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ON SEPARABLE p̃α-BOUNDED
PRIMARY ABELIAN GROUPS

PATRICK W. KEEF

ABSTRACT. The notion of p̃α-boundedness is used to
study several topics in the theory of separable abelian p-
groups, including the torsion product of torsion-complete
groups, the generalized core class property, and in the
context of the constructible universe, groups whose socles are
essentially finitely indecomposable as valuated vector spaces.

1. Introduction. By the term group we will mean an abelian p-
group, where p is some fixed prime. Our terminology will, in the main,
be standard, and consistent with that found in [5] or [8].

In this paper we apply some invariants from [19] to the class of
separable (i.e., pω-bounded) groups. In fact, these invariants go back
at least to [1, 18], where they were used to answer Nunke’s problem,
which asks when the torsion product of two groups is a direct sum of
cyclics (hereafter shortened to Σ-cyclic). Although we review these
ideas below, the reader will need to refer to [18, 19] for most of the
details.

If A is the class of all groups, then a non-empty proper subclass
B ⊂ A was said to be additively bounded if it is closed under subgroups
and direct sums. If U = A − B, then E = (B,U) was termed a B/U-
pair ; the elements of B were called E-bounded and those of U were
called E-unbounded. If E′ = (B′,U ′) is a second B/U-pair, we write
E ⊆ E′ when B′ ⊆ B. The most important examples are where α is
in O (i.e., the ordinals with the symbol ∞ adjoined), and B consists of
the pα-bounded groups; we denote this by pα = (Bα,Uα).

If E = (B,U) is any additively bounded B/U-pair, then for every
group G there is defined (using transfinite induction, subgroups and
filtrations) an invariant LE

G, which will be a subclass of Rf , the
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collection of finite sets consisting of regular cardinals. For simplicity,

Lpα

G is denoted by Lα
G. If 0R = ∅ and B̃ is the collection of all groups G

such that LE
G = 0R, then Ẽ = (B̃,A−B̃) will be the smallest additively

bounded B/U-pair containing E that is perfect in the sense that B̃ is

also closed under filtrations. We write p̃α for p̃α; it is a fundamental
result from [18] that a group is p̃ω-bounded if and only if it is Σ-cyclic.

If α ∈ O, then there is another important perfect B/U-pair which is
denoted by pα∗ = (Wα,A−Wα), whereWα consists of those groups that
can be embedded in a pα-bounded simply presented group. The groups
in Wα were studied in [15] under the name pα∗ -projectives, where they
were shown to be the projectives with respect to a natural collection
of short-exact sequences. They have also been studied under the name
weak pα-projectives (e.g., [17]). The class W∞ was first described by
Nunke in [20]; note that G ∈ W∞ if and only if it is p∞∗ -projective if
and only if it a subgroup of some reduced simply presented group. If
n < ω, a group is pω+n

∗ -projective if and only if it is pω+n-projective,
and G is pω+ω

∗ -projective if and only if it has a subgroup A such that
both A and G/A are Σ-cyclic.

If E = (B,U) is any additively bounded B/U-pair, then the length λ
of E is the supremum of the lengths of the elements of B. In [19] it was
shown that λ is the unique element of O such that pλ ⊆ E ⊆ pλ∗ . In
addition, if E is perfect, then p̃λ ⊆ E ⊆ pλ∗ . In particular, this means
that every pλ∗ -projective group is p̃λ-bounded. It was also shown that
p̃λ = pλ∗ if and only if λ ≤ ω.

In this paper the above ideas are applied in three directions. Sec-
tion 2 is a discussion of the torsion product of torsion-complete groups.
Our main result (Theorem 2.1) implies that such a product will either
be so well-behaved as to be Σ-cyclic, or it will be so misbehaved as to
fail to be p∞∗ -projective (i.e., it is impossible to embed it in a reduced
simply presented group). This observation allows us to provide an in-
teresting example of a group that is almost Σ-cyclic (as defined by Hill
in [10]), but not p∞∗ -projective (Corollary 2.4).

