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ABSTRACT. The problem of finding a characterization
of Cohen–Macaulay simplicial complexes has been studied
intensively by many authors. There are several attempts at
this problem available for some special classes of simplicial
complexes satisfying some technical conditions. This paper
is a survey, with some new results, of some of these
developments. The new results about simplicial complexes
with Serre’s condition are an analogue of the known results
for Cohen–Macaulay simplicial complexes.

1. Preliminaries. Algebraic combinatorics is an area of mathemat-
ics that employs methods of abstract algebra in various combinatorial
contexts and vice versa. One of the fastest developing subfields within
algebraic combinatorics is combinatorial commutative algebra. It has
evolved into one of the most active areas of mathematics during the
past several decades. We refer the reader to the books by Stanley [36],
Bruns and Herzog [3], Miller and Sturmfels [25], as well as Herzog and
Hibi [16] as general references in the subject.
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A simplicial complex ∆ on the set of vertices [n] := {1, . . . , n} is a
collection of subsets of [n] which is closed under taking subsets; that is,
if F ∈ ∆ and F ′ ⊆ F , then also F ′ ∈ ∆. Every element F ∈ ∆ is called
a face of ∆; the size of a face F is defined to be |F | and its dimension
is defined to be |F | − 1. (As usual, for a given finite set X, the number
of elements of X is denoted by |X|.) The dimension of ∆, which is
denoted by dim∆, is defined to be d−1, where d = max{|F | | F ∈ ∆}.
A facet of ∆ is a maximal face of ∆ with respect to inclusion. Let F(∆)
denote the set of facets of ∆. It is clear that F(∆) determines ∆. When
F(∆) = {F1, . . . , Fm}, we write ∆ = ⟨F1, . . . , Fm⟩. We say that ∆ is
pure if all facets of ∆ have the same cardinality. The link of ∆ with
respect to a face F ∈ ∆, denoted by lk∆(F ), is the simplicial complex
lk∆(F ) = {G ⊆ [n]\F | G∪F ∈ ∆}, and the deletion of F , denoted by
del∆(F ), is the simplicial complex del∆(F ) = {G ⊆ [n] \ F | G ∈ ∆}.
When F = {x} is a single vertex, we abuse notation and write lk∆(x)
and del∆(x). For a given simplicial complex ∆ on [n], we define ∆∨

by ∆∨ = {[n] \ F | F /∈ ∆}. The simplicial complex ∆∨ is called the
Alexander dual of ∆.

One of the connections between combinatorics and commutative
algebra is via rings constructed from the combinatorial objects. Let
R = K[x1, . . . , xn] be the polynomial ring in n variables over a field K,
and let ∆ be a simplicial complex on [n]. For every subset F ⊆ [n],
we set xF =

∏
i∈F xi. The Stanley–Reisner ideal of ∆ over K is the

ideal I∆ of R which is generated by those squarefree monomials xF

with F /∈ ∆. In other words, I∆ = ⟨xF | F ∈ N (∆)⟩, where N (∆)
denotes the set of minimal nonfaces of ∆ with respect to inclusion.
The Stanley–Reisner ring of ∆ over K, denoted by K[∆], is defined
to be K[∆] = R/I∆. Let I ⊆ R be an arbitrary squarefree monomial
ideal. Then there is a unique simplicial complex ∆ such that I = I∆.
For simplicity, we often write I∨ to denote the ideal I∆∨ , and we call
it the Alexander dual of I.

We finish these preliminaries with the following well-known charac-
terization problem. We first recall two notions from commutative alge-
bra: Cohen–Macaulayness and satisfying Serre’s condition. In math-
ematics, Cohen–Macaulay rings are particular types of commutative
rings, possessing some of the algebraic-geometric properties of non-
singular varieties, such as local equidimensionality. These rings are
named after Francis Sowerby Macaulay (1862–1937), who proved the
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unmixedness theorem for polynomial rings in 1916, and Irvin Sol Cohen
(1917–1955), who proved the unmixedness theorem for formal power
series rings in 1946. All Cohen–Macaulay rings have the unmixedness
property. Let R = K[x1, . . . , xn] and M be a nonzero finitely gen-
erated R-module. We say that M is Cohen–Macaulay if, for every
p ∈ Spec (R), the equality depth Mp = dimMp holds true. Also, M is
said to satisfy Serre’s condition (Sr), or simply M is an (Sr) module
if, for every p ∈ Spec (R), the inequality depth Mp ≥ min{r,dimMp}
holds true. It is easy to see that M is Cohen–Macaulay if and only if
it is an (Sr) module for all r ≥ 1. We say that a simplicial complex
∆ is Cohen–Macaulay over a field K, if the Stanley–Reisner ring K[∆]
of ∆ is Cohen–Macaulay. Also, ∆ is said to satisfy Serre’s condition
(Sr) over a field K, or simply ∆ is an (Sr) simplicial complex over K,
if the Stanley–Reisner ring K[∆] of ∆ satisfies Serre’s condition (Sr).
Since every simplicial complex satisfies Serre’s condition (S1), through-
out this paper we assume that r ≥ 2. It is well known that if ∆ is an
(Sr) simplicial complex over a field K, then ∆ is pure (see [28, Lemma
2.6]).

Problem 1.1. Find a characterization of Cohen–Macaulay simplicial
complexes.

There are several attempts at this problem available for some special
classes of simplicial complexes satisfying some technical conditions.
This paper is a survey, with some new results, of some of these
developments. The new results about simplicial complexes with Serre’s
condition are analogues of the known results for Cohen–Macaulay
simplicial complexes.

2. Reisner’s criterion. Let K be a field and ∆ a simplicial complex
of dimension d − 1 with the vertex set V = {v1, . . . , vn}. We write
Ci = Ci(∆;K), −1 ≤ i ≤ d− 1, for the vector space over K with basis
which consists of all i-dimensional faces of ∆. For i with 0 ≤ i ≤ d− 1,
we now define a linear map ∂i : Ci → Ci−1 (by defining it on the basis
elements) as follows: for an i-dimensional face F of ∆ whose vertices
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are vl0 , vl1 , . . . , vli , where 1 ≤ l0 < l1 < · · · < li ≤ n, consider

∂i(F ) =

i∑
j=0

(−1)j(F \ {vlj}).

By this definition we obtain the following sequence of linear maps:

0 −→ Cd−1
∂d−1−→ Cd−2 −→ · · · −→ C1

∂1−→ C0
∂0−→ C−1 −→ 0.

One can easily check that, for every 1 ≤ i ≤ d − 1, ∂i−1∂i = 0.
Therefore, the above sequence is actually a complex. The quotient

vector space H̃i(∆;K) = Ker ∂i/Im ∂i+1 is called the ith reduced
homology group of ∆ with coefficients in K. We refer the reader to
[27] for details concerning simplicial homology.

The following characterization of when a simplicial complex is
Cohen–Macaulay is due to Reisner [30].

