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APOLARITY FOR DETERMINANTS AND
PERMANENTS OF GENERIC MATRICES

SEPIDEH MASOUMEH SHAFIEI

ABSTRACT. We show that the apolar ideals to the
determinant and permanent of a generic matrix, the Pfaffian
of a generic skew symmetric matrix and the hafnian of a
generic symmetric matrix are each generated in degree 2.
As a consequence, using a result of Ranestad and Schreyer,
we give lower bounds to the cactus rank and rank of each
of these invariants. We compare these bounds with those
obtained by Landsberg and Teitler.

1. Introduction. This paper was originally motivated by a question
from Zach Teitler about the generating degree of the annihilator ideal
of the determinant and the permanent of a generic n× n matrix. Here
annihilator is meant in the sense of the apolar pairing, i.e., Macaulay’s
inverse system [17]. Our main result is that the apolar ideals of the
determinant and of the permanent of a generic matrix are generated
in degree 2 (Theorems 2.12 and 2.13). The reason for Teitler’s interest
in this problem is the recent paper by Ranestad and Schreyer [19],
which gives a lower bound for smoothable rank, border rank and cactus
rank of a homogeneous polynomial in terms of the generating degree
of the apolar ideal and the dimension of the Artinian apolar algebra
defined by the apolar ideal. We apply this and our result to bounding
the scheme/cactus and Waring lengths of the determinant and the
permanent of the generic matrix (Theorem 3.6). In Section 4 we give
the analogous result for the annihilator ideal of the Pfaffian of a generic
skew symmetric matrix (Theorem 4.12 and Corollary 4.13) and the
annihilator of the hafnian of a generic symmetric matrix (Theorem 4.15)
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In a sequel paper [20] we study the apolar ideal of the determinant
and permanent of the generic symmetric matrix. We show an analogous
result there for the determinant, but the permanent of a generic
symmetric matrix is generated in degrees 2 and 3.

Let k be a field of characteristic zero or characteristic p > 2, and
let A = (aij) be a square matrix of size n with n2 distinct variables.
The determinant and permanent of A are homogeneous polynomials of
degree n. Let R = k[aij ] be the polynomial ring, S = k[dij ] the ring
of inverse polynomials associated to R, and let Rk and Sk denote the
degree-k homogeneous summands. Then S acts on R by contraction:

(1.1) (dij)
k ◦ (auv)ℓ =

{
aℓ−k
uv if (i, j) = (u, v),

0 otherwise.

If h ∈ Sk and F ∈ Rn, then we have h ◦ F ∈ Rn−k. This action
extends multilinearly to an action of S on R. When the characteristic
of the field k is zero or char k = p greater than the degree of F , the
contraction action can be replaced by the action of partial differential
operators with constant coefficients ([9], [13] and Appendix A).

Definition 1.1. To each degree-j homogeneous element, F ∈ Rj , we
associate I = Ann (F ) in S = k[dij ] consisting of polynomials Φ such
that Φ ◦ F = 0. We call I = Ann (F ), the apolar ideal of F and the
quotient algebra S/Ann (F ) the apolar algebra of F .

Let F ∈ R. Then Ann (F ) ⊂ S is an ideal, and we have

(Ann (F ))k = {h ∈ Sk | h ◦ F = 0}.

Let V be a vector subspace of R,

Ann (V ) = {h ∈ S | h ◦ F = 0 for all F ∈ V }.

Remark 1.2. Let ϕ : (Si, Ri) → k be the pairing ϕ(g, f) = g ◦ f , and
let V be a vector subspace of Rk. Then we have

(1.2) dimk(V
⊥) = dimk Sk − dimk V.

For V ⊂ Rk, we denote by V ⊥ = Ann (V ) ∩ Sk.

Let F be a form of degree j in R. We denote by ⟨F ⟩j−k the vector
space Sk ◦ F ⊂ Rj−k ([13]).
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We denote by Mk(A) the vector subspace of R spanned by the k×k
minors of A.

Lemma 1.3.

(1.3) Sk ◦ (det(A)) = Mn−k(A) ⊂ Rn−k.

Proof. It is easy to see that

Sk ◦ (det(A)) ⊂ Mn−k(A) ⊂ Rn−k.

For the other inclusion, let MÎ,Ĵ (A), I = (i1, . . . , ik), J = (j1, . . . jk),
1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n, 1 ≤ j1 ≤ j2 ≤ · · · ≤ jk ≤ n be the
(n− k)× (n− k) minor of A one obtains by deleting the I rows and J
columns of A. Now it is easy to see that

MÎ,Ĵ = ±(di1,j1 · di2,j2 · · · dik,jk) ◦ det(A).

Hence, MÎ,Ĵ ∈ Sk ◦ (det(A)). �

Remark 1.4. (see [13, page 69, Lemma 2.15]). Let F ∈ R and
degF = j and k ≤ j. Then we have

(1.4) (Ann (F ))k = {h ∈ Sk | h◦(Sj−k◦F ) = 0} = (Ann (Sj−k◦F ))k.

Remark 1.5. By Lemma 1.3 and Remark 1.4, we have

Ann (det(A))k = Mk(A)
⊥
.

Example 1.6. Let n = 3,

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 , D =

 d11 d12 d13
d21 d22 d23
d31 d32 d33

 .

LetMij be the minor corresponding to the entry aij of matrix A, and let
Pij be the permanent corresponding to the entry dij of matrix D. Note
that P11 = d22d33 + d32d23 annihilates det(A) = a11M11 − a12M12 +
a13M13, since evidently,

P11 ◦ a11M11 = (d22d33 + d23d32) ◦ (a11a22a33 − a11a23a32)

= a11 − a11 = 0.

P11 ◦ a12M12 = (d22d33 + d23d32) ◦ (a12a21a33 − a12a23a31) = 0.
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P11 ◦ a13M13 = (d22d33 + d23d32) ◦ (a13a21a32 − a13a22a31) = 0.

Thus, it is easy to see that, when n = 3, Pij ◦ Mkl = 0 for each 1 ≤
i, j, k, l ≤ 3. So, in the case n = 3, the annihilator of the determinant
of a generic matrix certainly contains all its 2× 2 permanents. It also
contains all the unacceptable monomials that do not appear in any
term of the determinant. See Definition 2.5. Later we show that the
set of 2×2 permanents and all the degree two unacceptable monomials
generate the annihilator ideal of the determinant of an n× n matrix.

1.1. Summary of the main results.

• We show that the following apolar ideals are generated in
degree two and we specify the generators:

– Determinant of a generic n × n matrix (Theorem 2.12).
This ideal is generated by 2 × 2 permanents and certain
unacceptable degree two monomials.

– Permanent of a generic n×n matrix (Theorem 2.13). This
ideal is generated by 2×2 minors and unacceptable degree
two monomials.

– Pfaffian of a generic skew symmetric 2n × 2n matrix
(Theorem 4.12). This ideal is generated by certain degree
two binomials corresponding to each 4 × 4 Pfaffian and
some monomials.

– Hafnian of a generic symmetric 2n × 2n matrix (Theo-
rem 4.15). This ideal is generated by certain degree two
binomials corresponding to 4×4 hafnians and some mono-
mials.

The proof in each case is done by identifying the de-
gree 2 homogeneous elements of the annihilator ideal V (F ) =
(Ann (F ))2, then showing that (Ann (F ))n = (V (F ))n. This is
Proposition 2.10 in the case where F is the determinant of a
generic matrix and is the key step. The study of the dual mod-
ules Sk ◦ F shows that Sk ◦ F is the span of all determinants
(permanents or Pfaffians) of suitable submatrices of A or Xsk.
This is Lemma 1.3 for F = det(A) and Lemma 4.8 in the case of
the Pfaffian F of a generic skew symmetric 2n×2n matrix Xsk.
Then, by applying the key step for degree n to each minor, after
restricting the variables, we show that (Ann (F ))k = (V (F ))k
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for each 3 ≤ k ≤ n (Corollaries 2.11 and 4.11, respectively, for
the determinant of a generic matrix A and the Pfaffian of Xsk).