In Section 3 we study the following long-standing question: Does
every reduced group satisfy the “generalized core class property,” i.e.,
if G is a reduced group and n < ω, is it true that either G is pω+n-
projective, or that it has a proper pω+n+1-projective subgroup? This
question has been studied by a number of authors (see, for example,
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[2, 3, 11, 16, 17]). Though we do not completely settle the question,
we do prove the following slightly weaker version: If G is a reduced
group and n < ω, then G is either p̃ω+n-bounded, or it has a proper
pω+n+1-projective subgroup (Corollary 3.1).

Section 4 is devoted to addressing some issues left over from [19].
A useful property of pω+1-projective = pω+1

∗ -projective groups is that
they are C-decomposable (i.e., they have Σ-cyclic summands with the
same final rank as the group itself, see [7]). On the other hand, in [4], it
was shown (using somewhat different terminology) that, in the context
of the constructible universe (V=L), there is a separable p̃ω+1-bounded
group that is essentially finitely indecomposable (i.e., it does not have
a summand that is an unbounded Σ-cyclic group). We simplify and
improve this construction to show that such a separable p̃ω+1-bounded
group G can be constructed such that its socle G[p] is essentially finitely
decomposable as a valuated vector space (Theorem 4.1; see [6] for
definitions of these terms). On the other hand, it is an easy consequence
of results from [14] that no unbounded separable p∞∗ -projective group
has a socle that is essentially finitely indecomposable (Corollary 4.2).
This means that in V = L there are separable p̃ω+1-bounded groups
that are not p∞∗ -projective (Corollary 4.3). As a result, we are able to
settle some open questions and conjectures from [19] (Corollaries 4.4
and 4.5).

2. The torsion product of torsion complete groups. If λ, λ′ ∈
O with λ ≤ λ′, then it easily follows that Lλ′

G ⊆ Lλ
G for all groups G

(or see [19, Proposition 2.2]). The following sharpens this observation
a bit.

Proposition 2.1. If G is a group and γ = |G|+, then L∞
G = Lγ

G.

Proof. The definitions of Lγ
G and L∞

G only refer to groups X of
cardinality at most |G|. Since pγX = p∞X for all such groups, the
computations of Lγ

G and L∞
G start with the same initial data, so they

yield the same final results. �

By the L-length of a group G, we will mean the smallest ordinal λ
such that L∞

G = Lλ
G. (This is not to be confused with the length of

an additive B/U-pair defined in [19].) By Proposition 2.1, every group
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G has an L-length, which never exceeds |G|+. Since L0
G = 1R (where

1R = Rf ) for all groups G ̸= {0}, G has L-length 0 if and only if
G = {0} or it is not reduced. If G is reduced of L-length 0 < λ < ∞,
then Lλ

G = L∞
G ̸= 1R. This implies that G must be pλ-bounded; so if

λ′ is the (customary) length of G, then λ′ ≤ λ. In addition, when G
has L-length λ and λ ≤ α ≤ ∞, then Lλ

G = Lα
G = L∞

G .

Observe that, if λ is an ordinal and H is a reduced simply presented
group of length λ, then for α ∈ C we have Lα

G = 1R when α < λ and
Lα
G = 0R when λ ≤ α (see, for example, [19, Corollary 3.8]). It follows

that such an H always has L-length λ. We wish to strengthen this
observation. We will denote the torsion product of the groups A and
B by the convenient, albeit non-standard, notation A ▽ B.

Proposition 2.2. For every ordinal λ there is a separable group of
L-length λ.

Proof. Let H be any reduced simply presented group of length λ,
B a Σ-cyclic group of rank and final rank γ > |H| such that γℵ0 > γ
(e.g., γ has countable cofinality). We claim that G = B ▽ H is as
advertised.

First, observe that G is pλ-projective. So it must be pλ∗ -projective
and hence p̃λ-bounded. Therefore, 0R ⊆ L∞

G ⊆ Lλ
G = 0R.

On the other hand, let κ = γ+ ∈ R and A ⊆ B be a pure subgroup
containing B of cardinality κ. If {Xi}i<κ is a pure filtration of A such
that B ⊆ X0, then each A/Xi is divisible. It follows that {Xi ▽ H}i<κ

is a pure filtration of A ▽ H ⊆ G and there are pure-exact sequences

0 −→ Xi ▽ H −→ A −→ (A/Xi) ▽ H −→ 0.