Theorem 2.1 (Reisner’s criterion). Let K be a field and ∆ a simplicial
complex of dimension d − 1. Then ∆ is Cohen–Macaulay over K
if and only if, for every F ∈ ∆ and for every i < dim(lk∆(F )),

H̃i(lk∆(F );K) = 0 holds true.

Reisner’s criterion says that ∆ is Cohen–Macaulay over the field
K if and only if the homology of each face’s link vanishes below its
top dimension. A result due to Munkres then shows that the Cohen–
Macaulayness of ∆ over K is a topological property: it depends only
on the homeomorphism class of the simplicial complex ∆.

There are some results analogous to Reisner’s criterion for some
other algebraic properties like Buchsbaumness and Gorensteinness,
which are omitted in this survey. We refer the interested reader to
[3, 36] and we continue the survey with Serre’s condition.

Using a result of Schenzel [33, Lemma 3.2.1] and also Hochster’s for-
mula on local cohomology modules, Terai has formulated the analogue
of Reisner’s criterion for (Sr) simplicial complexes.

Theorem 2.2 ([38], Theorem 1.4 ff.). Let K be a field and ∆ a
simplicial complex of dimension d − 1. Then ∆ is (Sr) over K if and
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only if, for every F ∈ ∆ (including F = ∅) with |F | ≤ d− i− 2 and for

every −1 ≤ i ≤ r − 2, H̃i(lk∆(F );K) = 0 holds true.

The above characterization leads to the following corollary.

Corollary 2.3 ([11], Lemma 2.2). Let K be a field and ∆ a simplicial
complex of dimension d− 1. If ∆ is (Sr) over K, then for every F ∈ ∆
the simplicial complex lk∆(F ) is also (Sr) over K.

Let us recall the notion of connectedness. A simplicial complex
∆ is called connected if, for every pair of facets (F,G) of ∆, there
exists a sequence of facets F = F0, . . . , Fm = G such that, for every
0 ≤ i ≤ m− 1, we have Fi ∩ Fi+1 ̸= ∅.

The following corollary is an immediate consequence of Theorem 2.2.

Corollary 2.4. Let K be a field and ∆ a simplicial complex. Then ∆ is
(S2) over K if and only if, for every face F ∈ ∆ with dim(lk∆(F )) ≥ 1,
the simplicial complex lk∆(F ) is connected. In particular, the (S2)
property of a simplicial complex is independent from the base field.

There is a classical example of Reisner [30] of a triangulation of
the real projective plane which is Cohen–Macaulay if Char (K) ̸= 2,
but it is not Cohen–Macaulay if Char (K) = 2. This shows that
Cohen–Macaulayness of a simplicial complex is not independent from
the base field. Comparing this fact with Corollary 2.4 leads us to ask
the following question.

Question 2.5. Let ∆ be a (d−1)-dimensional simplicial complex. For
which integers 3 ≤ r ≤ d−1 is the (Sr) property of ∆ independent from
the base field?

We close this section by the following proposition. First, we recall
two definitions. Let ∆ be a simplicial complex. The simplicial complex
∆(i) := {F ∈ ∆ | dimF ≤ i} is called the i-skeleton of ∆. Also, the
simplicial complex ∆[i] := ⟨F ∈ ∆ | dimF = i⟩ is called the i-pure
skeleton of ∆.
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Proposition 2.6 ([11], Proposition 2.3). Let K be a field and ∆ a
simplicial complex. If ∆ is (Sr) over K, then ∆(i) is also (Sr) over K
(2 ≤ r ≤ i+ 1).

3. Shellable simplicial complexes. According to the standard
definition, a pure simplicial complex is shellable if its facets can be or-
dered so that they satisfy a simple combinatorial condition. A shellable
simplicial complex is a special kind of a Cohen–Macaulay complex.
Shellability is a notion familiar to commutative algebraists but one
which has not received as much attention from combinatorialists. This
notion is a simple but powerful tool for proving the Cohen–Macaulay
property, and almost all Cohen–Macaulay complexes arising in nature
turn out to be shellable. Björner and Wachs [2] dropped the require-
ment of purity from the definition and explored a more general concept
of shellability. Here, we recall the notion of shellability. A simplicial
complex ∆ is called shellable if its facets can be arranged in linear order
F1, F2, . . . , Ft in such a way that the subcomplex ⟨F1, . . . , Fk−1⟩ ∩ ⟨Fk⟩
is pure and has dimension dimFk − 1 for every k with 2 ≤ k ≤ t. Such
an ordering of facets is called a shelling order.

The following result, based on shellability and due to Hochster, is
a well known combinatorial criterion for verifying that a pure simpli-
cial complex is Cohen–Macaulay (see [16, Theorem 8.2.6] as a more
accessible reference).

Theorem 3.1. Every pure shellable simplicial complex is Cohen–
Macaulay over every field.

We are now in a position to state and prove the first new result of
this paper.

Theorem 3.2. Let K be a field and ∆ a simplicial complex. Then the
following conditions are equivalent :

(a) There exists an ordering of facets of ∆, say F0, . . . , Fm, such
that, for every 0 ≤ i ≤ m, the simplicial complex ⟨F0, . . . , Fi⟩
is Cohen–Macaulay over K.
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(b) There exists an ordering of facets of ∆, say F0, . . . , Fm, such
that, for every 0 ≤ i ≤ m, the simplicial complex ⟨F0, . . . , Fi⟩
is (S2).

(c) ∆ is pure, and there exists an ordering of facets of ∆, say
F0, . . . , Fm, such that, for every 0 ≤ i ≤ m, every link of
⟨F0, . . . , Fi⟩ with dimension at least one is connected.

(d) ∆ is pure shellable.

Proof. The implications (d) ⇒ (a) and (a) ⇒ (b) are trivial. The
implication (b) ⇒ (c) follows from Corollary 2.4. We now prove that
(c) implies (d).

Let ∆ be a pure simplicial complex of dimension d−1. If d = 1, then
∆ is a zero-dimensional simplicial complex, and thus it is pure shellable.
Hence, we assume that d ≥ 2 and suppose that there exists an ordering
of facets of ∆, say F0, . . . , Fm, such that, for every 0 ≤ i ≤ m, every link
of ⟨F0, . . . , Fi⟩ with dimension at least one is connected. We prove that
this ordering is, in fact, a shelling order, and this proves (d). For this,
it is enough to prove that, for every 1 ≤ i ≤ m, ⟨F0, . . . , Fi−1⟩ ∩ ⟨Fi⟩
is pure of dimension d − 2. Now suppose, on the contrary, that there
exists 1 ≤ i ≤ m such that ⟨F0, . . . , Fi−1⟩∩⟨Fi⟩ is not pure of dimension
d− 2. This implies that ⟨F0, . . . , Fi−1⟩ ∩ ⟨Fi⟩ has a facet, say G, with
dimension at most d− 3. Note that G is a face of ∆i := ⟨F0, . . . , Fi⟩.