• We apply these results to give a lower bound for:
– Cactus rank of the determinant and permanent of the

generic n× n matrix (Theorem 3.6).
– Cactus rank of the Pfaffian of a generic skew symmetric

matrix (Corollary 4.13) and of the hafnian of the generic
symmetric matrix (Theorem 4.15).

• We give a Gröbner basis of homogeneous quadrics for the apolar
ideal of the determinant (permanent) of a generic matrix con-
sisting of the 2× 2 permanents (determinants) and the degree
two unacceptable monomials (Theorem 5.3). In particular, the
algebras S/(Ann (det(A)) and S/(Ann (perm (A)) are Koszul
(see [8, page 2]).

2. The apolar algebras associated to the n×n generic matrix.
In this section, we determine the annihilator ideals of the determinant
and the permanent of a generic n × n matrix. In subsection 2.1, we
review the dimension of the subspace of k×k minors and permanents of
an n×n generic matrix. In subsection 2.2, we determine the generators
of the apolar ideal to the determinant and permanent of a generic
matrix.

We continue to employ the notation of Section 1, so R = k[aij ] is a
polynomial ring, S = k[dij ] is the ring of inverse polynomials associated
to R and S acts on R by contraction.

2.1. Hilbert function and dimension of spaces of minors and
permanents. Denote by AA = S/(Ann (det(A)) the apolar algebra of
the determinant of the matrix A. Recall that the Hilbert function of
AA is defined by H(AA)i = dimk(AA)i for all i = 0, 1, . . . .

Definition 2.1. Letting F be a polynomial inR, we define deg (Ann(F ))
to be the length of S/Ann (F ).

The number of the k × k minors and permanents of a generic n× n

matrix is
(
n
k

)2
. The k × k minors form a linearly independent set ([4,

Theorem 5.3, Remark 5.4]), and the k × k permanents form another
linearly independent set. To show the linear independence of these
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two sets we choose a term order, for example the diagonal order (see
Definition 5.1) where the main diagonal term is a Gröbner initial term.
Now the initial terms give a basis for the two spaces ([16, page 197]).
So the dimension of the space of k × k minors of an n× n matrix and
the dimension of the space of k× k permanents of an n× n matrix are

both
(
n
k

)2
. By Lemma 1.3 and Remark 1.5, we have

(2.1) H(S/Ann (detA))k = H(S/Ann (PermA))k =

(
n

k

)2

.

So the length dimk(AA) satisfies

(2.2) dimk(AA) =

k=n∑
k=0

(
n

k

)2

=

(
2n

n

)
.

A combinatorial proof of equation (2.2) can be found in [21, Exam-
ple 1.1.17].

2.2. Generators of the apolar ideal. In this section, we determine
the generators of the apolar ideal of the determinant and permanent of
a generic matrix.

Notation. For a generic n× n matrix A = (aij), the permanent of A
is a polynomial of degree n defined as follows:

Per (A) =
∑
σ∈Sn

Πai,σ(i).

Lemma 2.2. Let A = (aij) be a generic n×n matrix. Then each 2×2
permanent of D = (dij) annihilates the determinant of A.

Proof. Assume we have an arbitrary 2× 2 permanent dijdkl+dildkj
corresponding to

P =

(
dij dil
dkj dkl

)
.

Recall that det(A) =
∑

σ∈Sn
Sgn (σ)Πai,σ(i). There are n! terms in

the expansion of the determinant. If a term does not contain either
monomial aijakl or ailakj , then the result of the action of the permanent
dijdkl+dildkj on it will be zero. There are (n−2)! terms which contain
the monomial aijakl and (n − 2)! terms which contain the monomial
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ailakj . So assume we have a permutation σ1 of n objects having aij and
akl, respectively, in its ith and kth place. Corresponding to σ1, we also
have a permutation σ2 = τσ1, where τ = (j, l) is a transposition and
sgn (σ2) = sgn (τσ1) = −sgn (σ1). Thus, corresponding to each positive
term in the determinant which contains monomial aijakl or ailakj , we
have the same term with the negative sign; thus, the resulting action
of the permanent dijdkl + dildkj on det(A) is zero. �

Definition 2.3. Let A = (aij) and D = (dij) be two generic matrices
with entries in the polynomial ring R = k[aij ] and in the ring of
differential operators S = k[dij ], respectively. Let {PA}, {MA}, {PD}
and {MD} denote the set of all 2 × 2 permanents and the set of all
2×2 minors of A and D, respectively. And, let PA, MA = M2(A), PD

and MD = M2(D) denote the vector spaces they span, respectively.

Corollary 2.4. Each 2× 2 permanent of D annihilates MA.

Proof. By Lemma 2.2, PD ◦ det(A) = 0. Let F = det(A). We have

(AnnF )2 = (Ann (Sn−2 ◦ F ))2.

Hence,

PD ◦ det(A) = 0 ⇐⇒ PD ◦ Sn−2(det(A)) = 0 ⇐⇒ PD ◦MA = 0. �

We also know that the square of an element, or any product of two
or more elements of the same row or column of D annihilates det(A).

Definition 2.5. A monomial in the n2 variables of the ring S = k[dij ]
is acceptable, if it is square free and has no two variables from the same
row or column of D. A polynomial is acceptable if it can be written as
the sum of acceptable monomials. A monomial is unacceptable if it does
not divide any term of the determinant of the matrix D. A polynomial
is unacceptable if it can be written as the sum of some unacceptable
monomials. We denote the space of all unacceptable polynomials of
degree 2 by UD.

We denote by ⟨X⟩ the k-vector space span of the set X.

Lemma 2.6. PD ⊕MD = ⟨degree 2 acceptable polynomials in S⟩.
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Proof. Let dijdkl be an arbitrary acceptable monomial of degree 2.
Since char (k) ̸= 2, we have:

dijdkl = 1/2((dijdkl − dijdkl) + (dijdkl + dijdkl)).

By equation (2.1),

dimPD = dimMD =

(
n

2

)2

.

Let Ψ = ⟨degree 2 acceptable polynomials in S⟩. Then

dimΨ = dimS2 − dimUD =

(
n2 + 1

2

)
− (n2 +

(
n

2

)
(2n)).

So we have

dim(PD +MD) =

(
n2 + 1

2

)
− (n2 +

(
n

2

)
(2n))

= dimPD + dimMD.

Hence, PD ∩MD = 0. �

We have shown that (PD+UD)◦MA = 0 so PD+UD ⊂ Ann (MA).
Then equation (1.2) implies

dimk(Ann (MA))2 = dimk S2 − dimk MA.

Lemma 2.7. Ann (MA) ∩ S2 = PD + UD.

Proof. By Lemma 2.6, we have PD +MD is complementary to UD.
So we have

dim((Ann (MA))2) = dimS2 − dimMA = dimPD + UD. �

Notation. We define the homomorphism ξ : R → S by setting
ξ(aij) = dij ; for a monomial v ∈ R, we denote by v̂ = ξ(v) the
corresponding monomial of S.
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Remark 2.8. Let f =
∑i=k

i=1 αivi ∈ Rn with αi ∈ k and with vi’s
linearly independent monomials. Then we will have:

(2.3) Ann (f) ∩ Sn = ⟨αj v̂1 − α1v̂j , ⟨v1, . . . , vk⟩⊥⟩,

where ⟨v1, . . . , vk⟩⊥ = Ann (⟨v1, . . . , vk⟩) ∩ Sn.

Lemma 2.9.

(2.4) (PD + UD)k ⊂ Ann (Mk(A)) ∩ Sk.

Proof. We have:

(1) PD ◦ det(A) = 0 ⇔ PD ◦ Sn−2(det(A)) = 0 ⇔ PD ◦MA = 0.
(2) (Ann (det(A))) ∩ S2 = PD + UD ⇒ Sk−2(PD + UD) ◦ (Sn−k ◦

det(A)) = 0.

=⇒ Sk−2(PD + UD) ◦Mk(A) = 0.

=⇒ (PD + UD)k ◦Mk(A) = 0 (by Remark 1.4).

