F}_q such that $P_1,\ldots,P_{n-1}\in H$ and $P_n\notin H$. This function s(n,q) was studied by Kunz and the second author in [8] and completely determined for q=2 and q=3. For $q\geq 4$, we improve the results from [8].

The affine analogue to s(n,q) is the smallest number $s=s_a(n,q)$ such that any n-fold \mathbb{F}_q -valued interpolation problem in $\mathbb{A}^k(\mathbb{F}_q)$, $k\in\mathbb{N}_{>0}$ has a polynomial solution of degree $\leq s$. We exactly determine this number.

1. Introduction. Let $R = K[X_0, \ldots, X_k]$ denote the standard graded polynomial ring in $k+1 \geq 1$ variables over an arbitrary field K and $\mathbb{P}^k(K) \subseteq \mathbb{P}^k_K = \operatorname{Proj} R$ the set of all K-rational points.

We start with an arbitrary finite subset $\mathcal{X} \subseteq \mathbb{P}^k(K)$ consisting of $n =: \deg \mathcal{X} \geq 1$ pairwise different K-rational points. By

$$I_{\mathcal{X}} := (\{F \in R \text{ homogenous } | F(P) = 0 \text{ for all } P \in \mathcal{X}\}),$$

we denote its homogenous vanishing ideal. Let $S:=\bigoplus_{d\geq 0} S_d:=R/I_{\mathcal{X}}$ and

$$H_{\mathcal{X}}(d) := \dim_K(S_d)$$

(for $d \in \mathbb{N}$) the Hilbert function of \mathcal{X} . The Castelnuovo-Mumford regularity of \mathcal{X} is the uniquely determined number $r_{\mathcal{X}}$ such that

$$H_{\mathcal{X}}(d) = n \text{ for } d \geq r_{\mathcal{X}} \text{ and } H_{\mathcal{X}}(r_{\mathcal{X}} - 1) \leq n - 1.$$

It is well known that $H_{\mathcal{X}}$ is strictly increasing for $0 \leq d \leq r_{\mathcal{X}}$; in particular, $r_{\mathcal{X}} \leq n-1$.

²⁰¹⁰ AMS Mathematics subject classification. Primary 14G15.

Received by the editors on September 18, 2013, and in revised form on January 2, 2014

DOI:10.1216/JCA-2015-7-2-207

From now on, we assume that $K = \mathbb{F}_q$ is the finite field with q elements, where q is an arbitrary prime power. One would like to know which Hilbert functions $H_{\mathcal{X}}$ respectively, for which regularities $r_{\mathcal{X}}$ are possible. For infinite fields K, the answer to the first (and hence also to the second) question was given by Geramita, Maroscia and Roberts ([6, Sections 1 and 3]).

 $r_{\mathcal{X}}$ has the following geometric description:

Remark. $r_{\mathcal{X}}$ is the smallest number such that for every $P \in \mathcal{X}$, there exists a hypersurface $H_P \subseteq \mathbb{P}^k_{\mathbb{F}_q}$ defined over \mathbb{F}_q , of degree $r_{\mathcal{X}}$ which separates P from \mathcal{X} , that is $H_P \cap \mathcal{X} = \mathcal{X} \setminus \{P\}$.

Therefore, the following definition of s(n,q) agrees with the one from the abstract:

$$s(n,q) = \max\{r_{\mathcal{X}} \mid \text{ there exist } k \geq 1, \mathcal{X} \subseteq \mathbb{P}^k(\mathbb{F}_q) \text{ with } \deg \mathcal{X} = n\}$$

= $\max\{r_{\mathcal{X}} | \mathcal{X} \subseteq \mathbb{P}^{n-1}(\mathbb{F}_q), \deg \mathcal{X} = n\}$

(the latter holds since the embedding dimension of \mathcal{X} is at most n-1).

It is known ([8, Lemma 1.2]) that

$$s(n,q) \leq s(n+1,q) \leq s(n,q) + 1 \text{ for } n \in \mathbb{N}_{>0}.$$

The function s(n,q) can be extended to a step function s(x,q) on $\mathbb{R}_{>0}$, its steps ("jump discontinuities") have height 1 and are precisely at those $x = n \in \mathbb{N}_{>1}$ where s(n,q) = s(n-1,q) + 1. Trivially, the function s(x,q) is determined by its initial value s(1,q) = 0 and its jump discontinuities $a_1 < a_2 < \ldots$ For q = 2 and q = 3, the function s(n,q) was completely computed in ([8, Corollary 1.4]). So far, for $q \geq 4$, the following was known (loc. cit.):