We now claim that lk∆i(G) is not connected. In order to prove the
claim, note that Fi \ G is a facet of lk∆i

(G). The vertices of Fi \ G
do not appear in the other facets of lk∆i(G), because if a is a vertex
of Fi \G which appears also in another facet, say G′, of lk∆i

(G), then
since G′ and Fi \G are different facets of lk∆i(G), therefore G′ is not
a subset of Fi \ G, and so G′ ∪ G is not a subset of Fi. In particular,
G′ ∪ G ̸= Fi. Since G′ is a facet of lk∆i(G), G′ ∪ G is a facet of
∆i and since G′ ∪ G ̸= Fi, therefore there exists 0 ≤ j ≤ i − 1 such
that G′ ∪ G = Fj . Now, G ∪ {a} ⊆ Fi and, since a ∈ G′, therefore
G∪{a} ⊆ G′∪G = Fj , and so G∪{a} is a facet of ⟨F0, . . . , Fi−1⟩∩⟨Fi⟩
and it properly contains G. This is a contradiction, because G is a facet
of ⟨F0, . . . , Fi−1⟩∩ ⟨Fi⟩. Therefore, the vertices of Fi \G do not appear
in the other facets of lk∆i(G), and so there does not exist any path in
lk∆i(G) that connects Fi \ G to other facets of lk∆i(G) and therefore
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lk∆i(G) is not connected. This completes the proof of the claim.

Note that, since dimG ≤ d − 3, we conclude that dim lk∆i(G) ≥ 1,
and this contradicts (c). �

As an analogue for Theorem 3.2, we state and prove the following
result.

Theorem 3.3. Let K be a field and ∆ a (d−1)-dimensional simplicial
complex. Suppose that ∆ = ∆0∪⟨F ⟩, where ∆0 is a (d−1)-dimensional
subcomplex of ∆ which is (Sr) over K and F is a (d− 1)-dimensional
facet of ∆ such that F /∈ ∆0. Then ∆ is (Sr) over K if and only if it
is (S2).

Proof. For d ≤ 2 there is nothing to prove, since in this case the
concept of (Sr) and (S2) coincide. We therefore assume d ≥ 3. Since
every (Sr) simplicial complex is (S2), it is enough to prove that, if ∆
is an (S2) simplicial complex, then it is (Sr). Now, assume that ∆ is
(S2). Let G be a facet of ∆0 ∩ ⟨F ⟩. By the same argument as in the
proof of Theorem 3.2, we conclude that lk∆(G) is not connected and
so, by Corollary 2.4, dim(lk∆(G)) = 0, which means that ∆0 ∩ ⟨F ⟩ is a
pure (d − 2)-dimensional simplical complex. Therefore, the geometric
realization of ∆0 ∩ ⟨F ⟩ is homeomorphic either to the (d − 2)-ball or
to the (d − 2)-sphere. In both cases, for every face σ of ∆0 ∩ ⟨F ⟩ and
for every i ≤ dim(lk∆0∩⟨F ⟩(σ)), we have H̃i(lk∆0∩⟨F ⟩(σ);K) = 0. Now
assume that τ is an arbitrary face of ∆. We now claim that for every

−1 ≤ i ≤ r − 2 with |τ | ≤ d − i − 2, we have H̃i(lk∆(τ);K) = 0. We
prove the claim by using Theorem 2.2. There are two possibilities: ei-
ther τ is not a face of ∆0 ∩ ⟨F ⟩ or τ is a face of ∆0 ∩ ⟨F ⟩.

Case 1. Assume that τ is not a face of ∆0 ∩ F . Then either
lk∆(τ) = lk∆0(τ) or lk∆(τ) = lk⟨F ⟩(τ). Since ∆0 is (Sr) and the sim-
plex ⟨F ⟩ is Cohen–Macaulay, in both cases, for every −1 ≤ i ≤ r − 2

with |τ | ≤ d− i− 2, we have H̃i(lk∆(τ);K) = 0.

Case 2. Assume that τ is a face of ∆0 ∩ ⟨F ⟩. Then lk∆(τ) =
lk∆0(τ) ∪ lk⟨F ⟩(τ). By the same argument as Case 1, for every
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i ≤ d− 2− |τ |, we have H̃i(lk∆0∩⟨F ⟩(τ);K) = 0.

Therefore, the claim holds true. Now, applying the Mayer–Vietoris
sequence completes the proof. �

4. Edge ideals. Let K be a field. To any finite simple graph
G with vertex set V (G) = {v1, . . . , vn} and edge set E(G), one
associates an ideal I(G) ⊂ K[x1, . . . , xn] generated by all monomials
xixj such that {vi, vj} ∈ E(G). The ideal I(G) and the quotient ring
K[x1, . . . , xn]/I(G) are called the edge ideal of G over K and the edge
ring of G over K, respectively. The edge ideal I(G) of G was first
introduced by Villarreal [42]. Subsequently, many people, including
[1, 8, 9, 17, 19, 34, 35, 41], have been working on a program to
build a dictionary between the algebraic properties of I(G) and the
combinatorial structure of G. The independence simplicial complex of
G is defined by

∆G = {A ⊆ V (G) | A is an independent set in G}.

We recall that A ⊆ V (G) is an independent set in G if none of its
elements are adjacent. Note that ∆G is precisely the simplicial complex
with the Stanley–Reisner ideal I(G).

Let G be a graph with vertex set V (G) and edge set E(G). A subset
C ⊆ V (G) is a minimal vertex cover of G if, first, every edge of G is
incident with a vertex in C and, second, there is no proper subset of C
with the first property. Note that C is a minimal vertex cover if and
only if V (G) \ C is a maximal independent set, that is, a facet of ∆G.
A graph G is called unmixed if all minimal vertex covers of G have the
same number of elements, that is, ∆G is pure. A graph is called chordal
if every cycle of length at least four has a chord. We recall that a chord
of a cycle is an edge which joins two vertices of the cycle but is not
itself an edge of the cycle.

For a given field K, a graph G is said to be Cohen–Macaulay
(respectively, (Sr)) over K, if the edge ring K[x1, . . . , xn]/I(G) of G
is Cohen–Macaulay (respectively, (Sr)) and it is called shellable, if ∆G

is shellable.

A satisfactory classification of all Cohen–Macaulay graphs over a
field K has been standing open for some time. However, as pointed out
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in the introduction of the paper [19] by Herzog et al., this is equivalent
to a classification of all Cohen–Macaulay simplicial complexes over K
which is clearly a hard problem. Accordingly, it is natural to study
special families of Cohen–Macaulay graphs. We recall that a graph
G on the vertex set V (G) = {v1, . . . , vn} is bipartite if there exists a
partition V (G) = U ∪W with U ∩W = ∅ such that each edge of G is of
the form {vi, vj} with vi ∈ U and vj ∈ W . If a graph G is not bipartite,
then G contains a cycle of odd length. This result was found by
the Hungarian mathematician, Dénes König (1884–1944), in 1916 (see
[22]). His celebrated textbook Theorie der endlichen und unendlichen
Graphen [23] appeared in 1936, and was the first book to present graph
theory as a subject in its own right. Note that the converse of König ’s
result is also true, and so the bipartite graphs are characterized by the
absence of cycles of odd length. For a Cohen–Macaulay bipartite graph
G, Estrada and Villarreal [7] showed that G \ {ν} is Cohen–Macaulay
for some vertex ν ∈ V (G). Herzog and Hibi gave a graph theoretical
characterization of all bipartite Cohen–Macaulay graphs. In [12], it
was shown that a bipartite graph is Cohen–Macaulay if and only if it
is (S2). Now we state the results which provide a characterization of
bipartite Cohen–Macaulay and (S2) graphs.