Note that (A/Xi) ▽ H will be isomorphic to a direct sum of copies
of H. So if α < λ, then {κ} ∈ Lα

G. Therefore, G is not p̃α-bounded,
which means that it has L-length exactly λ. �

The next statement is an analogue of the useful observation that, if
n < ω, α is an ordinal, G is pα-bounded and P is a subgroup of G[pn],
then G/P is pα+n-bounded.
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Proposition 2.3. If n < ω, G is a group of L-length λ and P
is a subgroup of G[pn], then G/P has L-length at most λ + n and
L∞
G = L∞

G/P .

Proof. If we set G′ = G/P and P ′ = G[pn]/P ⊆ G′[pn], then
G′/P ′ ∼= pnG. Using ([19, Corollary 3.1]), for all µ ≥ λ, we have

Lλ
G = Lµ+2n

G ⊆ Lµ+n
G′ ∪ Ln

P

= Lµ+n
G′ ⊆ Lµ

pnG ∪ Ln
P ′

= Lµ
pnG ⊆ Lµ

G = Lλ
G.

This implies that L∞
G = Lλ

G = Lλ+n
G′ = L∞

G′ , as stated. �

Corollary 2.1. If G is a group and P is a bounded subgroup of G,
then G is p̃∞-bounded if and only if G/P is p̃∞-bounded

Clearly, a group G has L-length at most ω if and only if Lω
G = L∞

G .
If, in addition, G is reduced, then its L-length agrees with its normal
length. Here is our primary example:

Proposition 2.4. A torsion-complete group has L-length at most ω.

Proof. This is actually shown by the computation in ([18, Proposi-
tion 3.1]). �

Corollary 2.2. If n < ω, then a group that is pω+n-injective in the
category of abelian p-groups will have L-length at most ω + n.

Proof. If G is such a group, then we may clearly assume that it
is reduced. It follows (say, from [13, Lemma 3]) that pω+nG = {0}
and G/pωG is torsion-complete. Find a group A such that pnA = G.
So pωA = pωG and G′ = A/pωA are torsion-complete. Note P =
A[pn]/pωA ⊆ G′ is pn-bounded and G′/P ∼= A/A[pn] ∼= pnA = G. The
result then follows from Propositions 2.3 and 2.4. �

In the solution to Nunke’s problem, which used the invariants
Lω
G, ([18, Theorem 2.1]) was an important step. Because of ([19,
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Proposition 3.5]), exactly the same proof will establish the following
for pλ when λ is countable or ∞.

Lemma 2.1. Let λ ∈ O be either countable or ∞. If G and H are
groups, then Lλ

G · Lλ
H ⊆ Lλ

G ▽ H .

Torsion products of torsion-complete groups have provided inter-
esting examples of various phenomena. For example, suppose B is a
countable unbounded Σ-cyclic group with torsion completion G = B.
In ([12, Proposition 5]), it was shown that G ▽ G is Σ-cyclic if and
only if the continuum hypothesis holds (i.e., 2ℵ0 = ℵ1). In addition, in
([18, Corollary 3.3]) it was shown that Lω

G ▽ G = Lω
G · Lω

G if and only

if 2ℵ0 is smaller than the first weakly Mahlo cardinal. The following
shows that the torsion product of torsion-complete groups is either Σ-
cyclic, or not p∞∗ -projective; in other words, such products are either
very simple or rather wild.

Theorem 2.1. Suppose G1, . . . , Gk are groups with L-length at most
ω, and let G = G1 ▽ · · · ▽ Gk. Then the following are equivalent :

(a) G is Σ-cyclic;
(b) G is p∞∗ -projective;
(c) G is p̃∞-bounded.

Proof. Certainly (a) implies (b). Next, since any p∞∗ -projective
group is p̃∞-bounded, (b) implies (c). We will be done if we can show
that (c) implies (a).

If (c) holds, then by Lemma 2.1 we have an inclusion

Lω
G1

· · ·Lω
Gk

= L∞
G1

· · ·L∞
Gk

⊆ L∞
G1 ▽ ··· ▽ Gk

= 0R.