- a) $a_i = i + 1$ for i = 1, ..., q 1.
- b) $a_{(m-1)(q-1)+1} = (q^m 1)/(q 1)$ and $a_{m(q-1)} = q^m$ for every $m \ge 2$.
- c) For every $m \geq 2$ and for $r = 2, \ldots, q 2$, the jump discontinuity $a_{(m-1)(q-1)+r}$ is in the half-open interval $I_{m,r} = (r(q^m-1)/(q-1), (r+1)q^{m-1}]$, but its precise position was unknown. For m = 2, we show

Proposition 1.1. For $q \geq 4$ and $r = 2, \ldots, q - 2$,

$$a_{q-1+r} = (r+1)q$$

i.e., the first 2q-1 jump discontinuities are: $2, \ldots, q, q+1, 3q, \ldots, (q-1)q, q^2, q^2+q+1$. Therefore, s(x,q) is known in the interval $[1, 2(q^2+q+1)]$.

One may conjecture that the unknown jump discontinuities of s(x,q) are at the right edges of the intervals $I_{m,r}$.

In the proof of this proposition we will study, for $1 \le k < n \le (q^{k+1}-1)/(q-1)$ (i.e., where it makes sense), the invariants

$$s(n,k,q) := \max\{r_{\mathcal{X}} \mid \mathcal{X} \subseteq \mathbb{P}^k(\mathbb{F}_q) \text{ nondegenerate and of degree } n\}$$

(recall that a set $\mathcal{X} \subseteq \mathbb{P}^k_{\mathbb{F}_q}$ is **nondegenerate** if it spans the whole space). [7, Cor. 2.2 a)] says that s(n, k, q) is increasing in n. In contrast to this:

Proposition 1.2. s(n, k, q) is decreasing in k.

Together with [7, Proposition 1.6] we shall see that this already implies Proposition 1.1. In addition, we are able to show the following improvement of [7, Proposition 1.4b)]:

Proposition 1.3. For every $k \ge 2$ (and every prime power q),

$$s(2q+k,k,q) = q$$

(note that the left hand side is well-defined since $k < 2q + k \le q^k + q^{k-1} + \cdots + 1$).

We shall now define and study the following affine version of the function s(n,q): Embed $\mathbb{A}^k(\mathbb{F}_q)$ into $\mathbb{P}^k(\mathbb{F}_q) = \{\mathbb{F}_q \cdot v | v \in \mathbb{F}_q^{k+1} \setminus \{0\}\}$ by $(x_1,\ldots,x_k) \mapsto \langle 1,x_1,\ldots,x_k \rangle = \mathbb{F}_q \cdot (1,x_1,\ldots,x_k)$. For an arbitrary set $\mathcal{X} \subseteq \mathbb{A}^k(\mathbb{F}_q)$, by a remark from above, $r_{\mathcal{X}}$ is the smallest number r such that any interpolation problem

$$\varphi(P) = w_P \text{ (for } P \in \mathcal{X}, w_P \in \mathbb{F}_q)$$

has a polynomial solution φ of degree $\leq r$ ($r_{\mathcal{X}}$ is the *interpolation degree* of \mathcal{X} in the sense of [3, section 4A]).

Definition 1.4. a) We call a subset $\mathcal{X} \subseteq \mathbb{P}^k(\mathbb{F}_q)$ affine if there exists a hyperplane $H \subseteq \mathbb{P}^k_{\mathbb{F}_q}$, defined over \mathbb{F}_q and disjoint from \mathcal{X} .

b) $s_a(n,q) := \max\{r_{\mathcal{X}} | \text{ there exist } k \geq 1, \mathcal{X} \subseteq \mathbb{P}^k(\mathbb{F}_q), \mathcal{X} \text{ affine, } \deg \mathcal{X} = n\}.$

By what was just said, this definition agrees with the one from the abstract. The following proposition describes $s_a(n,q)$ completely:

Proposition 1.5. Let $r, m, n \in \mathbb{N}_{>0}$ and $r \leq q - 1$.

For $rq^{m-1} \le n < (r+1)q^{m-1}$,

$$s_a(n,q) = (m-1)(q-1) + r - 1.$$

It turns out (see Section 4) that this is a simple application of the Cayley-Bacharach conjecture ([4, CB12]). However, with regard to the function s of our main interest, we have:

Remark 1.6. The functions s_a and s are different.