Theorem 4.1. ([15], Theorem 3.4), ([12], Theorem 1.3). Let G be a
bipartite graph with at least four vertices and with vertex partitions U
and W . Then the following conditions are equivalent :

(a) G is unmixed and U and W can be labeled in such a way
that there exists an order U = F0, . . . , Fn = W of the facets
of ∆G where Fi and Fi+1 intersect in codimension one for
0 ≤ i ≤ n− 1.

(b) |U | = |W | and the vertices U = {x1, . . . , xn} and W =
{y1, . . . , yn} can be labeled in such a way that

(1) {xi, yi} are edges for 1 ≤ i ≤ n,

(2) if {xi, yj} is an edge, then i ≤ j, and

(3) if {xi, yj} and {xj , yk} are edges, then {xi, yk} is also an
edge.
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(c) G is a Cohen–Macaulay graph over a field.

(d) G is an (S2) graph.

Note that this result is independent from the characteristic of the
base field.

Remark 4.2. Theorem 4.1 reveals that, for bipartite graphs, Cohen–
Macaulay and (S2) properties are equivalent. This raises the question
whether there are other families of graphs for which these two properties
are equivalent. In fact, one can show that a chordal graph is (S2) if
and only if it is Cohen–Macaulay (see [12, Remark 1.5]). Also, it is
shown that the cycle graph C7 is the only cyclic graph which is (S2)
but not Cohen–Macaulay (see [12, Proposition 1.6]).

Let ∆ be a simplicial complex. A facet F of ∆ is called a leaf if
there is a facet G ̸= F of ∆, called a branch of F , in such a way that
H ∩ F ⊆ G ∩ F holds true for all facets H of ∆ with H ̸= F . A
quasi-forest simplicial complex is a simplicial complex ∆, which enjoys
an ordering F1, F2, . . . , Fs of the facets of ∆, called a leaf order, in such
a way that for every j with 1 ≤ j ≤ s, the facet Fj is a leaf of the
subcomplex ⟨F1, . . . , Fj⟩.

We close this section with the following proposition.

Proposition 4.3 ([10], Proposition 2.4). Let K be a field and ∆ a
(d−1)-dimensional quasi-forest simplicial complex. Then ∆ is Cohen–
Macaulay over K if and only if ∆ satisfies Serre’s condition (S2).

5. Sequentially Serre’s condition. A nice generalization of Cohen–
Macaulay modules is the notion of sequentially Cohen–Macaulay mod-
ules introduced first by Stanley [36]. This notion is, in fact, a nonpure
generalization of the notion of Cohen–Macaulayness. Stanley intro-
duced this notion in order to provide a ring theoretical complement to
the theory of nonpure shellability [2]. Just as pure shellability implies
Cohen–Macaulayness, nonpure shellability implies sequentially Cohen–
Macaulayness.
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Definition 5.1. Let M be a finitely generated Z-graded module over
a standard graded K-algebra R, where K is a field. We say that
M is sequentially Cohen–Macaulay, if there exists a finite filtration
0 = M0 ⊂ M1 ⊂ · · · ⊂ Mt = M of M by graded submodules Mi

satisfying the following two conditions:

(1) Every quotient Mi/Mi−1 is Cohen–Macaulay.

(2) dim(M1/M0) < dim(M2/M1) < · · · < dim(Mt/Mt−1).

We say that a simplicial complex ∆ is sequentially Cohen–Macaulay
over a field K, if the Stanley–Reisner ring K[∆] of ∆ is sequentially
Cohen–Macaulay.

As a generalization of Serre’s condition and sequentially Cohen–
Macaulay modules the authors of [11] have defined the notion of
sequentially (Sr) modules as follows:

Definition 5.2. Let M be a finitely generated Z-graded module over
a standard graded K-algebra R, where K is a field. We say that M
is sequentially (Sr), if there exists a finite filtration 0 = M0 ⊂ M1 ⊂
· · · ⊂ Mt = M of M by graded submodules Mi satisfying the following
two conditions:

(1) Every quotient Mi/Mi−1 is (Sr).

(2) dim(M1/M0) < dim(M2/M1) < · · · < dim(Mt/Mt−1).

We say that a simplicial complex ∆ is sequentially (Sr) over a field
K, if the Stanley–Reisner ring K[∆] of ∆ is sequentially (Sr).

As analogues of a result by Duval ([4, Theorem 3.3]) for character-
izing sequentially Cohen–Macaulay simplicial complexes, the authors
of [11] have proved the following result.

Theorem 5.3. Let K be a field and ∆ a (d−1)-dimensional simplicial
complex. Then ∆ is sequentially (Sr) over K if and only if for all
−1 ≤ i ≤ d− 1 its pure i-skeleton ∆[i] is (Sr) over K.

The above theorem has the following useful corollary.
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Corollary 5.4. Let K be a field and ∆ a simplicial complex. Then ∆
is (Sr) over K if and only if it is pure and sequentially (Sr) over K.

The following characterization of sequentially (Sr) simplicial com-
plexes over a field also has been proved (see [11, Theorem 2.9]).

Theorem 5.5. Let ∆ be a simplicial complex with vertex set V . Then
∆ is sequentially (S2) if and only if the following two conditions hold :

(1) ∆[i] is connected for all i ≥ 1.

(2) For all x ∈ V , lk∆(x) is sequentially (S2).

Consider R = K[x1, . . . , xn] with deg (xi) = 1 for all i. If I is a
homogenous ideal of R and r ≥ 1, then I is said to have linear resolution
if, for some integer d, βi,i+t(I) = 0 for all i and every t ̸= d. More
generally, I is said to be linear in the first r steps if, for some integer
d, βi,i+t(I) = 0 for all 0 ≤ i < r and t ̸= d. We write I⟨j⟩ for the ideal
generated by all homogenous polynomials of degree j belonging to I.
We say that a homogenous ideal I ⊂ R is componentwise linear if I⟨j⟩
has a linear resolution for all j. The ideal I is said to be componentwise
linear in the first r steps if, for all j ≥ 0, I⟨j⟩ is linear in the first r
steps. A simplicial complex ∆ on [n] is said to be linear in the first
r steps, componentwise linear and componentwise linear in the first r
steps, if I∆ satisfies either of these properties, respectively.