Therefore, Lω
G1

· · ·Lω
Gk

= 0R. However, by ([18, Corollary 3.7]), this
implies that G is Σ-cyclic, and (a) follows. �

For torsion-complete groups, we restate the above in a couple of
equivalent ways.

Corollary 2.3. Suppose B1, . . . , Bk are torsion-complete groups, and
let G = B1 ▽ · · · ▽ Bk.
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(a) If G can be embedded in a reduced simply presented group, then
it is Σ-cyclic.

(b) If L∞
G = 0R, then it is Σ-cyclic.

The group G is almost Σ-cyclic if it has a collection of subgroups C
such that

(a) {0} ∈ C;
(b) If C ∈ C, then C is closed in G in the p-adic topology, i.e., G/C

is pω-bounded;
(c) C is inductive, i.e., closed under unions of chains;
(d) If X ⊆ G is countable, then there is a countable C ∈ C such

that X ⊆ C.

These groups were defined in [10] using the (clearly equivalent) termi-
nology almost coproducts of finite cyclic groups.

In [1] the proof of the next result was embedded in a rather
involved discussion of what were termedKG-invariants. We present the
following more straightforward and essentially self-contained argument.

Proposition 2.5. ([1, Corollary 35]). If G and H are separable
groups, then G ▽ H is almost Σ-cyclic.

Proof. We may clearly assume that G and H are unbounded (oth-
erwise, G ▽ H is Σ-cyclic). We begin with a simple observation.

Claim A. If A,A′ are unbounded subgroups of G and B,B′ are
unbounded subgroups of H, then A ▽ B ⊆ A′ ▽ B′ if and only if
A ⊆ A′ and B ⊆ B′.

Sufficiency being trivial, let a ∈ A. Choose b ∈ B of the same order
as a. So ⟨a⟩ ▽ ⟨b⟩ ⊆ A ▽ B ⊆ A′ ▽ B′. And, by ([21, Corollary 9]),
a ∈ A′, which implies that A ⊆ A′. Showing B ⊆ B′ is analogous.

We now turn to proving the result. Let C consist of {0} together
with all subgroups of G ▽ H of the form C = A ▽ B, where A and B
are unbounded subgroups of G and H, respectively.

We show C satisfies (a)–(d) for G ▽ H. Note first that (a) and
(d) are quite easy. Regarding (b), if A ▽ B ∈ C, then there is an
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embedding

(G ▽ H)/(A ▽ B) −→ [(G/A) ▽ H]⊕ [G ▽ (H/B)].

Since the group on the right is clearly pω-bounded (in fact, it will be
a subgroup of a direct sum of a collection of copies of H and G), (b)
immediately follows.

Finally, if {Ai ▽ Bi}i∈I is a chain in C, then by Claim A, {Ai}i∈I

and {Bi}i∈I will be chains in G and H, respectively. So∪
i∈I

(Ai ▽ Bi) =

(∪
i∈I

Ai

)
▽

(∪
i∈I

Bi

)
∈ C,

which establishes (c) and completes the argument. �

Corollary 2.4. There is a group G that is almost Σ-cyclic, but not
p∞∗ -projective.

Proof. Let B be a torsion-complete group of final rank at least ℵ2

and G = B ▽ B. It follows from Proposition 2.5 that G is almost Σ-
cyclic. On the other hand, by ([18, Proposition 3.1]), {ℵ1} and {ℵ2}
are in Lω

B
, so it follows that {ℵ1,ℵ2} ∈ Lω

G. So G is not Σ-cyclic; and

by Corollary 2.3 (a), it is not p∞∗ -projective. �

Recall that a group is Σ-cyclic if and only if it is pω-projective. On
the other hand, the group we have just constructed is almost Σ-cyclic,
but not only does it fail to be pλ-projective for any ordinal λ, it cannot
even be embedded in such a group.

3. The generalized core class property. Recall that, if n < ω
and G is a group that is pω+n-projective, then any subgroup of G is
also pω+n-projective. On the other hand, consider the statement:

CCPn(G) – Either G is pω+n-projective or it has a subgroup which is
pω+n+1-projective but not pω+n-projective.