In fact, for any $m \geq 2$, by [8, Theorem 1.3],

$$s\bigg(\frac{q^m-1}{q-1}, q\bigg) = (m-1)(q-1) + 1,$$

whereas, by Proposition 1.5 with r=1

$$s_a\left(\frac{q^m-1}{q-1},q\right) = (m-1)(q-1).$$

2. The function s(n, k, q) and proofs of 1.1, 1.2. The invariants s(n, k, q) are finer than s(n, q): It is easily seen that one always has

$$s(n,q) = \max\bigg\{s(n,k,q) \Big| 1 \leq k < n \leq \frac{q^{k+1}-1}{q-1}\bigg\}.$$

s(n, k, q) was studied by Kreuzer and the second author in [7]:

s(n, k, q) is increasing in n ([7, Corollary 2.2a)]) and s(n, k, q) was completely computed in both cases q = 2 and k = 2 ([7, Proposition 1.2, respectively, Proposition 1.6]).

Proof that s(n, k, q) is decreasing in k (Proposition 1.2). Let $q = p^e$ be a prime power, $e \ge 1$ and

$$2 \le k < n \le \frac{q^k - 1}{q - 1} (= |\mathbb{P}^{k-1}(\mathbb{F}_q)|).$$

We have to show that $s(n, k, q) \leq s(n, k - 1, q)$. It is clear from our hypothesis that both numbers s(n, k, q) and s(n, k - 1, q) are defined. Now, let $\mathcal{X} = \{P_1, \dots P_n\} \subseteq \mathbb{P}^k(\mathbb{F}_q)$ be nondegenerate of degree n and $r_{\mathcal{X}} = s(n, k, q)$.

In any case the dimension of the \mathbb{F}_q -vector space

$$(\mathbb{F}_q[X_0,\ldots,X_k]/I_{\mathcal{X}})_{r_{\mathcal{X}}-1}$$

is smaller than n; therefore, according to the remark from the introduction, $\mathbb{F}_q[\underline{X}] := \mathbb{F}_q[X_0, \dots, X_k]$ contains no homogenous polynomial p of degree $r_{\mathcal{X}} - 1$ with (if necessary we renumber the points P_i)

$$P_1 \notin V^+(p)$$

$$P_2, \dots, P_n \in V^+(p)$$

where $V^+(p)$ denotes the zero set of p in $\mathbb{P}^k(\mathbb{F}_q)$.

Claim. There exists a line $l \subseteq \mathbb{P}^k(\mathbb{F}_q)$ with $l \cap \mathcal{X} = \{P_1\}$.

Proof of claim. For the lines $P_1 \vee P_i$ connecting P_1 with P_i we have:

$$\left| \left(\bigcup_{i=2}^{n} P_1 \vee P_i \right) \right| \le 1 + (n-1) \cdot q \le 1 + \left(\frac{q^k - 1}{q - 1} - 1 \right) \cdot q$$

$$= \frac{q^{k+1} - q^2 + q - 1}{q - 1} < \frac{q^{k+1} - 1}{q - 1} = \left| \mathbb{P}^k(\mathbb{F}_q) \right|.$$

So there is at least one point $P \in \mathbb{P}^k(\mathbb{F}_q)$ not on the union of the lines $P_1 \vee P_i$; take l to be the line connecting P and P_1 . \square_{claim}

We choose $P \in l \setminus \{P_1\}$ and take the projection with center P:

$$\mathbb{P}^k(\mathbb{F}_q) \setminus \{P\} \xrightarrow{\pi} \mathbb{P}^{k-1}(\mathbb{F}_q).$$

 $l = P_1 \vee P$ connects P_1 with P, and $l \setminus \{P\}$ is the fibre over $\pi(P_1)$. Because of $l \cap \mathcal{X} = \{P_1\}$, the restriction

$$\pi|\mathcal{X}:\mathcal{X}\longrightarrow\mathbb{P}^{k-1}(\mathbb{F}_q)$$

has only P_1 in its fibre over $\pi(P_1)$.

Let Y_0, \ldots, Y_{k-1} be the coordinates of $\mathbb{P}^{k-1}(\mathbb{F}_q)$. Algebraically, π corresponds to a homogenous, injective ring homomorphism

$$\iota : \mathbb{F}_q[\underline{Y}] := F_q[Y_0, \dots, Y_{k-1}] \longrightarrow \mathbb{F}_q[X_0, \dots, X_k]$$

(under which the Y_i are mapped to certain linear forms). The ring $\mathbb{F}_q[\underline{Y}]$ contains no polynomial p_0 of degree $r_{\mathcal{X}} - 1$ with

(2.1)
$$\pi(P_1) \notin V^+(p_0)$$
$$\pi(P_2), \dots, \pi(P_n) \in V^+(p_0),$$

because otherwise $\iota(p_0) \in \mathbb{F}_q[\underline{X}]$ would be a polynomial of degree $r_{\mathcal{X}} - 1$ with $P_1 \notin V^+(\iota(p_0)), P_2, \ldots, P_n \in V^+(\iota(p_0))$.