For a graph G with vertex set V (G) = {v1, . . . , vn} and edge set
E(G), the cover ideal of G is defined by

JG =
∩

{vi,vj}∈E(G)

⟨xi, xj⟩.

For instance, unmixed squarefree monomial ideals of codimension two
are just cover ideals of graphs. The name cover ideal comes from
the fact that JG is generated by squarefree monomials xi1 , . . . , xir

with {vi1 , . . . , vir} a minimal vertex cover of G. One can easily see
that JG = I(G)∨. We recall that, for a graph G = (V (G), E(G)),
its complementary graph G is a graph with V (G) = V (G), and
E(G) consists of those 2-element subsets {vi, vj} of V (G) for which
{vi, vj} /∈ E(G).
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A major result of Eagon and Reiner states that a simplicial complex
is Cohen–Macaulay if and only if the Stanley–Reisner ideal of its
Alexander dual has a linear resolution (see [5, Theorem 3]). Fröberg
has proved that, for every graph G, the edge ideal I(G) of G has a linear
resolution if and only if the complementary graph G of G is chordal.
Combining these two results, we get the following theorem.

Theorem 5.6. Let G be a graph with n vertices, R = K[x1, . . . , xn]
the polynomial ring in n variables over a field K, and let JG ⊆ R be
the cover ideal of G. Then R/JG is Cohen–Macaulay if and only if the
complementary graph G of G is chordal.

The following result due to Terai and Yanagawa is a generalization
of Eagon and Reiner’s result (see [44, Corollary 3.7]).

Theorem 5.7. A simplicial complex is (Sr) if and only if the minimal
free resolution of its Alexander dual is linear in the first r steps.

Eisenbud, Green, Hulek and Popescu have generalized the result of
Fröberg. They have proved that, for every graph G, the minimal free
resolution of the edge ideal I(G) of G is linear in the first r steps if
and only if every minimal cycle in G has length at least r + 3 (see [6,
Theorem 2.1]). Combining this result with Theorem 5.7 implies the
following generalization of Theorem 5.6.

Theorem 5.8. Let G be a graph with n vertices, R = K[x1, . . . , xn]
the polynomial ring in n variables over a field K, and let JG ⊆ R be
the cover ideal of G. Then R/JG is (Sr) if and only if every minimal
cycle in G has length at least r + 3.

Herzog, Hibi and Zheng have proved that, if I is a monomial ideal
generated in degree two, then I has linear resolution if and only if
every power of I has linear resolution (see [18, Theorem 3.2]). Now it
is natural to ask the following question.

Question 5.9. Let I be a monomial ideal generated in degree two,
such that I is linear in the first r steps. Is it true that every power of
I satisfies the same property?
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Also, Herzog and Hibi have generalized the result of Eagon and
Reiner in another direction. They have proved that a simplicial
complex is sequentially Cohen–Macaulay if and only if the minimal
free resolution of the Stanley–Reisner ideal of its Alexander dual is
componentwise linear (see [14, Theorem 2.1]).

In [11], the authors have generalized the above-mentioned result of
Herzog and Hibi as follows:

Theorem 5.10 ([11], Theorem 3.2). Let ∆ be a simplicial complex on
[n]. Then the Stanley–Reisner ideal of ∆ is componentwise linear in the
first r steps if and only if ∆∨, the Alexander dual of ∆, is sequentially
(Sr).

Sequentially Cohen–Macaulay cycles have been characterized by
Francisco and Van Tuyl (see [9, Proposition 4.1]). These cycles are
just C3 and C5. Woodroofe has given a more geometric proof for this
result (see [43, Theorem 10]). In [12, Proposition 1.6], it is shown
that the only (S2) cycles are C3, C5 and C7. In [11], the authors have
generalized this result, and they have proved that the odd cycles are
sequentially (S2) which are the only sequentially (S2) cycles. Also, they
have proved that C3 and C5 are the only sequentially (S3) cycles.

Definition 5.11. Let ∆ be a simplicial complex on the vertex set
V = {x1, . . . , xn}. Then we say that ∆ is vertex decomposable if either

(1) ∆ is a simplex, or

(2) there exists x ∈ V such that del∆(x) and lk∆(x) are vertex
decomposable and every facet of del∆(x) is a facet of ∆.

A graph G is called vertex decomposable if ∆G is vertex decomposable.

Now, we may state the following results.

Theorem 5.12. ([11], Theorem 4.5), ([41], Theorem 2.10). Let G be
a bipartite graph. Then the following conditions are equivalent :

(a) G is vertex decomposable.



470 M.R. POURNAKI ET AL.

(b) G is shellable.

(c) G is sequentially Cohen–Macaulay.

(d) G is sequentially (S2).

Theorem 5.13 ([43], Theorem 1). Let G be a graph with no chordless
cycles of length other than 3 or 5. Then G is vertex decomposable and
it is, hence, shellable, sequentially Cohen–Macaulay and sequentially
(S2).

We are now in a position to state and prove the following general-
ization of Theorem 3.2 for nonpure case.

Theorem 5.14. Let K be a field and ∆ a simplicial complex. Then
the following conditions are equivalent :

(a) There exists an ordering of facets of ∆, say F0, . . . , Fm, such
that, for every 0 ≤ i ≤ m, the simplicial complex ⟨F0, . . . , Fi⟩
is sequentially Cohen–Macaulay over K.

(b) There exists an ordering of facets of ∆, say F0, . . . , Fm, such
that, for every 0 ≤ i ≤ m, the simplicial complex ⟨F0, . . . , Fi⟩
is sequentially (S2).

(c) ∆ is shellable.

Proof. The implications (c) ⇒ (a) and (a) ⇒ (b) are trivial. (Note
that as an extension of Theorem 3.1, it was proved by Stanley [36] that
every shellable simplicial complex is sequentially Cohen–Macaulay.)
We now prove that (b) implies (c).

Let ∆ be a simplicial complex of dimension d − 1. If d = 1, then
∆ is a zero-dimensional simplicial complex, and thus it is shellable.
Hence, we assume that d ≥ 2 and suppose that there exists an ordering
of facets of ∆, say F0, . . . , Fm, such that, for every 0 ≤ i ≤ m, the
simplicial complex ⟨F0, . . . , Fi⟩ is sequentially (S2). We prove that this
ordering is, in fact, a shelling order, and this proves (c). For this, it
is enough to prove that, for every 1 ≤ i ≤ m, ⟨F0, . . . , Fi−1⟩ ∩ ⟨Fi⟩
is pure of dimension dimFi − 1. Now suppose, on the contrary, that
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there exists 1 ≤ i ≤ m such that ⟨F0, . . . , Fi−1⟩ ∩ ⟨Fi⟩ is not pure of
dimension dimFi−1. This implies that ⟨F0, . . . , Fi−1⟩∩⟨Fi⟩ has a facet,
say G, with dimension at most dimFi − 2. Let ∆i := ⟨F0, . . . , Fi⟩ and
t = dimFi. Similar to the proof of Theorem 3.2, one can show that
lk∆i

[t](G) is not connected. Note that, by [11, Lemma 2.2, Theorem
2.6], lk∆i

[t](G) is (S2) and dim(lk∆i
[t](G)) ≥ 1. Now Corollary 2.4

implies that lk∆i
[t](G) is connected, and this is a contradiction. �

6. f- and h-vectors. We now record the numerical data associated
to a (d−1)-dimensional simplicial complex ∆. Let fi denote the number
of faces of ∆ of dimension i. The sequence f(∆) = (f0, f1, . . . , fd−1) is
called the f -vector of ∆. Terai and Yoshida have proved the following
result.