So equation (2.4) holds. �

Proposition 2.10. For a generic n×n matrix A with n ≥ 2, we have

(PD + UD)n = Ann (det(A)) ∩ Sn.

Proof. Using equation (2.4), we only need to show

(PD + UD)n ⊃ Ann (det(A)) ∩ Sn.

We use induction on n. For n = 2, the equality is easy to see. Next we
verify that the proposition holds for the case n = 3. We need to see that
the space of 2 × 2 permanents of D generates Ann (det(A))3/UD, i.e.,
Ann (M3(A))3/UD. Corresponding to each term in the determinant,
there is a permutation of three objects σ such that we can write
the term as a1σ(1)a2σ(2)a3σ(3). Consider the degree three binomial
b = a1σ(1)a2σ(2)a3σ(3) − a1τ(1)a2τ(2)a3τ(3), where τ ̸= σ. Without loss
of generality, we can assume that σ is the identity, so we consider the
binomial b = a11a22a33 − a1τ(1)a2τ(2)a3τ(3). If these two monomials
have a common variable, i.e., τ(i) = i for some i = 1, 2, 3, then the
binomial will be of the form b = aii(ajjakk − ajkakj), 1 ≤ i, j, k, l ≤ 3,
so we will have b = aiiMii and, as we have shown previously, Pii =
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djjdkk + djkdkj annihilates it. Assume that the monomials a11a22a33
and a1τ(1)a2τ(2)a3τ(3) do not have any common factor. We can add and
subtract another term a1β(1)a2β(2)a3β(3), where β is a permutation,
such that it will have one common factor with a11a22a33 and one
common factor with a1τ(1)a2τ(2)a3τ(3). By reindexing, we can take
β(1) = τ(1), β(2) = 2 and then we can determine β(3) according
to the other two choices. Then by factoring we get a binomial of
the form aijMij + aklMkl, where the first term can be annihilated
by the permanent of the matrix D corresponding to dij and the
second term can be annihilated by the permanent of the matrix D
corresponding to the element dkl. So, by equation (2.3), we are done.
For example, if we have the binomial a11a22a33 − a13a21a32, we can
add and subtract the term a11a23a32 which has one common factor
with a11a22a33 and one common factor with a13a21a32 so we will get
a11(a22a33 − a23a32) + a32(a11a23 − a13a21) which is a11M11 + a32M32.
And, as we have shown before, it can be annihilated by the space of
2× 2 permanents. So, by equation (2.3), we are done.

When n is larger than 3, then by the induction assumption, we can
assume that the proposition holds for all k ≤ n − 1. By Remark 2.8,
it is enough to show that if b is a binomial in Ann (det(A))∩ Sn of the
form given by equation 2.3, then b ∈ (PD+UD)n. Assume b = b1+b2 is
of degree n. If the two terms, b1 and b2 are monomials in S and have a
common factor l, i.e., b1 = la1 and b2 = la2, then b = l(a1+a2) where a1
and a2 are of degree at most n−1. So, by the induction assumption, the
proposition holds for the binomial a1+a2, i.e., a1+a2 ∈ (PD+UD)n−1.
Hence, we have

b = l(a1 + a2) ∈ l(PD + UD)n−1 ⊂ (PD + UD)n.

If the two terms, b1 and b2, do not have any common factor, then with
the same method as above we can rewrite the binomial b by adding
and subtracting a term of the determinant, m of degree n, which has a
common factor m1 with b1 and a common factor m2 with b2. Then we
will have

b1 + b2 = b1 +m+ b2 −m = m1(c1 +m′) +m2(c2 −m′′),

where b1 = m1c1, m = m1m
′ = m2m

′′ and b2 = m2c2. Since c1 +m′

and c2 − m′′ are of degree at most n − 1, the induction assumption
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yields

b1 + b2 = m1(c1 +m′) +m2(c2 −m′′) ∈ (PD + UD)n.

This completes the induction step and hence the proof of the proposi-
tion. �

Corollary 2.11. For a generic n × n matrix A and each integer k,
1 ≤ k ≤ n, we have

(PD + UD)k = Ann (det(A)) ∩ Sk = (Ann (Mk(A)))k.

We also have (UD)n+1 = Sn+1.

Proof. Using equation (2.4) we only need to show that

Ann (det(A)) ∩ Sk ⊂ (PD + UD)k.

By Lemma 1.3 and Remark 1.4, we have

(Ann (det(A)))k = (Ann (Sn−k ◦ (det(A))))k = (Ann (Mk(A)))k.

If we label the k × k minors of A by f1, . . . , fs we have

(Ann (Mk(A)))k = Ann (⟨f1, . . . , fs⟩)k =

( i=s∩
i=1

(Ann(fi))

)
k

.

For each fi we denote the ring of variables of fi by Ri and the ring
of differential operators by Si. Then, by Proposition 2.10, we have

(Pi
D + U i

D)k = Ann(fi) ∩ Si
k.

Hence,
Ann (det(A)) ∩ Sk ⊂ (PD + UD)k.

Finally, every monomial of degree larger than n will be unacceptable,
so is in UD, as the unacceptable monomials are generated in degree 2.
So we have (UD)n+1 = Sn+1. �

Theorem 2.12. Let A be a generic n×n matrix. Then the apolar ideal
Ann (det(A)) ⊂ S is the ideal (PD + UD) and is generated in degree 2.

Proof. This follows directly from Proposition 2.10 and Corollary 2.11.
�
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Theorem 2.13. Let A be a generic n×n matrix. Then the apolar ideal
Ann (Per (A)) ⊂ S to Per (A) ∈ R is the ideal (MD + UD), generated
in degree 2.

Proof. The proof follows directly from the proof of Proposition 2.10
and Corollary 2.11, by interchanging the determinants and the perma-
nents. �

Corollary 2.14. Let A = (aij) be an m× n matrix where n ≥ m. Let
N denote the space generated by all m×m minors of A. Then Ann (N)
is generated in degree 2 by all 2 × 2 permanents of A and the degree
two unacceptable monomials.

Proof. Let s =
(
n
m

)
, and let f1, . . . , fs denote the m ×m minors of

A. We have

Ann (N) = Ann (⟨f1, . . . , fs⟩) =
i=s∩
i=1

(Ann(fi)).

Let Ri denote the ring of variables of fi. Hence, by Theorem 2.12, we
have Ann (fi)∩Si is generated in degree 2. So we have Ann (N) is also
generated in degree 2. �

3. Application to the ranks of the determinant and the
permanent.

Notation. Let F ∈ R = k[aij ] be a homogeneous form of degree d. A
presentation

(3.1) F = ld1 + · · ·+ lds with li ∈ R1.

is called a Waring decomposition of length s of the polynomial F . The
minimal number s that satisfies equation (3.1) is called the rank of F .

The apolarity action of S = k[dij ] on R defines S as a natural
coordinate ring on the projective space P(R1) of one-dimensional
subspaces of R1 and vice versa. A finite subscheme Γ ⊂ P(R1) is
apolar to F if the homogeneous ideal IΓ ⊂ S is contained in Ann (F )
([13, 19]).
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Remark 3.1. ([13, Definition 5.66], [19]). Let Γ = {[l1], . . . , [ls]} be
a collection of s distinct points in P(R1). Then

F = c1l
d
1 + · · ·+ csl

d
s with ci ∈ k

if and only if
IΓ ⊂ Ann(F ) ⊂ S.

Definition 3.2. We have the following ranks ([3], [13, Definition 5.66],
[19]). Here Γ is a punctual scheme (possibly not smooth), and the
degree of Γ is the number of points (counting multiplicities) in Γ.

(a) the rank r(F ):

r(F ) = min{deg Γ | Γ ⊂ P(R1) smooth, dimΓ = 0, IΓ ⊂ Ann (F )}.

Note that when Γ is smooth, it is the set of points in Remark 3.1
([13, page 135]).

(b) the smoothable rank sr(F ):

sr(F )=min{deg Γ | Γ ⊂ P(R1) smoothable,

dimΓ = 0, IΓ ⊂ Ann (F )}.

Note that, for the smoothable rank, one considers the smoothable
schemes that are the schemes which are the limits of smooth
schemes of s simple points ([13, Definition 5.66]).