By construction, $\pi(P_1)$ is not contained in $\{\pi(P_2), \dots, \pi(P_n)\}$. In particular, from (2.1) above we conclude

$$r_{\pi(\mathcal{X})} \geq r_{\mathcal{X}},$$

and furthermore (note that $\pi(\mathcal{X}) \subseteq \mathbb{P}^{k-1}(\mathbb{F}_q)$ is nondegenerate because $I_{\mathcal{X}}$ contains no linear form, a fortiori $I_{\pi(\mathcal{X})} = I_{\mathcal{X}} \cap \mathbb{F}_q[\underline{Y}]$ contains no linear form) by [7, Corollary 2.2a)],

$$s(n, k-1, q) \ge s(|\pi(\mathcal{X})|, k-1, q) \ge r_{\pi(\mathcal{X})} \ge r_{\mathcal{X}} = s(n, k, q).$$
 $\square_{1.2}$

Proposition 1.2 implies Proposition 1.1. Note that the first jump discontinuities $a_1 = 2, \ldots, a_q = q+1$ as well as $a_{2q-2} = q^2, a_{2q-1} = q^2 + q + 1$ are known by [8, Corollay 1.4]. To determine the jump discontinuities $a_{q+1}, \ldots, a_{2q-3}$ which are missing in between (at least for $q \ge 4$), we use the following consequence of proposition 1.2:

Corollary 2.1. In the interval $((q^m - 1)/(q - 1), (q^{m+1} - 1)/(q - 1)], m \ge 1$, one has

$$s(n,q) = s(n,m,q).$$

Proof. s(n, k, q) is decreasing in k and we simply take the smallest possible value for k where s(n, k, q) is defined. $\square_{2.1}$

In particular, for
$$n \in \{q+2, \dots, (q^3-1)/(q-1) = q^2+q+1\}$$
,
 $s(n,q) = s(n,2,q)$.

and the latter function was concretely computed in [7, Proposition 1.6]. Furthermore, by [8, Theorem 1.3a)], s(n,q) = 2q - 1 for $q^2 + q + 1 \le n \le 2(q^2 + q + 1)$. $\square_{1.2 \Rightarrow 1.1}$

Remark 2.2. Let $s_a(n, k, q)$ be the largest interpolation degree that any nondegenerate $\mathcal{X} \subseteq \mathbb{A}^k(\mathbb{F}_q)$ of degree n can achieve. Similar arguments as above show, that

$$s_a(n, k, q) = s_a(n, q), \text{ for } q^{k-1} < n \le q^k,$$

hence, by Proposition 1.5, $s_a(n, k, q)$ is well known in this range.

3. Proof of 1.3. Note that, for every $k \ge 2$ and every prime power q, s(2q + k, k, q) is defined since $2q + k \le q^k + \ldots + q + 1$. To prove Proposition 1.3, we need some preparations:

Let K be a field and $k \geq 2$. For a vector $a = (a_0, \ldots, a_k) \in K^{k+1}$, we call

$$supp a := \{i | a_i \neq 0\} \subseteq \{0, ..., k\}$$

its support and

$$||a|| := |\operatorname{supp} a|$$

its weight. We start with the map

$$\widetilde{\varphi}: K^{k+1} \to K^{\binom{k+1}{2}}, (a_0, \dots, a_k) \longmapsto (a_0 a_1, \dots, a_{k-1} a_k)$$

(strictly speaking we once and for all fix an arbitrary order on the set of all pairs $(a_i a_j)$ for j > i on the right-hand side).

Lemma 3.1. Let $v_1, v_2, v_3 \in K^{k+1} \setminus \{0\}$, and write $v_i = (v_{ij})_{\substack{j=0,\dots,k\\i=1,2,3}}$.

- (i) Assume that v_1 and v_2 have the same support and weight at least three. If v_1 and v_2 are linearly independent, then $\widetilde{\varphi}(v_1)$ and $\widetilde{\varphi}(v_2)$ are likewise linearly independent.
- (ii) If v_1 , v_2 and v_3 have pairwise different support and $||v_i|| \ge 2$ for i = 1, 2, 3, then $\widetilde{\varphi}(v_1)$, $\widetilde{\varphi}(v_2)$ and $\widetilde{\varphi}(v_3)$ are linearly independent.