In other words, if G is not pω+n-projective, then it has a pω+n+1-
projective subgroup that is proper, in the sense that it is not pω+n-
projective. It is known that CCP0(G) holds for every reduced group
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G, that is, every reduced group that is not Σ-cyclic has a proper pω+1-
projective subgroup. This is the so-called “core class theorem” of [2].
A group G is said to have the generalized core class property (or GCCP)
if CCPn(G) holds for all n < ω.

Does every reduced group have the GCCP, i.e., does CCPn(G) hold
for all reduced groups G and all n < ω? The class of reduced groups
with the GCCP is quite extensive and contains, for example, the C-
decomposable groups, the groups whose final ranks have countable
cofinality, and the weak pω·2-projective = pω·2

∗ -projective groups. In
fact, it is arguably the case that what is most significant about this
question is not necessarily its intrinsic importance, but rather the
number of interesting techniques and results that have come from
studying it.

Since this paper is primarily concerned with separable groups, we
include the next essentially well-known observation.

Proposition 3.1. If all separable groups satisfy the GCCP, then all
reduced groups satisfy the GCCP.

Proof. Suppose G is any reduced group. If G is not pω+k-bounded
for some k < ω, it follows easily from the theory of simply presented
groups that, for each n < ω, G has a countable subgroup H of length
ω+ n+1. Clearly, such a group will be a proper pω+n+1-projective so
that G satisfies the GCCP.

So assume k < ω and G is pω+k-bounded. By hypothesis, G/pωG
satisfies the GCCP. Suppose n < ω and G is not pω+n-projective. If
G/pωG is pω+k+n-projective, then G is pω+2k+n-projective, and all
pω+2k+n-projective groups satisfy the GCCP by ([11, Corollary 28]).
And, if G/pωG is not pω+k+n-projective, then it must have a proper
pω+k+n+1-projective subgroup H ′ ⊆ G/pωG. If H ⊆ G is defined by
the equation H/pωG = H ′, then it easily follows that H is pω+2k+n+1-
projective, but not pω+n-projective. So, again, by ([11, Corollary 28]),
H will have a subgroup that is a proper pω+n+1-projective. Therefore,
G has the GCCP, completing the argument. �

By a classical result of Hill ([9]), if G is the ascending union of a
sequence of pure subgroups {Gi}i<ω and each Gi is Σ-cyclic, then so
is G. This is the α = ω case of the next result, whose proof is a
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simplified version of ([1, Theorem 14]). We will use without extensive
explanation the notation of [19].

Theorem 3.1. If α < ω · 2 and G is a group which is the ascending
union of a sequence of pure subgroups {Gj}j<ω, then Lα

G = ∪j<ωL
α
Gj

.

Proof. If α is finite, this reduces to the obvious statement that G is
pα-bounded if and only if each Gj is pα-bounded; so assume α = ω+n
is infinite. Since the containment ⊇ is routine, we consider the inclusion

⊆. We prove by induction on κ
def
= µ(T ) that, if T ∈ Lα

G, then there is
a j < ω such that T ∈ Lα

Gj
.

First, if κ = ℵ0, then T = ∅, which means that pω+nG ̸= {0}. So
pωG has an element x of order pn+1. Clearly, x ∈ Gj for some j < ω.
The purity of Gj in G then implies that x ∈ pωGj . This means that
pω+nGj ̸= {0}, so that T ∈ Lα

Gj
, as required.

Suppose, therefore, that κ > ℵ0, and we have verified the result for
all S ∈ Lα

G with µ(S) < κ and T ∈ Lα
G. Consider the reason that

T ∈ Lα
G.

Suppose first that (Lα-1) is true. If i < κ, then since µ(Ti) < µ(T ),
we can conclude by induction on κ that

Υα
T (G) =

∪
j<ω

Υα
T (Gj) ⊆ κ.

Since Υα
T (G) is stationary in κ, Υα

T (Gj) is also stationary for some
j < ω, and we have T ∈ Lα

Gj
.