Theorem 6.1 ([40], Theorem 2.1). Let ∆ be a (d−1)-dimensional (Sr)
simplicial complex, and let f(∆) = (f0, f1, . . . , fd−1) be its f -vector. If

fd−1 ≥
(
f0
d

)
− 3(f0 − d) + 2, then ∆ is Cohen–Macaulay.

To find out more about f(∆), we need to study the h-vector of ∆.
Although it is seemingly complicated, there often is an elegant way
to record the face numbers. Letting f−1 = 1, we define the h-vector
h(∆) = (h0, h1, . . . , hd) of ∆ by the formula

d∑
i=0

fi−1(t− 1)d−i =
d∑

i=0

hit
d−i.

One can easily check that

fi−1 =

i∑
j=0

(
d− j

i− j

)
hj ,

and

hi =
i∑

j=0

(−1)i−j

(
d− j

i− j

)
fj−1.

It is well known that, if h(∆) = (h0, h1, . . . , hd) is the h-vector of ∆
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and HK[∆](t) is the Hilbert series of K[∆], then we have

HK[∆](t) =

d∑
i=0

hit
i

(1− t)d
,

where d = dim∆+ 1 is the Krull dimension of K[∆].

The study of h-vectors of simplicial complexes has long been a
topic of interest both in combinatorics and combinatorial commutative
algebra. Let ∆ be a (d − 1)-dimensional simplicial complex, and let
h(∆) = (h0, h1, . . . , hd) be its h-vector. A classical result of Stanley
guarantees that, if ∆ is Cohen–Macaulay, then hi is nonnegative for
every i with 0 ≤ i ≤ d (see [36, Page 59, Theorem 3.3]).

Murai and Terai [28] have proved that if ∆ is a (d− 1)-dimensional
(Sr) simplicial complex and h(∆) = (h0, h1, . . . , hd) is its h-vector, then
the following two conditions hold:

◦ (h0, h1, . . . , hr) is an M -vector, and

◦ hr + hr+1 + · · ·+ hd is nonnegative.

Note that, in the above, a sequence of integers h = (h0, h1, . . . , hr) is
called an M -vector provided there exists a Cohen–Macaulay (r − 1)-
dimensional simplicial complex Γ with h(Γ) = h. Now, it is natural
to ask whether the above two conditions are sufficient for a simplicial
complex to be (Sr). This is not the case, even for the independence
simplicial complex of cycle graphs, as C9 shows. In [10], the authors
have extended the results of Murai and Terai by giving r extra necessary
conditions. More precisely, they have proved the following result.

Theorem 6.2. [28], ([10], Theorem 2.1). Let ∆ be a (d−1)-dimension-
al (Sr) simplicial complex, and let h(∆) = (h0, h1, . . . , hd) be its h-
vector. Then the following conditions hold :

(1) (h0, h1, . . . , hr) is an M -vector, and

(2)
(
i
i

)
hr +

(
i+1
i

)
hr+1 + · · · +

(
i+d−r

i

)
hd is nonnegative for every i

with 0 ≤ i ≤ r ≤ d.
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One can easily check that conditions (1) and (2) stated in Theorem
6.2 are sufficient for the independence simplicial complex of cycle
graphs to be (Sr). Now, it is natural to ask whether the converse
of Theorem 6.2 is true in general.

Question 6.3 ([10], Question 2.6). Let d and r be integers with
d ≥ r ≥ 2, and let h = (h0, h1, . . . , hd) be the h-vector of a simplicial
complex in such a way that the following conditions hold :

(1) (h0, h1, . . . , hr) is an M -vector, and

(2)
(
i
i

)
hr +

(
i+1
i

)
hr+1 + · · · +

(
i+d−r

i

)
hd is nonnegative for every i

with 0 ≤ i ≤ r ≤ d.

Does there exist a (d− 1)-dimensional (Sr) simplicial complex ∆ with
h(∆) = h?

We close this section by stating a result which has been proved by
Murai and Terai.

Theorem 6.4 ([28], Theorem 1.2). Let ∆ be a (d − 1)-dimensional
(Sr) simplicial complex, and let h(∆) = (h0, h1, . . . , hd) be its h-vector.
If ht = 0 for some t ≤ r, then hk = 0 for all k ≥ t and ∆ is Cohen–
Macaulay.

7. Power and symbolic power of ideals. Let R = K[x1, . . . , xn]
be the polynomial ring in n variables over a field K, and let ∆ be a
simplicial complex on [n]. We say that ∆ is complete intersection over
K, if the Stanley–Reisner ring K[∆] of ∆ is a complete intersection
ring. Combinatorially, this means that the minimal nonfaces of ∆ are
disjoint.

A simplicial complex ∆ is called matroid if it is a collection of
subsets of a finite set, called independent sets, with the following three
properties:

(1) The empty set is independent.

(2) Every subset of an independent set is independent.
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(3) If F and G are two independent sets and F has more elements
than G, then there exists an element in F which is not in G
that when added to G still gives an independent set.

Let I be a squarefree monomial ideal in the polynomial ring R =
K[x1, . . . , xn] over a field K, and suppose that I has the primary
decomposition

I = p1 ∩ · · · ∩ pr,

where every pi is an ideal of R generated by a subset of the variables of
R. Let k be a positive integer. The kth symbolic power of I, denoted
by I(k), is defined to be

I(k) = pk1 ∩ · · · ∩ pkr .

In [31], the authors have examined the Cohen–Macaulay property
of the symbolic powers of edge ideals of graphs, and they have proved
the following result.

Theorem 7.1 ([31], Theorem 3.6). Let R = K[x1, . . . , xn] be the
polynomial ring in n variables over a field K, and let I(G) be the edge
ideal of a graph G. Then the following conditions are equivalent :

(a) R/I(G)(m) is Cohen–Macaulay for every m ≥ 1.

(b) R/I(G)(m) is Cohen–Macaulay for every m ≥ 3.

(c) R/I(G)(m) satisfies the Serre’s condition (S2) for every m ≥ 3.

(d) R/I(G)(m) satisfies the Serre’s condition (S2) for some m ≥ 3.

(e) G is a disjoint union of finitely many complete graphs.

Terai and Trung have generalized Theorem 7.1, and they have proved
the following two theorems. The second one is an analogue of the first
one and is for ordinary powers of Stanley–Reisner ideals.