Proof. (i) Without loss of generality, we assume that $\{0,1,2\} \subseteq \text{supp } v_1$ $(= \text{supp } v_2)$ and that $\det \begin{pmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{pmatrix} \neq 0$. Then

$$\widetilde{\varphi}(v_i) = (v_{i0}v_{i1}, v_{i0}v_{i2}, \ldots), \quad i = 1, 2,$$

with

$$\det \begin{pmatrix} v_{10}v_{11} & v_{10}v_{12} \\ v_{20}v_{21} & v_{20}v_{22} \end{pmatrix} = v_{10}v_{20} \cdot \det \begin{pmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{pmatrix} \neq 0;$$

in particular $\widetilde{\varphi}(v_1)$ and $\widetilde{\varphi}(v_2)$ are linearly independent.

(ii) Without loss of generality, $||v_3|| \leq ||v_2|| \leq ||v_1||$. The $\binom{k+1}{2}$ -tuples $\widetilde{\varphi}(v_1)$, $\widetilde{\varphi}(v_2)$, $\widetilde{\varphi}(v_3)$ have pairwise different support (since this property holds for v_1 , v_2 , v_3). In particular, whenever $i \neq j$, the vectors $\widetilde{\varphi}(v_i)$ and $\widetilde{\varphi}(v_j)$ are linearly independent. We assume to the contrary that $\widetilde{\varphi}(v_1)$, $\widetilde{\varphi}(v_2)$, $\widetilde{\varphi}(v_3)$ are linearly dependent. Since any two of them are linearly independent there exist $\lambda, \mu \in K \setminus \{0\}$ such that

(*)
$$\widetilde{\varphi}(v_3) = \lambda \widetilde{\varphi}(v_1) + \mu \widetilde{\varphi}(v_2).$$

 $||v_2|| \le ||v_1||$ and $\operatorname{supp} v_1 \ne \operatorname{supp} v_2$; hence, $\operatorname{supp} v_1 \not\subseteq \operatorname{supp} v_2$. Therefore, we may assume that $\operatorname{supp} v_1 = \{0, \ldots, d\}$ with $1 \le d \le k$ and $0 \notin \operatorname{supp} v_2$.

$$v_{10}v_{11} \neq 0, \dots, v_{10}v_{1d} \neq 0,$$

 $v_{20}v_{21} = \dots = v_{20}v_{2d} = 0$

and (*) implies

$$v_{30}v_{31} = \lambda v_{10}v_{11} \neq 0, \dots, v_{30}v_{3d} = \lambda v_{10}v_{1d} \neq 0;$$

hence, supp $v_1 = \{0, \dots, d\} \subseteq \text{supp } v_3$. Because of $||v_3|| \le ||v_1||$, we get supp $v_1 = \text{supp } v_3$ which contradicts our hypothesis.

For any given subset $M \subseteq \{0, \dots, k\}, |M| \ge 2$, set

$$\mathbb{P}_{M}^{k} = \{ \langle v \rangle \in \mathbb{P}^{k}(K) | \operatorname{supp} v = M \}$$

and

$$\overline{M} := \operatorname{supp} \widetilde{\varphi}(v)$$
, if $\operatorname{supp} v = M$

 $(\overline{M}$ does not depend on the choice of v). The map

$$\widetilde{\varphi}: \mathbb{P}^k_M \longrightarrow \mathbb{P}^{\binom{k+1}{2}-1}_{\overline{M}}, \langle v \rangle \longmapsto \langle \widetilde{\varphi}(v) \rangle$$

is well defined and Lemma 3.1.i. implies:

Corollary 3.2. In case $|M| \geq 3$, $\widetilde{\varphi}: \mathbb{P}_M^k \to \mathbb{P}_{\widetilde{M}}^{\binom{k+1}{2}-1}$ is injective.

Furthermore we need [8, Remark 5.1] in the following form: Let $\mathcal{X} = \{P_1, \dots, P_n\} \subseteq \mathbb{P}^k(\mathbb{F}_q)$, $\deg \mathcal{X} = n$. For every i, choose $v_i \in \mathbb{F}_q^{k+1}$ with $P_i = \langle v_i \rangle$. Define

$$ev_d: R_d \to \mathbb{F}_q^n, F \longmapsto (F(v_1), \dots, F(v_n))^T; \quad V^{(d)} := \operatorname{im}(ev_d)$$

Then $\ker(ev_d) = (I_{\mathcal{X}})_d$, and hence

$$\dim V^{(d)} = \dim R_d / (I_{\mathcal{X}})_d.$$

By A_d , we denote the coefficient matrix of ev_d with respect to the basis $\mathcal{B} = \{X^{\alpha} | |\alpha| = d\}$ of R_d . We have $H_{\mathcal{X}}(d) = \operatorname{rank} A_d$. The rows of A_d are the vectors $(X^{\alpha}(v_i)|\alpha \in \mathbb{N}^{k+1}, |\alpha| = d)$, for $i = 1, \ldots, n$ (assuming \mathcal{B} is suitably ordered).