(c) the cactus rank (scheme length in [13, Definition 5.1, page 135])
cr(F ):

cr(F ) = min{deg Γ | Γ ⊂ P(R1), dimΓ = 0, IΓ ⊂ Ann (F )}.

(d) the differential rank (Sylvester’s catalecticant or apolarity bound)
is the maximal dimension of a homogeneous component of S/Ann(F):

ldiff(F ) = max
i∈N0

{(H(S/Ann (F )))i}.

Note that we give a lower bound for the cactus rank of the deter-
minant and permanent of the generic matrix. We do not have further
information on the smoothable rank of the generic determinant or per-
manent. It is still open to find good bounds for the smoothable rank.
The work of Bernardi and Ranestad [3] in the case of generic forms of
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a given degree and number of variables shows that the cactus rank and
smoothable rank can be very different.

Proposition 3.3. ([13, Proposition 6.7C]). The above ranks satisfy

ldiff(F ) ≤ cr(F ) ≤ sr(F ) ≤ r(F ).

Proposition 3.4. (Ranestad and Schreyer) ([19, Proposition 1]). If
the ideal of Ann (F ) is generated in degree d and Γ ⊂ P(T1) is a finite
(punctual) apolar subscheme to F , then

deg Γ ≥ 1

d
deg(Ann (F )),

where deg(Ann (F )) = dim(S/Ann (F )) is the length of the zero-
dimensional scheme defined by An (F ).

Remark 3.5. The Ranestad-Schreyer proposition is true for arbitrary
characteristic: the argument depends on Bézout’s theorem, which is
true for k algebraically closed (see [10, page 113]); and none of the
degrees involved in the proof changes as one extends from an infinite
field k to its algebraic closure.

Since we have shown that, for F = det(A) or F = Per (A), we have
d = 2, we can use Proposition 3.4 to give a lower bound for the above
ranks of F .

Theorem 3.6. Let F be the determinant or permanent of a generic
n× n matrix A. We have

1

2

(
2n

n

)
≤ cr(F ) ≤ sr(F ) ≤ r(F ).

Proof. By Theorems 2.12 and 2.13, Propositions 3.4 and 3.3 and
equations (2.1) and (2.2), we have for an apolar punctual scheme Γ,

deg Γ ≥ 1

d
deg(Ann (F ) =

1

2

k=n∑
k=0

(
n

k

)2

=
1

2

(
2n

n

)
. �
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Notation [15]. Let Φ ∈ SdCn be a polynomial. We can polarize

Φ, consider it as a multilinear form Φ̃, where Φ(x) = Φ̃(x, . . . , x),
and consider the linear map Φs,d−s : SsCn∗ → Sd−sCn where

Φs,d−s(x1, . . . , xs)(y1, . . . , yd−s) = Φ̃(x1, . . . , xs, y1, . . . , yd−s). Define

Zeros (Φ) = {[x] ∈ PCn∗|Φ(x) = 0} ⊂ PCn∗.

Let x1, . . . , xn be linear coordinates on Cn∗, and define

Σs(Φ) :=
{
[x] ∈ Zeros (Φ) | ∂

IΦ

∂xI
(x) = 0, ∀ I, such that |I| ≤ s

}
.

In this notation, Φs,d−s is the map from Ss → Rn−s taking h to
h ◦ Φ; hence, its rank is H(AA)s.

In the following theorem, we use the convention that dim ∅ = −1.

Theorem 3.7. (Landsberg-Teitler) ([15, Theorem 1.3]). Let Φ ∈
SdCn, and let 1 ≤ s ≤ d. Then

rank (Φ) ≥ rankΦs,d−s + dimΣs(Φ) + 1.

Remark 3.8 (Teitler). If we define Σs(Φ) to be a subset of affine rather
than projective space, then the above theorem does not need +1 at the
end and does not need the statement that the dimension of the empty
set is −1.

Applying this theorem to the determinant yields:

Corollary 3.9. ([15]). For char (k) = 0,

r(detn) ≥
(

n

⌊n/2⌋

)2

+ n2 − (⌊n/2⌋+ 1)
2
.

Proposition 3.10. (Bernardi and Ranestad) ([3, Theorem 1]). Let
F ∈ Rs be a homogeneous form of degree d, and let l be any linear form
in Ss

1. Let Fl be a dehomogenization of F with respect to l. Denote by
Diff (F ) the subspace of Ss generated by the partials of F of all orders.
Then

cr(F ) ≤ dimk Diff(Fl).
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In [3] this is stated for C, but the proof is valid for any field provided
one uses contraction and the divided power ring. We thank Pedro
Marques for pointing out that it is easy to show that the length of a
polynomial is an upper bound for the length of any dehomogenization
of that polynomial. So we have

(3.2) cr(F ) ≤ dimk Diff (F ) = deg(Ann (F ))

Proposition 3.11. For the monomial m = xb1
1 · · ·xbn

n , where 1 ≤ b1 ≤
· · · ≤ bn, we have

(a) ([7])

r(xb1
1 · · ·xbn

n ) = Πi=n
i=2 (bi + 1).

(b) ([19])

sr(xb1
1 · · ·xbn

n ) = cr(xb1
1 · · ·xbn

n ) = Πi=n−1
i=1 (bi + 1).

(c) ([6]) Let d = b1 + · · · + bn, and m = ld1 + · · · + lds with r(m) = s.
Let I ⊂ S be the homogeneous ideal of functions vanishing on
Q = {[l1], . . . , [ls]} ⊂ Pn−1. Then I is a complete intersection
of degrees b2 + 1, . . . , bn + 1 generated by

yb2+1
2 − Φ1y

b1+1
1 , . . . , ybn+1

n − Φny
b1+1
1 ,

for some homogeneous polynomials Φi ∈ S of degree bi − b1.

Example 3.12. Let n = 2, and

A =

(
a b
c d

)
,

det(A) = ad− bc

= (a+ d)2 − (a− d)2 + (b− c)2 − (b+ c)2,

so r(det(A)) = 4. The corresponding Hilbert sequence for n = 2 is
(1, 4, 1). We have ldiff(det(A)) = 4. Using Theorem 3.6, we have:

cr(det(A)) ≥ 1

d
deg(Ann (det(A))) =

1

2
(6) = 3.

So the lower bound we obtain using Theorem 3.6 is 3.
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Using Corollary 3.9 (Landsberg and Teitler) for k = C, we obtain

r(det
2
) ≥

(
2

⌊2/2⌋

)2

+ 22 − (⌊2/2⌋+ 1)
2
= 4 + 4− 4 = 4.

On the other hand, we have

det(A) = ad− bc

= 1/4((a+ d)2 − (a− d)2)− 1/4((b+ c)2 − (b− c)2).

Hence, for any field

r(det(A)) = cr(det(A)) = sr(det(A)) = ldiff(det(A)) = 4.

Example 3.13. Let n = 3, and let

A =

 a b e
c d f
g h i

 ,

det(A) = g(bf − de)− h(af − ce) + i(ad− bc).

Using Macaulay2 [11] for the calculations we obtain the Hilbert
sequence (1, 9, 9, 1) and, by Theorem 3.6, we have:

cr(det(A)) ≥ 1

d
deg(Ann (det(A))) =

1

2
(20) = 10.

So the lower bound we find using Theorem 3.6 is 10, which is greater
than the ldiff(det(A)) = 9, so it is a better lower bound than the
differential length for the cactus and smoothable ranks introduced
above.

Using Corollary 3.9, we have:

r(det
3
) ≥

(
3

⌊3/2⌋

)2

+ 32 − (⌊3/2⌋+ 1)
2
= 9 + 9− 4 = 14.

On the other hand, for every x, y and z, it is easy to see that r(xyz) ≤ 4:

xyz = 1/24((x+ y + z)
3
+ (x− y − z)

3

− (x− y + z)
3 − (x+ y − z)3).

Hence, 14 ≤ r(det(A)) ≤ 24.
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If a = 1 in det(A), we have that the punctual scheme Ann (detAa=1)
of degree 18 with Hilbert function (1, 8, 8, 1). So, by Proposition 3.10,
we have:

cr(det(A)) ≤ 18.