Suppose next that (Lα-2) is true; let A be as in the statement of
that condition. After possibly expanding A a bit (without changing its
cardinality), we can also assume that:

(a) For all j < ω, A ∩Gj is pure in Gj , and hence in G and in A.

Next, since κ has uncountable cofinality, if we ignore a few Gjs at
the beginning, we may assume that

(b) |A ∩Gj | = κ for all j < ω;

Let {Ai}i<κ be a filtration of A. Note that [Ai+(A∩Gj)]/(A∩Gj)
is a smoothly ascending chain of groups of cardinality less than κ whose
union is A/(A∩Gj). The fact that κ is an uncountable regular cardinal
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easily implies that, by restricting to a closed and unbounded subset,
we may assume that, for all i < κ and j < ω, that

(c) [Ai+(A∩Gj)]/(A∩Gj) is pure in A/(A∩Gj), and so Ai+(A∩Gj)
will be pure in A.

This implies that [Ai + (A ∩ Gj)]/Ai is a pure subgroup of A/Ai,
and their union over j < ω will be A/Ai.

Let S = Λα
T (A) ⊆ κ. By induction, for all i ∈ S, we can conclude

that there is a ji < ω such that Ti is in the Rf -invariant corresponding
to

[Ai + (A ∩Gji)]/Ai
∼= (A ∩Gji)/(Ai ∩Gji).

It follows that there is a fixed j′ < ω such that S ′ def= {i ∈ S : ji = j′}
is stationary in κ.

Since {Ai ∩Gj′}i<κ is a filtration of A∩Gj′ , it follows that Λ
α
T (A∩

Gj′) is stationary in κ (since it contains S ′). Therefore, applying (Lα-2)
to A ∩Gj′ , we have T ∈ Lα

A∩Gj′
⊆ Lα

Gj′
, as required. �

The last result fails for larger ordinals. Here is an easy counterex-
ample.

Proposition 3.2. There is a separable group G that is the ascending
union of a sequence of pure subgroups {Gj}j<ω, such that ∪j<ωL

ω·2
Gj

=

0R, but Lω·2
G ̸= 0R.

Proof. Let H be any countable reduced group of length pω·2+1; in
particular, Lω·2

H = 1R. Next, let X be the generators in some simple
presentation of H.

If j < ω, let Yj consist of all y ∈ X such that, for all k < ω, either

|pky|H < ω+j or |pky|H ≥ ω ·2. If Hj
def
= ⟨Yj⟩, then it is readily checked

that Hj is pure in H and that H is the ascending union of the Hjs. In
addition, Hj is a pω+j+1-bounded simply presented group.

Let T be a separable group such that Lω·2
T ̸= 0R (e.g., a torsion-

complete group). If we let G = H ▽ T and, for all j < ω, we let
Gj = Hj ▽ T , then these groups are separable, G is the union of its
pure subgroups Gj , and, by Lemma 2.1,

0R ̸= Lω·2
T = 1R · Lω·2

T = Lω·2
H · Lω·2

T ⊆ Lω·2
G .
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On the other hand, each Gj is pω+j+1-projective, so that Lω·2
Gj

⊆
Lω+j+1
Gj

= 0R; therefore, ∪j<ωL
ω·2
Gj

= 0R. �

Notice that, in Proposition 3.2, since G is separable, the subgroups
Gj will actually be isotype in G.

Question. Suppose E is an additive B/U-pair such that whenever
G is a group that is the ascending union of a sequence of pure subgroups
{Gj}j<ω, then LE

G = ∪j<ωL
E
Gj

. Can we conclude that E = pα for some

α < ω · 2?

We are not able to determine whether all reduced groups satisfy the
GCCP, but we do show that in CCPn(G), if “not pω+n-projective” is
replaced by the more restrictive condition “p̃ω+n-unbounded,” then the
resulting statement does hold for all reduced groups G and all n < ω.

Theorem 3.2. Suppose n < ω and G is a reduced group. If G
is p̃ω+n-unbounded, then it has a pω+n+1-projective subgroup that is
p̃ω+n-unbounded.

Proof. Suppose G has final rank κ. After possibly discarding a
bounded summand, we may assume that G also has rank κ.