Proof of Proposition 1.3. By [7, Proposition 1.4b)] one has s(2q + k - 1, k, q) = q and, by using [7, Proposition 2.1e)] twice, it is easy to see that

$$q \le s(2q+k, k, q) \le q+1.$$

Therefore, we have to show $r_{\mathcal{X}} \neq q+1$ for every $\mathcal{X} \subseteq \mathbb{P}^k(\mathbb{F}_q)$, nondegenerate and with $\deg \mathcal{X} = 2q + k$.

Claim.
$$H_{\mathcal{X}}(2) \geq k+4$$
.

Proof of claim. Without loss of generality, we may assume that $\mathcal{X}_1 := \{\langle e_0 \rangle, \dots, \langle e_k \rangle\} \subseteq \mathcal{X}$, where e_i is the *i*th standard basis vector in \mathbb{F}_q^{k+1} . Let $v_1, \dots, v_{2q-1} \in \mathbb{F}_q^{k+1}$ be such that

$$\mathcal{X} = \mathcal{X}_1 \cup \{\langle v_1 \rangle, \dots, \langle v_{2q-1} \rangle\}.$$

We define

$$\varphi : \mathbb{F}_q^{k+1} \longrightarrow \mathbb{F}_q^{\binom{k+2}{2}}$$

$$a = (a_0, \dots, a_k) \longmapsto (a_0^2, \dots, a_k^2, a_0 a_1, \dots, a_{k-1} a_k)$$

$$= (X^{\alpha}(a) | |\alpha| = 2).$$

The rows of A_2 are $\varphi(e_0), \ldots, \varphi(e_k), \varphi(v_1), \ldots, \varphi(v_{2q-1})$:

$$A_2 = \begin{pmatrix} 1 & & 0 & \\ & \ddots & & 0 \\ & 0 & & 1 & \\ \hline & * & & \widetilde{A} \end{pmatrix}, \quad \text{where } \widetilde{A} = \begin{pmatrix} \widetilde{\varphi}(v_1) \\ \vdots \\ \widetilde{\varphi}(v_{2q-1}) \end{pmatrix},$$

with $\widetilde{\varphi}$ being taken from Lemma 3.1. To prove our claim $H_{\mathcal{X}}(2) \geq k+4$, we have to show that $\operatorname{rank}\widetilde{A} \geq 3$ (since $H_{\mathcal{X}}(2) = \operatorname{rank}A_2 = k+1 + \operatorname{rank}\widetilde{A}$):

Let $M \subseteq \{0, \ldots, k\}$, $|M| \ge 2$ and $\mathcal{X}_M := \mathcal{X} \cap \mathbb{P}_M^k$ $(= (\mathcal{X} \setminus \mathcal{X}_1) \cap \mathbb{P}_M^k)$. Clearly, since every line has exactly q + 1 \mathbb{F}_q -rational points,

(3.1)
$$|L \cap \mathbb{P}_M^k| \le q - 1$$
 for every line $L \subseteq \mathbb{P}^k(\mathbb{F}_q)$

(3.2) If
$$|M| = 2$$
, then $|\mathbb{P}_{M}^{k}| = q - 1$.

To finish the proof of our claim, we distinguish between two cases:

- (a) If $\mathcal{X} \setminus \mathcal{X}_1$ contains three points $\langle w_1 \rangle$, $\langle w_2 \rangle$ and $\langle w_3 \rangle$ with pairwise different supports, then the vectors $\widetilde{\varphi}(w_1)$, $\widetilde{\varphi}(w_2)$ and $\widetilde{\varphi}(w_3)$ are linearly independent and rank $\widetilde{A} \geq 3$, by Lemma 3.1.ii.
- (b) If there are at most two M with $|M| \geq 2$ and $\mathcal{X}_M \neq \emptyset$, then, because of $|\mathcal{X} \setminus \mathcal{X}_1| = 2q 1 = q + q 1$, there exists such an M with $|\mathcal{X}_M| \geq q$. By equation (3.2), we get $|M| \geq 3$ and then, by Corollary 3.2, $|\widetilde{\varphi}(\mathcal{X}_M)| \geq q$. By equation (3.1) it is clear that the set $\widetilde{\varphi}(\mathcal{X}_M) \subseteq \mathbb{P}_{\overline{M}}^{\binom{k+1}{2}-1}$ is not contained in a line; therefore, rank $\widetilde{A} \geq 3$. \square_{claim}