Bernardi, Marques and Ranestad in [2, Theorem 1] have shown that
the cactus rank of a generic homogeneous cubic form in 9 variables is
18, which is an upper bound for the cactus rank of the determinant of
a 3× 3 generic matrix.

Remark 3.14.

(a) Using Stirling’s formula, n! ∼
√
2πn(n/e)n, we can approximate(

2n
n

)
for large n by 4n/

√
nπ. Hence, for large n, Theorem 3.6 gives

us a lower bound asymptotic to 4n/2
√
nπ ≤ cr(det(A)), and the

Landsberg-Teitler formula gives us the lower bound 2 · 4n/(nπ) ≤
r(det(A)). The Landsberg-Teitler lower bound for r(det(A)) is also

asymptotic to ldiff(det(A)) =
(

n
⌊n/2⌋

)2
, which is a lower bound for

cr(det(A)). These are also lower bounds for the corresponding
ranks of the permanent of a generic n× n matrix.

(b) By Proposition 3.11, an upper bound for the rank of the determi-
nant and permanent of a generic n×n matrix is given by (n!)2n−1.
This can be approximated for large n, using Stirling’s formula, by√
2πn(n/e)

n
(2n−1).

(c) By equation (3.2), an upper bound for the cactus rank of both the
determinant and permanent of a generic n×n matrix is

(
2n
n

)
, which

is asymptotic to 4n/
√
nπ.

By the Alexander and Hirschowitz theorem [1], the rank of a general
form of degree d in m variables is as follows:

srgen = rgen =

⌈
1

m

(
m+ d− 1

d

)⌉
,

when d > 2 and (m, d) ̸= (m, 2), (3, 4), (4, 4), (5, 3), (5, 4) (see [3, 22]).
For m = n2 and d = n, this is asymptotic to cennn−2.5 for some
bounded c.

For a monomial M in m ≥ 4 variables in degree d > 1, Teitler has
shown that r(M) ≤ rgen(m, 2) ([22, Theorem 1]). The cactus rank of
monomials is given by Ranestad and Schreyer (see Proposition 3.11,
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part b) and is maximized when the n − 1 degrees are the same. The
determinant and permanent have greater cactus rank than monomials
of the same degree and number of variables.

In the following table, we give lower bounds for the ranks of the
determinant and permanent of an n× n generic matrix.

Table 1. The determinant of the generic matrix.

n 2 3 4 5 6 n ≫ 0

lower bound for cr(det(A)) 3 10 35 126 462 4n/2
√
nπ

by Theorem 3.6

lower bound for r(det(A)) 4 14 43 116 420 4n/(2nπ)
by Corollary 3.9

ldiff(det(A)) 4 9 36 100 400
(

n
⌊n/2⌋

)2

4. Annihilator of the Pfaffian and hafnian. In this section,
we discuss the annihilator ideals of the Pfaffians and of the hafnians.
We show that the annihilator ideal of the Pfaffian of a generic skew
symmetric 2n × 2n matrix and the annihilator ideal of the hafnian of
generic symmetric 2n× 2n matrix are both generated in degree 2.

In the following discussion, we let Xsk
m = (xij) with xij = −xji be

an m×m skew symmetric matrix of indeterminates in the polynomial
ring Rsk = k[xij ]. Let Y

sk
m = (yij) with yij = −yji be an m×m skew

symmetric matrix of indeterminates in the ring of differential operators
Ssk = k[yij ]. We denote the Pfaffian of the matrix Xsk

m by Pf(Xsk
m ).

It is well known that for any odd number m we have det(Xsk
m ) = 0.

It is also well known that the square of the Pfaffian is equal to the
determinant of a skew symmetric matrix. So, in the following, we
are going to consider the annihilator of the Pfaffian of generic m ×m
skew symmetric matrices, where m = 2n is an even number. Recall
that:

Notation. Let F2n ⊂ S2n be the set of all permutations σ satisfying
the following conditions:

(1) σ(1) < σ(3) < · · · < σ(2n− 1),
(2) σ(2i− 1) < σ(2i) for all 1 ≤ i ≤ n.
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• For a 2n× 2n generic skew symmetric matrix Xsk, we denote
by Pf(Xsk) the Pfaffian of Xsk defined by

(4.1) Pf(Xs) =
∑

σ∈F2n

sgn(σ)xσ(1)σ(2)xσ(3)σ(4) · · ·xσ(2n−1)σ(2n)

• ([14]) We denote by Hf(Xs) the hafnian of a generic sym-
metric 2n× 2n matrix Xs defined by

(4.2) Hf(Xs) =
∑

σ∈F2n

xσ(1)σ(2)xσ(3)σ(4) · · ·xσ(2n−1)σ(2n)

Let J2n = Ann (Pf(Xsk
2n)). We first give some examples and then

some partial results concerning Ann (Pf(Xsk
2n)). Using Macaulay2 for

calculations we have the following results:

(a) Let X2 be a generic skew symmetric 2 × 2 matrix, then we have
H(Ssk/J2) = (1, 1). And the maximum degree of the generators
of the annihilator ideal J2 is 2. So, using the Ranestad-Schreyer
proposition, we have:

cr(Pf(Xsk
2 )) ≥ 1

d
deg(Ann(Pf(Xsk

2 ))) =
1

2
(2) = 1,

which is the same as the differential length in this case. Evidently,
in this case, r(Pf(Xsk

2 ) = 1, so we have

r(Pf(Xsk
2 )) = cr(Pf(Xsk

2 )) = sr(Pf(Xsk
2 )) = ldiff(Pf(Xsk

2 )) = 1.

(b) Let X4 be a generic skew symmetric 4×4 matrix. Using Macaulay2
for calculations, we have H(Ssk/J4) = (1, 6, 1), and the maximum
degree of the generators of the annihilator ideal J4 is 2. Using the
Ranestad-Schreyer proposition, we have:

cr(Pf(Xsk
4 )) ≥ 1

d
deg(Ann (Pf(Xsk

4 ))) =
1

2
(8) = 4,

which is less than ldiff = 6.
(c) Let X6 be a generic skew symmetric 6×6 matrix. Using Macaulay2

for calculations, we have H(Ssk/J6) = (1, 15, 15, 1), and the maxi-
mum degree of the generators of the annihilator ideal J6 is 2. Using
the Ranestad-Schreyer proposition, we have:

cr(Pf(Xsk
6 )) ≥ 1

d
deg(Ann (Pf(Xsk

6 ))) =
1

2
(32) = 16,
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which is larger than ldiff = 15.
(d) Let X8 be a generic skew symmetric 8×8 matrix. Using Macaulay2

for calculations, we have H(Ssk/J8) = (1, 28, 70, 28, 1), and the
maximum degree of the generators of the annihilator ideal J8 is 2.
From the Ranestad-Schreyer proposition, we have:

cr(Pf(Xsk
8 )) ≥ 1

d
deg(Ann (Pf(Xsk

8 ))) =
1

2
(128) = 64,

which is less than ldiff = 70.
(e) Let X10 be a generic skew symmetric 10 × 10 matrix. Using

Macaulay2 for calculations, we have

H(Ssk/J10) = (1, 45, 210, 210, 45, 1).

The maximum degree of the generators of the annihilator ideal J10
is 2. From the Ranestad-Schreyer proposition, we have:

cr(Pf(Xsk
10 )) ≥

1

d
deg(Ann (Pf(Xsk

10 ))) =
1

2
(512) = 256,

which is larger than ldiff = 210.

Remark 4.1. The Hilbert sequence H(A) for the apolar algebra A of
the Pfaffian of a generic 2n× 2n matrix is given by

(
2n
2i

)
, and we have∑i=n

i=0

(
2n
2i

)
= 22n−1.

Definition 4.2. A 2t-Pfaffian minor of a skew symmetric matrix X is
a Pfaffian of a submatrix of X consisting of rows and columns indexed
by i1, i2, . . . , i2t for some i1 < i2 < · · · < i2t.