Theorem 7.2 ([39], Theorem 1.1). Let R = K[x1, . . . , xn] be the
polynomial ring in n variables over a field K, and let ∆ be a simplicial
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complex on [n] with dim∆ ≥ 2. Then the following conditions are
equivalent :

(a) R/I
(m)
∆ is Cohen–Macaulay for every m ≥ 1.

(b) R/I
(m)
∆ is Cohen–Macaulay for every m ≥ 3.

(c) R/I
(m)
∆ satisfies the Serre’s condition (S2) for every m ≥ 3.

(d) R/I
(m)
∆ satisfies the Serre’s condition (S2) for some m ≥ 3.

(e) ∆ is a matroid.

Theorem 7.3 ([39], Theorem 1.2). Let R = K[x1, . . . , xn] be the
polynomial ring in n variables over a field K, and let ∆ be a simplicial
complex on [n] with dim∆ ≥ 2. Then the following conditions are
equivalent :

(a) R/Im∆ is Cohen–Macaulay for every m ≥ 1.

(b) R/Im∆ is Cohen–Macaulay for every m ≥ 3.

(c) R/Im∆ satisfies the Serre’s condition (S2) for every m ≥ 3.

(d) R/Im∆ satisfies the Serre’s condition (S2) for some m ≥ 3.

(e) ∆ is complete intersection.

Let ∆ be a simplicial complex on the vertex set V . For every subset
U ⊆ V , we denote by ∆U the subcomplex of ∆ whose facets are the
facets of ∆ with at least |U |−1 vertices in U . Minh and Trung [26] have

characterized the Cohen–Macaulayness of I
(2)
∆ based on this notion.

Theorem 7.4 ([26], Theorem 2.1). Let R = K[x1, . . . , xn] be the
polynomial ring in n variables over a field K, and let ∆ be a simplicial

complex on the vertex set V . Then R/I
(2)
∆ is Cohen–Macaulay if and

only if ∆ is Cohen–Macaulay over K and ∆U is Cohen–Macaulay over
K for all subsets U ⊆ V with 2 ≤ |U | ≤ dim∆+ 1.
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Let G be a connected graph and u, v two vertices of G. The distance
between u and v is the minimal length of paths from u to v. The
diameter of G, denoted by diam(G), is the maximal distance between
two vertices of G. We set diam(G) = ∞ if G is not a connected graph.
Rinaldo, Terai and Yoshida have proved the following characterization
of the (S2) property of the second symbolic power of Stanley–Reisner
ideals.

Theorem 7.5 ([32], Theorem 0.1, Corollary 3.3). Let R=K[x1, . . . , xn]
be the polynomial ring in n variables over a field K, and let ∆ be a pure
simplicial complex. Then the following conditions are equivalent :

(a) R/I
(2)
∆ satisfies the Serre’s condition (S2).

(b) diam((lk∆(F ))(1)) ≤ 2 for every face F ∈ ∆ with dim(lk∆(F )) ≥
1.

Also, the equivalent conditions above are satisfied, provided that R/I2∆
is Cohen–Macaulay over K.

8. Radical of ideals. There are simple examples of Cohen-Macaulay
ideals whose radical is not Cohen–Macaulay. The first such example
is probably due to Hartshorne [13]. By using either CoCoA or another
computer algebra software, many other examples, even in characteris-
tic zero, can be constructed. The following example due to Conca was
computed using CoCoA.

Example 8.1. Let K be field, R = K[x1, x2, x3, x4, x5], and let

I = ⟨x2
2 − x4x5, x1x3 − x3x4, x3x4 − x1x5⟩ ⊂ R.

Then R/I is a two dimensional Cohen–Macaulay ring, while
√
I = ⟨x1x3−x1x5, x3x4−x1x5, x

2
2−x4x5, x

2
1x2−x1x2x4, x2x

2
3−x2x3x5⟩,

and so S = R/
√
I is not Cohen–Macaulay. Indeed, the depth of S is

equal to 1.

On the other hand, it is well known that the Cohen–Macaulay
property of a monomial ideal is inherited by its radical (see [37, 20]).
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The reason is that the radical of a monomial ideal is essentially obtained
by polarization and localization. By the same technique, one can prove
that the (Sr) property of monomial ideals is also inherited by its radical.

Herzog, Terai and Takayama have proved that the sequentially
Cohen–Macaulay property of a monomial ideal is inherited by its
radical (see [20, Theorem 2.6]). Now, it is natural to ask the following
question.

Question 8.2. Let R = K[x1, . . . , xn] be the polynomial ring in n
variables over a field K, and let I be a monomial ideal of I such that
R/I is sequentially (S2). Is R/

√
I sequentially (S2) too?

Let R = K[x1, . . . , xn] be the polynomial ring in n variables over a
field K, and let I be a monomial ideal of R. It is proved that if R/I is

Cohen–Macaulay, then R/
√
I is also Cohen–Macaulay (see [20, 38]).

As a generalization of this result, we state and prove a similar result for
Serre’s condition. The technique of the proof is based on polarization,
and so we recall this notion for the convenience of the reader.

Polarization is a deformation that assigns to an arbitrary monomial
ideal a squarefree monomial ideal in a new set of variables. Let I
be a monomial ideal of R = K[x1, . . . , xn] with minimal generators
u1, . . . , um, where ui =

∏n
j=1 x

aij

j , 1 ≤ i ≤ m. For every j with

1 ≤ j ≤ n, let aj = max{aij | 1 ≤ i ≤ m}, and suppose that

T = K[x11, x12, . . . , x1a1 , x21, x22, . . . , x2a2 , . . . , xn1, xn2, . . . , xnan ]

is the polynomial ring over the field K. Let J be the squarefree
monomial ideal of T with minimal generators v1, . . . , vm, where vi =∏n

j=1

∏aij

k=1 xjk, 1 ≤ i ≤ m. The monomial vi is called the polarization
of ui, and the ideal J is called the polarization of I.

Theorem 8.3. Let R = K[x1, . . . , xn] be the polynomial ring in n
variables over a field K, and let I be a monomial ideal of R. If R/I is

an (Sr) ring, then R/
√
I is also an (Sr) ring.