 $H_{\mathcal{X}}(2) = k + 1 + \operatorname{rank} \widetilde{A} \geq k + 4$. Assume that $r_{\mathcal{X}} = q + 1$: The first difference function $\Delta H_{\mathcal{X}} = H_{\mathcal{X}}(d) - H_{\mathcal{X}}(d-1)$ has the form

$$\Delta H_{\mathcal{X}}: 1, k, h_2, h_3, \dots, h_{q+1}, 0, 0, \dots \text{ with } h_j \ge 1 \quad (j = 2, \dots, q+1).$$

 $H_{\mathcal{X}}(2) \ge k + 4$ implies

$$h_2 = H_{\mathcal{X}}(2) - H_{\mathcal{X}}(1) \ge k + 4 - (k+1) = 3.$$

Furthermore, we have $h_j \geq 2$ for j = 3, ..., q. If h_j was equal to 1 for some $j \in \{3, ..., q\}$, then, by [7, Proposition 2.1 c)], also both h_q and h_{q+1} would be equal to 1; by [7, Proposition 2.1 d)], there would be a

line $L \subseteq \mathbb{P}^k(\mathbb{F}_q)$ with

$$|\mathcal{X} \cap L| \ge r_{\mathcal{X}} + 1 = q + 2 > q + 1 = |L|,$$

(in this context, see also [6, Proposition 5.2]), which is absurd.

Hence, we finally get

$$\deg \mathcal{X} = \sum_{d \in \mathbb{N}} \Delta H_{\mathcal{X}}(d)$$

$$= 1 + k + h_2 + (h_3 + \dots + h_q) + h_{q+1}$$

$$\geq 1 + k + 3 + (q-2) \cdot 2 + 1$$

$$= 2q + k + 1,$$

which contradicts our assumptions. Therefore, $r_{\chi} \neq q + 1$. $\square_{1.3}$

4. Proof of Proposition 1.5. Similarly to [8, Lemma 1.2], we have

Remark 4.1. For all $n \in \mathbb{N}_{>0}$,

$$s_a(n,q) \le s_a(n+1,q) \le s_a(n,q) + 1.$$

Proof of Proposition 1.5. From the proof of [8, Proposition 1.6 b)], we know that there is an affine complete intersection $\mathcal{X} \subseteq \mathbb{A}^m(\mathbb{F}_q) \subseteq \mathbb{P}^m(\mathbb{F}_q)$ of degree rq^{m-1} and regularity (m-1)(q-1)+r-1; hence,

$$s_a(n,q) \ge s_a(rq^{m-1},q) \ge r_{\mathcal{X}}$$

= $(m-1)(q-1) + r - 1$ for $n \ge rq^{m-1}$.

Conversely, let $k \geq 1$ and $\mathcal{X} \subseteq \mathbb{P}^k(\mathbb{F}_q)$ be affine with $\deg \mathcal{X} < (r+1)q^{m-1}$. We have to show that $r_{\mathcal{X}} \leq (m-1)(q-1)+r-1$ and may assume that \mathcal{X} does not meet the hyperplane $X_0 = 0$. Then, for $\overline{S} := R/I_{\mathcal{X}} + (X_0) = \mathbb{F}_q[X_1, \ldots, X_k]/J$,

$$\{X_1^q, \dots, X_k^q\} \subseteq J$$
 and $\dim_{\mathbb{F}_q} \overline{S} = \deg \mathcal{X} < (r+1)q^{m-1}$.

Finally, by the following simple combinatorial lemma, we have $\overline{S}_d = 0$ for d = (m-1)(q-1) + r, i.e., $r_{\mathcal{X}} \leq (m-1)(q-1) + r - 1$.

Lemma 4.2. Let k, m and q be natural numbers, $k \ge 1$ and $1 \le r \le q-1$. Let $\alpha := (\alpha_1, \ldots, \alpha_k) \in \mathbb{N}^k$ be of degree $|\alpha| := \alpha_1 + \ldots + \alpha_k = 1$

$$m(q-1) + r$$
 and such that $0 \le \alpha_j \le q-1$ for $j = 1, ..., k$. Then
$$(\alpha_1 + 1) \cdot ... \cdot (\alpha_k + 1) \ge (r+1)q^m.$$

This follows from [8, Lemma 2.2 b)] and is easily seen anyway.

Assume $\overline{S}_d \neq 0$ for d = (m-1)(q-1) + r. By Macaulay's theorem [1, Theorem 4.2.3], there is an order ideal \mathfrak{M} of monomials in $\mathbb{F}_q[X_1,\ldots,X_k]$ such that the elements $X^{\alpha}+J$, $X^{\alpha}\in\mathfrak{M}$ form an \mathbb{F}_q -basis of \overline{S} . Since $\overline{S}_d\neq 0$ and $\{X_1^q,\ldots,X_k^q\}\subseteq J$, there is a monomial $X^{\alpha}\in\mathfrak{M}$ $(0\leq\alpha_j\leq q-1 \text{ for } j=1,\ldots,k)$ of degree d. Hence, by Lemma 4.2, $\dim_{\mathbb{F}_q}\overline{S}=|\mathfrak{M}|\geq |\{X^{\beta}\mid X^{\beta} \text{ divides } X^{\alpha}\}|=(\alpha_1+1)\cdot\ldots\cdot(\alpha_k+1)\geq (r+1)q^{m-1}$, a contradiction.