The number of 2t-Pfaffian minors of a 2n × 2n skew symmetric
matrix is clearly

(
2n
2t

)
. We denote by {P2t(X

sk)} the set of the 2t-

Pfaffians of Xsk. Furthermore, we denote by P2t(X
sk) the vector space

generated by {P2t(X
sk)} in Rsk

t , and we denote by (P2t(X
sk)) the ideal

generated by {P2t(X
sk)} in Rsk. Let τ be the lexicographic term order

on Rsk = k[xij ] induced by the following order on the indeterminates:

x1,2n ≥ x1,2n−1 ≥ · · · ≥ x1,2 ≥ x2,2n ≥ x2,2n−1 ≥ · · · ≥ x2n−1,2n.
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Theorem 4.3. (Herzog and Trung [12, Theorem 4.1]). The set
{P2t(X)} of the 2t-Pfaffians of the matrix Xsk is a Gröbner basis of
the ideal (P2t(X)) with respect to τ .

Corollary 4.4. The dimension of the space of 2t × 2t Pfaffians of a
2n× 2n generic skew symmetric matrix Xsk is

(
2n
2t

)
. So we have

dim(Ssk/Ann (Pf(Xsk))) = 22n−1.

Proof. The proof follows directly from Theorem 4.3 and the combi-
natorial identity:

t=n∑
t=0

(
2n

2t

)
= 22n−1.

This identity is easy to show, e.g., it follows immediately by evaluating
at x = 1 and x = −1 the binomial expansion of (x+ 1)2n. �

The examples strongly suggest that the apolar ideal of the Pfaffian
is generated in degree 2. In the remaining part of this section we prove
that this is always the case.

Definition 4.5. Let W be the vector subspace of Ssk spanned by
degree 2 elements of type (a), (b) and (c) defined as follows:

(a) square of each element of Y sk. The number of these monomials is
2n2 − n.

(b) The product of each element of Y sk with another element in the
same row or column of the matrix Y sk. The number of these
monomials is (2n2 − n)(2n− 2).

(c) Given any 4×4 submatrix of Xsk of the rows and columns i1, i2, i3
and i4,

Q =


0 xi1i2 xi1i3 xi1i4

−xi1i2 0 xi2i3 xi2i4

−xi1i3 −xi2i3 0 xi3i4

−xi1i4 −xi2i4 −xi3i4 0

 ,

we have Pf(Q) = xi1i2xi3i4 − xi1i3xi2i4 + xi1i4xi2i3 .

Corresponding to Pf(Q), we have three binomials which annihilate
Pf(Q) and hence annihilate Pf(Xsk). These binomials are: yi1i2yi3i4+
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yi1i3yi2i4 , yi1i2yi3i4 −yi1i4yi2i3 and yi1i3yi2i4 +yi1i4yi2i3 . However, these
three binomials are not linearly independent, and we can write one of
them as the sum of the other two binomials. So, corresponding to
each 4× 4 Pfaffian, we have two linearly independent binomials in the
annihilator ideal and, using Theorem 4.3, the number of these binomials
is 2 ·

(
2n
4

)
.

Remark 4.6. For a 2n × 2n skew symmetric matrix Xsk, we have
W ⊂ Ann (Pf(Xsk)).

Lemma 4.7. For the generic skew symmetric 2n× 2n matrix Xsk, we
have

W = Ann (P4(X
sk)) ∩ Ssk

2 .

Proof. The monomials of type (a) and (b) correspond to unaccept-
able monomials discussed earlier and are linearly independent from any
binomial in (c). The binomials in (c) are linearly independent by The-
orem 4.3. Hence, we have

dimk(W ) = 2

(
2n

4

)
+ (2n2 − n)(2n− 2) + 2n2 − n(4.3)

=

(
2n2 − n+ 1

2

)
−

(
2n

4

)
.

According to Remark 1.4, we have

dimk(Ann (P4(X
sk))) ∩ Ssk

2 = dimk S
sk
2 − dimk(P4(X

sk)).

So we have

(4.4) dimk(Ann (P4(X
sk))) ∩ Ssk

2 =

(
2n2 − n+ 1

2

)
−
(
2n

4

)
.

Using equations (4.3) and (4.4), we obtain

(4.5) dimk(W ) = dimk(Ann (P4(X
sk))) ∩ Ssk

2 .

On the other hand, evidently we have

(4.6) W ⊂ Ann (P4(X
sk))) ∩ Ssk

2 .

Using equations (4.5) and (4.6), we have

W = Ann(P4(X
sk)) ∩ Ssk

2 . �
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Lemma 4.8. Let Xsk be a 2n × 2n skew symmetric matrix (n ≥ 2).
We have

Sn−2 ◦ Pf(Xsk) = P4(X
sk) ⊂ Rsk

2 .

Proof. First we show

(4.7) Sn−2 ◦ Pf(Xsk) ⊃ P4(X
sk).

We use induction on the size of the matrix.

The first step is 2n = 6. We denote by f = [i1, i2, i3, i4] ∈ P4(X
sk)

the Pfaffian of the sub matrix with the rows and columns i1, i2, i3 and
i4. We have

(
6
4

)
= 15 choices for f . For any of these choices we get the

Pfaffian of a 2× 2 sub matrix of the form(
0 x
−x 0

)
,

as the coefficient of f in the Pfaffian of the matrix Xsk. So, if we
differentiate the 6 × 6 Pfaffian with respect to that variable x, we get
the 4× 4 Pfaffian f = [i1, i2, i3, i4].

Assume that equation (4.7) holds for the generic skew symmetric
(2n− 2)× (2n− 2) matrix. We want to show it holds for the 2n× 2n
generic skew symmetric matrix. The Pfaffian of the skew symmetric
2n× 2n matrix Xsk can be computed recursively as

(4.8) Pf(Xsk) =
i=2n∑
i=2

(−1)ixsk
1iPf(Xsk

1̂î
),

where Xsk
1̂î

denotes the matrix Xsk with both the first and the ith

rows and columns removed. So Xsk
1̂î

is a (2n − 2) × (2n − 2) matrix

and equation (4.7) holds for it. So, for each choice of [i1, i2, i3, i4]
of the matrix Xsk

1̂î
we can find n − 3 variables of Xsk

1̂î
such that

differentiating Pf(Xsk
1̂î
) with respect to those variables gives us the

Pfaffian [i1, i2, i3, i4]. If we call those variables a1,. . . ,an−3 and add xsk
1i

to our set of n−3 variables, we will have a set of n−2 variables. Then,
using equation (4.8), if we differentiate Pf(Xsk) with respect to those
n − 2 variables, we will get the Pfaffian [i1, i2, i3, i4]. Since we could
write the recursive formula for the Pfaffian with respect to any other
row or column, the result follows.
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For the opposite inclusion to equation (4.7), we have

W ⊂ (Ann (Pf(Xsk)))2 ⊂ (Ann (P4(X
sk)))2.

But we have shown in Lemma 4.7 that

W = (Ann (P4(X
sk))2.

So we have

(Ann (Pf(Xsk)))2 = (Ann (P4(X
sk)))2.

By Remark 1.4, we have

(Ann (Pf(Xsk)))2 = Ann (Sn−2 ◦ (Pf(Xsk))).

Hence, we have
Sn−2 ◦ Pf(Xsk) = P4(X

sk). �

Recall that we denote by P2k(X
sk) the vector subspace of Rsk

spanned by the 2k−Pfaffian minors of Xsk (Definition 4.2).

Lemma 4.9. For 1 ≤ k ≤ n− 1, we have

(4.9) Sk ◦ (Pf(Xsk)) = P2n−2k(X
sk).

Proof. First, we want to show

Sk ◦ (Pf(Xsk)) ⊂ P2n−2k(X
sk).

We use induction on k. For k = 1, we need to prove

S1 ◦ (Pf(Xsk)) ⊂ P2n−2(X
sk),

so we need to show that, for any monomial yij ∈ S1, we have

yij ◦ (Pf(Xsk)) ⊂ P2n−2(X
sk).