Let B be a lower basic subgroup of G, so that G/B ∼=
⊕

i∈I Zi,
where |I| = κ and each Zi is a copy of the infinite cocyclic group Zp∞ .
Express I as the ascending union of subsets Ij for j < ω with the
property that |I − Ij | = κ for each j < ω; and define Gj ⊆ G by the
equation Gj/B =

⊕
i∈Ij

Zi. It follows that each Gj is pure in G, G is

the union of the Gj and each G/Gj is isomorphic to the direct sum of
κ copies of Zp∞ .

By Theorem 3.1, there is a j0 < ω such that Lω+n
Gj0

̸= 0R. If we let H

be a countable group with pωH ∼= Zpn+1 and we define A = Gj0 ▽ H,
then clearly A is pω+n+1-projective. By Lemma 2.1,

0R ̸= Lω+n
Gj0

= Lω+n
Gj0

· 1R = Lω+n
Gj0

· Lω+n
H ⊆ Lω+n

A ,

so that A is p̃ω+n-unbounded.

If we let P = Gj0 ▽ pωH ⊆ A, then it is easy to check that there
is an isomorphism f : P = Gj0 ▽ pωH ∼= Gj0 [p

n+1] that preserves all
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finite heights (computed in A and Gj0 , respectively). And, since

A/P = (Gj0 ▽ H)/(Gj0 ▽ pωH) ⊆ Gj0 ▽ (H/pωH),

this quotient is Σ-cyclic. This easily implies that f extends to a
homomorphism g : Gj0 ▽ H → Gj0 .

Next, observe that there is a subgroup M ⊆ G/Gj0 such that M
is isomorphic to A/P . Define the subgroup N ⊆ G by the equation
N/Gj0 = M . Since Gj0 is pure in G, it is also pure in N . And,
since M is Σ-cyclic, there is a decomposition N = Gj0 ⊕ C, where
C ∼= M ∼= A/P . We let h be the composite A → A/P → C.

Define ϕ : A → G by ϕ(x) = g(x) + h(x) ∈ Gj0 ⊕ C ⊆ G. Since
P is the kernel of h and g is injective on P , it follows that ϕ is an
embedding, as desired. �

Recall that, if n = 0, then a group is p̃ω-bounded if and only if
it is Σ-cyclic. So the n = 0 case of Theorem 3.2 is simply the core
class theorem of [2]. Next, since any pω+n-projective group is p̃ω+n-
bounded, Theorem 3.2 has the following immediate consequence.

Corollary 3.1. Suppose n < ω and G is a reduced group. If G is p̃ω+n-
unbounded, then it has a subgroup that is a proper pω+n+1-projective.

Corollary 3.2. If G is a reduced group that is p̃ω+n-unbounded for all
n < ω, then G has the GCCP.

The following shows that, if there is a reduced group without the
GCCP, then it lies in a narrow range. In fact, it must be an example of
the proper inclusion discussed in ([19, Theorem 3.14]) at the ordinal
α = ω · 2.

Corollary 3.3. If G is a reduced group that does not have the GCCP,
then G is p̃ω·2-bounded, but not pω·2

∗ -projective.

Proof. Consider the contrapositive. If G is p̃ω·2-unbounded, then
it is p̃ω+n-unbounded for all n < ω; and by Corollary 3.2, G has
the GCCP. On the other hand, if G is pω·2

∗ -projective, then by ([17,
Corollary 3.4 (b)]), G again has the GCCP. �
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Recall that a group G is fully starred if, for every subgroup A of
G, if B is a basic subgroup of A, then |A| = |B|. One of the earliest
observations regarding the GCCP was the fact that any reduced group
that is not fully starred satisfies the GCCP (see [3, Corollary 7]).
Corollaries 3.2 and 3.3 can be viewed as more sophisticated versions of
this statement. To see this, if the reduced group G is not fully starred,
B is a basic subgroup of A ⊆ G with |B| < |A|, then let κ = |B|+ ∈ R.
After possibly replacing A by one of its subgroups, we may clearly
assume that |A| = κ. Now, if T = {κ} ∈ Rf , it easily follows that
Λ∞
T (A) is stationary (in fact, it must contain all but an initial segment

of κ). It follows that T ∈ L∞
G ⊆ Lω·2

G ; so by Corollary 3.3, G has the
GCCP.