Alternatively, $\overline{S}_d = 0$ by the AU-conjecture [5, Conjecture 3.5], which is known to be true for pure powers (see [2]).

5. More general considerations. For $k \geq 1$, $q \geq 2$ (not necessarily a prime power), let $I(k,q) \subseteq \mathbb{Z}[X_0,\ldots,X_k]$ be the ideal generated by the 2×2 -minors of the matrix $\begin{pmatrix} X_0^q & \ldots & X_k^q \\ X_0 & \ldots & X_k \end{pmatrix}$.

For instance, if q is a prime power, then $I(k,q) \cdot \mathbb{F}_q[X_0, \dots X_k]$ is the homogenous vanishing ideal of $\mathcal{X} = \mathbb{P}^k(\mathbb{F}_q) \subseteq \mathbb{P}^k_{\mathbb{F}_q}$. More generally, let K be the cyclotomic extension of degree q-1 of \mathbb{Q} or of a prime field \mathbb{F}_l with $l \nmid (q-1)$. Then I(k,q) defines a smooth finite subscheme $\mathcal{P}_q^k(K) \subseteq \mathbb{P}^k(K) \subseteq \mathbb{P}_K^k$ of degree $(q^{k+1}-1)/(q-1)$ and its ideal is given by $I(k,q) \cdot R$ (note that this ideal is saturated).

Questions. What are the Hilbert functions of the subschemes $\mathcal{X} \subseteq \mathcal{P}_q^k(K)$? Does the answer depend on K? A simpler problem is: which numbers occur as the regularities of such \mathcal{X} of a given degree n? Find a formula for

$$s(n,q;K) := \max\{r_{\mathcal{X}} | \text{ there exist } k \geq 1, \mathcal{X} \subseteq \mathcal{P}_q^k(K) \text{ with } \deg \mathcal{X} = n\}.$$

And, again, does $s(n,q;K)$ depend on K ?

These considerations were suggested by the referee of the paper [8] and are motivated by the following results. Analyzing the proof of Theorem 1.3 in [8], we see that its statements remain true if one allows q to be an arbitrary integer ≥ 2 and replaces \mathbb{F}_q by a cyclotomic field

K, as above. In particular, if q is a prime power we have

$$s(n,q;K) = s(n,q)$$

for all such K and all n for which Theorem 1.3 (loc. cit.) applies. Moreover, the functions s(n,2;K) = s(n,2) and s(n,3;K) = s(n,3) are well known and independent from K.

Acknowledgments. We thank Martin Kreuzer for his valuable comments to the proof of Proposition 1.4.

REFERENCES

- W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambr. Stud. Adv. Math. 39, Cambridge University Press, Cambridge, 1993.
- 2. G.F. Clements and B. Lindström, A generalization of a combinatorial theorem of Macaulay, J. Combin. Theor. 7 (1969), 230–238.
- D. Eisenbud, The geometry of syzygies, Grad. Texts Math. 229, Springer, New York, 2005.
- 4. D. Eisenbud, M. Green and J. Harris, Cayley-Bacharach theorems and conjectures, Bull. Amer. Math. Soc. 33 (1996), 295–324.
- 5. A.V. Geramita and M. Kreuzer, On the uniformity of zero-dimensional complete intersections, J. Algebra 391 (2013), 82–92.
- **6**. A.V. Geramita, P. Maroscia and L.G. Roberts, *The Hilbert function of a reduced k-algebra*, J. Lond. Math. Soc. **28** (1983), 443–452.
- 7. M. Kreuzer and R. Waldi, On the Castelnuovo-Mumford regularity of a projective system, Comm. Alg. 25 (1997), 2919–2929.
- **8**. E. Kunz and R. Waldi, On the regularity of configurations of \mathbb{F}_q -rational points in projective space, J. Comm. Alg. **5** (2013), 269–280.

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT REGENSBURG, D 93040 REGENSBURG, GERMANY

Email address: michael.hellus@mathematik.uni-regensburg.de

Fakultät für Mathematik, Universität Regensburg, D93040 Regensburg, Germany

Email address: rolf.waldi@mathematik.uni-regensburg.de