It is enough to show that the above inclusion holds for y12. Using
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equation (4.8), we have

y12 ◦ (Pf(Xsk)) = y12 ◦
i=2n∑
i=2

(−1)ixsk
1iPf(Xsk

1̂î
)

= Pf(Xsk
1̂2̂
) +

i=2n∑
i=3

(−1)ixsk
1iPf(Xsk

1̂î
) ∈ P2n−2(X

sk).

So, indeed,
S1 ◦ (Pf(Xsk)) ⊂ P2n−2(X

sk).

Next assume Sk ◦ (Pf(Xsk)) ⊂ P2n−2k(X
sk). We want to show

Sk+1 ◦ (Pf(Xsk)) ⊂ P2n−2k−2(X
sk).

We have

Sk+1 ◦ (Pf(Xsk)) = S1 ◦ (Sk ◦ (Pf(Xsk))

⊂ S1 ◦ (P2n−2k(X
sk)

⊂ P2n−2k−2(X
sk).

For the other inclusion, we again use induction on k. First we
show that the inclusion holds for k = 1. Let η ∈ P2n−2(X

sk) be a
(2n − 2) × (2n − 2) Pfaffian minor of Xsk. Corresponding to η, there
exists a 2× 2 matrix of the form(

0 x
−x 0

)
,

where x is not in the 2n− 2 rows and columns of η. If we differentiate
the Pfaffian of Xsk with respect to x, we will get η. So we have
η ∈ S1 ◦ (Pf(Xsk)).

Next assume P2n−2k(X
sk) ⊂ Sk ◦ (Pf(Xsk)). We have

P2n−2k−2(X
sk) ⊂ S1 ◦ (P2n−2k(X

sk))

⊂ S1 ◦ (Sk ◦ (Pf(Xsk)))

= Sk+1 ◦ (Pf(Xsk)).

Thus, by induction, the equality holds. �
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Recall that (W ) is the ideal of Ssk spanned by degree 2 elements of
type (a), (b) and (c) as in Definition 4.5.

Proposition 4.10. For the 2n × 2n generic skew symmetric matrix
Xsk, we have

(4.10) (W )n = Ann (Pf(Xsk)) ∩ Ssk
n

Proof. Let 2 ≤ k ≤ n. By Remark 1.4 and Lemma 4.9, we have

(1) W ◦ Pf(Xsk) = 0 ⇔ W ◦ Ssk
n−2Pf(Xsk) = 0 ⇔ W ◦ P4(X

sk) = 0.

(2) (Ann (Pf(Xsk))) ∩ S2 = W ⇒ Sk−2W ◦ (Sn−k ◦ Pf(Xsk)) = 0.

=⇒ Sk−2(W ) ◦ P2k(X
sk) = 0.

=⇒ (W )k ◦ P2k(X
sk) = 0.

Therefore, for all integers k, 2 ≤ k ≤ n, we have

(4.11) (W )k ⊂ Ann (P2k(X
sk)) ∩ Ssk

k .

We need to show

(4.12) (W )n ⊃ Ann (Pf(Xsk)) ∩ Ssk
n .

We use induction on n. For n = 1, 2, we have the 2× 2 and 4× 4
skew symmetric matrices, and the equality is easy to see.

Now we want to show that the proposition holds for n = 3. We
use Remark 2.8. Let η be a binomial in Ann (Pf(Xsk)) ∩ Ssk

3 .
Without loss of generality, we can write

η = y12y34y56 − yσ(1)σ(2)yσ(3)σ(4)yσ(5)σ(6),

where σ ∈ S6, sgn(σ) = 1, and we have σ(1) < σ(3) < σ(5),
σ(1) < σ(2), σ(3) < σ(4) and σ(5) < σ(6).

If the two terms of the binomial η have a common factor, then,
without loss of generality, we can assume that the common factor
is y12. So we can write η as

η = y12(y34y56 − yσ(3)σ(4)yσ(5)σ(6)).

But, by the definition of (W )3, the monomial y34y56−yσ(3)σ(4)yσ(5)σ(6)
is included in W since it is of the form (c). So we have η ∈ (W )3.

On the other hand, assume that the two terms of η, i.e.,
y12y34y56 and yσ(1)σ(2)yσ(3)σ(4)yσ(5)σ(6) do not have any common
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factor. We can add and subtract another term of the Pfaffian
τ = yβ(1)β(2)yβ(3)β(4)yβ(5)β(6) such that β is a permutation in S6,
and we have β(1) < β(3) < β(5), β(1) < β(2), β(3) < β(4) and
β(5) < β(6). Also, τ has one common factor with y12y34y56 and
one common factor with yσ(1)σ(2)yσ(3)σ(4)yσ(5)σ(6). Without loss of
generality, we can take β(5) = 5, β(6) = 6 and β(1) = σ(1), β(2) =
σ(2). So we have

η − τ + τ = η − yσ(1)σ(2)yβ(3)β(4)y5,6 + yσ(1)σ(2)yβ(3)β(4)y5,6.

Hence, we have

η = y5,6(y12y34 − yσ(1)σ(2)yβ(3)β(4))

+ yσ(1)σ(2)(yβ(3)β(4)y5,6 − yσ(3)σ(4)yσ(5)σ(6)).

But, by the definition of W , we know that y12y34−yσ(1)σ(2)yβ(3)β(4)
and yβ(3)β(4)y5,6−yσ(3)σ(4)yσ(5)σ(6) are both elements of W of type
(c). So we have η ∈ (W )3.

When n is larger than 3, then by the induction assumption, we
can assume that the proposition holds for all integers k ≤ n − 1.
Again, we use Remark 2.8. Assume b = b1 + b2 is of degree n. If
the two terms, b1 and b2, are monomials in Ssk and have a common
factor l, i.e., b1 = la1 and b2 = la2, then b = l(a1 + a2) where a1
and a2 are of degree at most n− 1. By the induction assumption,
the proposition holds for the binomial a1+a2, i.e., a1+a2 ∈ Wn−1;
hence, we have

b = l(a1 + a2) ∈ l(W )n−1 ⊂ (W )n.

If the two terms, b1 and b2, do not have any common factor, then
with the same method as above, we can rewrite the binomial b by
adding and subtracting a term m of degree n, which has a common
factor m1 with b1 and a common factor m2 with b2. Then we will
have

b1 + b2 = b1 +m+ b2 −m = m1(c1 +m′) +m2(c2 −m′′),

where b1 = m1c1, m = m1m
′ = m2m

′′ and b2 = m2c2. Since
c1 + m′ and c2 − m′′ are of degree at most n − 1, the induction
assumption yields

b1 + b2 = m1(c1 +m′) +m2(c2 −m′′) ∈ (W )n.
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This completes the induction step and the proof of the proposition.
�

Corollary 4.11. For 1 ≤ k ≤ n, we have

(W )k = Ann (Pf(Xsk)) ∩ Ssk
k .

We also have (W )n+1 = Ssk
n+1.

Proof. Using equation (4.11), we only need to show that

Ann (Pf(Xsk)) ∩ Ssk
k ⊂ (W )k.

By Remark 1.4 and Lemma 4.9, we have

(Ann (Pf(Xsk)))k = (Ann (Sn−k ◦ Pf(Xsk)))k = (Ann (P2k(X
sk)))k.

Now if we label the 2k × 2k Pfaffians of Xsk by f1, . . . , fs we have

Ann (P2k(X
sk))k = (Ann ⟨f1, . . . , fs⟩)k =

( i=s∩
i=1

(Ann (fi))

)
k

.

Let Ri denote the ring in the variables of fi and W (i) the vector
space analogue of W in those R variables corresponding to fi. By
Proposition 4.10, we have

(W (i))k = Ann (fi) ∩ Si
k.

So we have
Ann (Pf(Xsk)) ∩ Ssk

k ⊂ (W )k.

To prove the second part, it is easy to see that every monomial of
degree larger than n will be unacceptable, of type (a) or (b), as in W .
Then we have (W )n+1 = Ssk

n+1. �

Theorem 4.12. Let Xsk be a generic skew symmetric 2n×2n matrix.
Then the apolar ideal Ann (Pf(Xsk)) is the ideal (W ) that is generated
in degree 2 by the vector space W of Definition 4.5.