Proof. We prove the theorem by using the polarization trick. Let
T/J be the polarization of R/I, where T = K[x1, . . . , xn, Y ] is the
new polynomial ring over K with Y as the set of new variables. It is
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known that polarization preserves the (Sr) property (see [28, Proof
of Theorem 4.1]) and, therefore, since R/I is (Sr), T/J is also (Sr).
We now let W be the multiplicatively closed subset K[Y ] \ {0} in
T = R[Y ] and consider F = K(Y ). Then the localization of T/J at W

is isomorphic to F [x1, . . . , xn]/
√
I. Since T/J is (Sr) and localization

preserves the Serre’s condition, we conclude that

F [x1, . . . , xn]/
√
I ∼=

(
K[x1, . . . , xn]/

√
I
)
⊗K F

is (Sr). Now [3, Exercise 2.1.24] implies that

K[x1, . . . , xn]/
√
I = R/

√
I

is an (Sr) ring, as required. �

In order to state the next result we need the definition of the size of
a monomial ideal: let R = K[x1, . . . , xn] be the polynomial ring in n
variables over a field K, and let I be a monomial ideal of R. Lyubeznik
[24] has defined the size of I, denoted by size(I), as follows. Let
I =

∩r
j=1 Qj be an irredundant primary decomposition of I, where the

Qi’s are monomial ideals. Let h be the height of
∑r

j=1 Qj , and denote
by v the minimum number t such that there exist j1, . . . , jt with√√√√ r∑

j=1

Qj =

√√√√ t∑
i=1

Qji .

Then size(I) = v + (n− h)− 1.

We now close this section by stating and proving the following
theorem. Here, for a subset F ⊆ [n], PF denotes the prime ideal
generated by the xi’s with i ∈ F .

Theorem 8.4. Let I be a squarefree monomial ideal of R=K[x1, . . . , xn],
where K is a field and write I =

∩r
i=1 PFi , where the sets Fi ⊆ [n]

are pairwise distinct and all have the same cardinality c. For ev-
ery 1 ≤ i ≤ r and 1 ≤ j ≤ c, choose integers aij ≥ 1 and set
QFi = ⟨xaij | j ∈ Fi⟩. Then the following conditions are equivalent :

(a) For every choice of the integers aij, the ideal I =
∩r

i=1 QFi is
Cohen–Macaulay.
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(b) For every subset A ⊆ [r], the ideal IA =
∩

i∈A PFi is Cohen–
Macaulay.

(c) For every choice of the integers aij, the ideal I =
∩r

i=1 QFi is
(Sr).

(d) For every subset A ⊆ [r], the ideal IA =
∩

i∈A PFi is (Sr).
(e) For every i ̸= j, we have ht(PFi

+ PFj
) = c+ 1.

(f) For every r ≥ 2, we have either |
∪r

i=1 Fi| = c + 1, or
|
∩r

i=1 Fi| = c− 1.
(g) After a suitable permutation of the elements of [n], for every

1 ≤ i ≤ r we have either Fi = {1, . . . , i− 1, i+ 1, . . . , c, c+ 1},
or Fi = {1, . . . , c− 1, c− 1 + i}.

(h) size(I)=dim(S/I).
(i) For every monomial ideal L such that Ass (L) = Ass(I), S/L

is (Sr).
(j) For every monomial ideal L such that Ass (L) = Ass (I), S/L

is Cohen–Macaulay.

Proof. The proof of equivalence of conditions (a), (b), (e)–(h) and
(j) can be found in [20]. The implications (a) ⇒ (c), (j) ⇒ (i) and (i)
⇒ (c) are trivial. The proofs of the remaining cases are as follows:

(c) ⇒ (d). Let QFi
= ⟨x2

j | j ∈ Fi⟩ if i ∈ A, and QFi
= PFi

if

i /∈ A. By the assumption, J =
∩r

i=1 QFi is (Sr), and so the complete
polarization Jp of J is also (Sr). We have Jp =

∩r
i=1 Q

p
Fi
, where

Qp
Fi

= ⟨xjyj | j ∈ Fi⟩ if i ∈ A, and Qp
Fi

= PFi if i /∈ A. Let N be the

multiplicatively closed subset generated by all variables xi. Then Jp
N

is (Sr). But Jp
N =

∩
i∈A⟨yj | j ∈ Fi⟩. This shows that IA =

∩
i∈A PFi

is (Sr), as required.

(d) ⇒ (e). Suppose, on the contrary, that there exists i ̸= j with
ht(PFi +PFj ) ≥ c+2. Let ∆ be a simplicial complex such that K[∆] is
isomorphic toK[Fi∪Fj ]/(PFi∩PFj ). Then the facets of ∆ are just Fj\Fi

and Fi\Fj . Therefore, ∆ is not connected. Since ht (PFi+PFj ) ≥ c+2,
the dimension of ∆ is at least two, and so ∆ is not (Sr). This contradicts
(d). �

9. Algebraic shifting. Algebraic shifting is a procedure that asso-
ciates for every simplicial complex ∆ a new simplicial complex Γ(∆),
called a shifted complex of ∆, with the same h-vector as ∆ and a
nice combinatorial structure. Additionally, algebraic shifting preserves
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many algebraic and topological properties of the original complex,
including Cohen–Macaulayness: a simplicial complex ∆ is Cohen–
Macaulay if and only if Γ(∆) is Cohen–Macaulay, which, in turn, holds
if and only if Γ(∆) is pure (see [21]). The algebraic shifting operator
was introduced by Kalai over 25 years ago, with applications mainly
in the theory of f -vectors. Since then, connections and applications
of this operator to other areas of mathematics, like algebraic topology
and combinatorics, have been found by different researchers. For more
information, we refer the reader to Kalai’s recent survey [21].

In [29], the authors have proved the following result which is a
partial generalization of Kalai’s result.

Proposition 9.1. Let ∆ be a simplicial complex, and let Γ(∆) be its
algebraic shifting. If ∆ is (Sr), then Γ(∆) has no facet of dimension
less than r − 1.

Note that the converse of Proposition 9.1 is not true in general. In
order to see this, let ∆ be an (Sr) simplicial complex which is not
Cohen–Macaulay. Then Γ(∆) is not pure while, by Proposition 9.1,
Γ(∆) has no facet of dimension less than r − 1. Therefore, Γ(Γ(∆)) =
Γ(∆) has no facet of dimension less than r − 1 and so is not (Sr).
Therefore, it is natural to ask the following question.

Question 9.2. What is the characterization of (Sr) simplicial com-
plexes via algebraic shifting?

Let ∆ be a simplicial complex. The degree of a face F ∈ ∆, denoted
by degF , is defined to be degF = max{|G| | F ⊆ G, G ∈ ∆}. For
every i and j with 0 ≤ j ≤ i ≤ d, let fi,j denote the number of faces of
∆ of degree i and dimension j − 1, and consider

hi,j =

j∑
k=0

(−1)j−k

(
i− k

j − k

)
fi,k.

Then the triangular integer arrays f=(fi,j)0≤j≤i≤d and h=(hi,j)0≤j≤i≤d

are called the f -triangle and h-triangle of ∆, respectively.
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Duval [4] has shown that algebraic shifting preserves the h-triangle
of a simplicial complex ∆, provided ∆ is sequentially Cohen–Macaulay.
The analogue of Duval’s result is given in the following theorem.

Theorem 9.3 ([29], Theorem 3.2). Let ∆ be a sequentially (Sr)
simplicial complex, and let Γ(∆) be its algebraic shifting. Then for
every i and j with 0 ≤ j ≤ i ≤ r − 1, we have hi,j(∆) = hi,j(Γ(∆)).
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