Proof. This follows directly from Proposition 4.10 and Corollary 4.11.
�
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Corollary 4.13. Let Xsk be a 2n×2n generic skew symmetric matrix.
We have

(4.13) 22n−2 ≤ cr(Pf(Xsk)) ≤ 22n−1.

Proof. By the Ranestad-Schreyer proposition, Corollary 4.4 and
Theorem 4.12, we have

cr(Pf(Xsk)) ≥ 1

2
dim(Ssk/Ann (Pf(Xsk)))

=
1

2
(22n−1) = 22n−2.

The second inequality is true by equation (3.2). �

Remark 4.14. For n ≥ 5, it can be easily seen that the lower bound
for the cactus rank given by Corollary 4.12 is larger than ldiff =

(
2n
2t0

)
,

where t0 = ⌊n/2⌋.

Theorem 4.15. Let Xs be a generic symmetric 2n × 2n matrix.
Then the apolar ideal Ann (Hf(Xs)) is generated in degree 2, and the
inequality (4.13) also holds for (Hf(Xs)).

Proof. By the definition of the hafnian, it is easy to see that none of
the diagonal elements appear in Hf(Xs), so for 1 ≤ i ≤ 2n we have

yii ◦Hf(Xs) = 0.

Hence, without loss of generality, we can restrict our discussion to
the case where Xs is a generic zero-diagonal symmetric matrix. By
changing the Pfaffians to hafnians, and vice versa, the proof follows
directly from the proofs that we have for the Pfaffian of a generic skew
symmetric matrix. �

5. Gröbner bases. In Section 2 we have shown that, for A a generic
n × n matrix Ann (det(A)) = (PD + UD). In [16], Laubenbacher and
Swanson give a Gröbner basis for the ideal of 2 × 2 permanents of a
matrix. In this section, we first review their result (Theorem 5.2), then
state our result for the ideal Ann (det(A)) and prove it independently
(Theorem 5.3).
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Definition 5.1. ([16, page 197]). Let D = (dij) be the matrix of the
differential operators as defined in Section 1. A monomial order on the
dij is diagonal if, for any square submatrix of D, the leading term of
the permanent (or of the determinant) of that submatrix is the product
of the entries on the main diagonal. An example of such an order is
the lexicographic order defined by:

dij < dkl if and only if l > j or l = j and k > i.

Throughout this section, we use a lexicographic diagonal ordering.

Theorem 5.2. ([16, page 197]). The following collection G of polyno-
mials is a minimal reduced Gröbner basis for PD, with respect to any
diagonal ordering :

(1) The subpermanents dijdkl + dkjdil, i < k,j < l;
(2) di1j1di1j2di2j3 , i1 > i2, j1 < j2 < j3;
(3) di1j1di2j2di2j3 , i1 > i2, j1 < j2 < j3;
(4) di1j1di2j1di3j2 , i1 < i2 < i3, j1 > j2;
(5) di1j1di2j2di3j2 , i1 < i2 < i3, j1 > j2;
(6) de1i1j1d

e2
i2j2

de3i3j3 , i1 < i2 < i3, j2 > j3, e1e2e3 = 2.

Monomials of type (2)–(6) in the above theorem are in the ideal
generated by all unacceptable monomials.

Theorem 5.3. The collection of unacceptable degree 2 monomials and
2 × 2 subpermanents of D, form a Gröbner basis for Ann (det(A))
with respect to any diagonal ordering. In particular, the algebra AA =
S/(Ann (det(A)) is Koszul (see [8, page 2]).

Proof. We will denote UD and PD by U and P, respectively in the
following, where D is understood.

The elements of (U + P) generate Ann (det(A)). Since U is a set of
monomials, it is already Gröbner. We use Buchberger’s algorithm to
find a Gröbner basis for P + U . We consider several cases:
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(a) Let F and G be distinct permanents of D. Let F = aikajl + ailajk
and G = auzavw + auwavz be two permanents in P.

F = perm

(
aik ail
ajk ajl

)
.

and

G = perm

(
auz auw
avz avw

)
.

Let f1 = aikajl be the leading term of F , and let g1 = auzavw be
the leading term of G with respect to the given diagonal ordering.
Denote the least common multiple of f1 and g1 by h11. Let

S(F,G) = (h11/f1)F − (h11/g1)G = auzavwailajk − aikajlauwavz.

Now, using the multivariate division algorithm, reduce all the
S(F,G) relative to the set of all permanents. When there is no
common factor in the initial terms of F and G the reduction is
zero, one can use F and G again as we show. First, we reduce
S(F,G) dividing by F ∈ P, so we will have

S(F,G) + auwavz(aikajl + ailajk) = auzavwailajk + auwavzailajk.

Then we reduce the result using G this time, so we will have

auzavwailajk + auwavzailajk − ailajk(auzavw + auwavz) = 0.

Therefore, we have shown that, for all pairs F , G of distinct
permanents of D, the S-polynomials S(F,G) reduce to zero with
respect to P.

(b) Let F = aikajl+ailajk andG = aikajm+aimajk be two permanents
so that their initial terms have a common factor. We have

S(F,G) = ailajkajm − aimajkajl ∈ U .

(c) Let F = aimajn + ainajm be a permanent and M = atkatl an
unacceptable monomial. We have

S(F,M) = atkatlajmain ∈ U .

(d) Let F = ailajm + aimajl be a permanent and M = (akn)
2 an

unacceptable monomial. We have

S(F,M) = aimajl(akn)
2 ∈ U .
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(e) Let F = ailajm + aimajl be a permanent and M = (ail)
2 an

unacceptable monomial which has a common factor with the initial
term of F . We have

S(F,M) = ailaimajl ∈ U .

(f) Let F = ailajm + aimajl be a permanent and M = ajnakn n
unacceptable monomial. We have

S(F,M) = aimajlajnakn ∈ U .

This exhausts all possibilities, so the generating set P + U is itself
a Gröbner basis by Buchberger’s algorithm. �

Corollary 5.4. The collection of unacceptable degree 2 monomials and
the 2 × 2 minors of D, form a Gröbner basis for Ann (perm (A)) with
respect to any diagonal ordering. In particular, the algebra BA =
S/(Ann (perm (A)) is Koszul (see [8, page 2]).

Proof. The proof is similar to that given for Theorem 5.3. �

5.1. Discussion of the connected sum.

Definition 5.5. ([18]). A polynomial F in r variables is a connected
sum if we can write F = F ′+F ′′ with F ′ and F ′′ in r′ and r′′ variables,
where r′ + r′′ = r.

Let A be a generic 2× 2 matrix. We can write the determinant A is
a sum of two polynomials in complementary sets of variables.

Proposition 5.6 (Buczyńska, et al. [5]). If a form F of degree d
is a connected sum, then the apolar ideal has a minimal generator in
degree d. (The converse does not hold.)

In particular, since the generic determinant and permanent of size
n ≥ 3 have their annihilating ideals generated in degree 2, therefore
they are not connected sums. This is also true for the Pfaffian of skew
symmetric matrices and hafnian of symmetric matrices of size n ≥ 6.



122 SEPIDEH MASOUMEH SHAFIEI

Acknowledgments. This paper is from a Ph.D. dissertation at
Northeastern University. I am deeply grateful to my advisor Prof. An-
thony Iarrobino, whose help, stimulating ideas and encouragement
helped me in working on this problem and writing this paper. I am
very thankful to Prof. Zach Teitler for suggesting this problem and his
helpful comments, and also to Prof. Aldo Conca and Prof. Larry Smith
for their valuable comments and suggestions.

REFERENCES

1. J. Alexander and A. Hirschowitz, Polynomial interpolation in several vari-
ables, J. Alg. Geom. 4 (1995), 201–222.

2. A. Bernardi, P. Marques and K. Ranestad, Computing the cactus rank of a
general form, arXiv:1211.7306 (2012).

3. A. Bernardi and K. Ranestad, On the cactus rank of cubic forms, J. Symb.
Comp. 50 (2013), 291–297.
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