In a similar vein, we have the next statement.

Corollary 3.4. Any reduced group G with Lω
G = Lω·2

G has the GCCP.

Proof. Suppose G is such a group. If G is p̃ω-bounded, then it is
Σ-cyclic, and so it trivially has the GCCP. On the other hand, if it
is p̃ω-unbounded, then 0R ̸= Lω

G = Lω·2
G , and the result follows from

Corollary 3.3. �

4. p̃ω+1-bounded groups in V=L. Recall that a B/U-pair E =
(B,U) is perfect if B is closed under subgroups, direct sums and
filtrations. Summarizing the results of [19], if λ ≤ ω, then there is
a unique perfect class of length λ, namely the pλ-bounded Σ-cyclics.
On the other hand, if λ > ω, then this no longer holds. However,
we will always have p̃λ ⊆ E ⊆ pλ∗ , so that p̃λ and pλ∗ are the unique
smallest and largest perfect B/U-pairs of length λ. The purpose of
this section is to show that, even for λ = ω + 1, in the context of the
constructible universe (V=L), there are some p̃ω+1-bounded groups
that are not well behaved. In the process, we answer a couple of open
problems and conjectures stated in [19].

We will use the language of valuated vector space (see [6]). For
example, if G is a group and V is a subgroup of G[p], then we
have a valuation |x|V = |x|G, and if α is an ordinal, we define
V (α) = {x ∈ V : |x|G ≥ α}. The category of valuated vector spaces
has direct sums, its morphisms are non value-reducing homomorphisms
and its isomorphisms are the bijective homomorphisms that preserve
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values; we will refer to these as isometries. A valuated vector space is
free if it is isometric to a valuated direct sum of cyclic valuated vector
spaces; in particular, any countable valuated vector space will actually
be free.

The valuated vector space V will be said to be essentially finitely
indecomposable, or efi, if it is not isometric to a valuated direct sum
F ⊕ V ′, where F is free and unbounded (i.e., for all m < ω, F (m) ̸=
{0}). So if G is a group and G[p] is efi as a valuated vector space,
then it readily follows that G is efi as a group (i.e., it does not have an
unbounded Σ-cyclic summand).

The following proof is a fairly straightforward application of the
diamond principle (♢) that is valid in the constructible universe (V =
L). It is simplified version of a construction for groups (as opposed to
valuated vector spaces) contained in [4].

Theorem 4.1. (V = L) Assuming the axiom of constructibility, there
is a separable p̃ω+1-bounded group G such that G[p] is essentially
finitely indecomposable (as a valuated vector space).

Proof. Let {Xα}α<ω1 be a smoothly ascending chain of countably
infinite sets such that, for all α < ω1, Xα+1 −Xα is countably infinite.

Our objective is to construct G so that G[p] = ∪α<ω1Xα
def
= X; clearly,

|X| = ℵ1. We do this inductively by defining a smoothly ascending
chain {Gα}α<ω1 of countable groups such that:

(a) Gα[p] = Xα;

(b) Gα is separable, and hence Σ-cyclic;

(c) Gα+1/Gα is unbounded (i.e., not p j-bounded for any j < ω) and
pω+1-bounded;

(d) if β < α, then Gβ is pure in Gα;

(e) if β < α and β is isolated, then Gβ is a summand of Gα, so that
Gα/Gβ is an unbounded Σ-cyclic group.

Regarding the last condition, since Gβ is pure in the countable Σ-
cyclic group Gα, it will be a summand if and only if Gα/Gβ is separable;
if and only if Gβ is closed (in the p-adic topology) in Gα; if and only if
Xβ is closed in Xα.
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Suppose first that α is a limit and we have defined Gβ for all β < α;
so we must clearly set Gα = ∪β<αGβ . To verify that our conditions
continue to hold up to α, certainly (a) is trivial. For all β < α, it is
easy to check that Gβ remains pure in Gα, so that (d) holds, and we
already know that each Gβ+1/Gβ is unbounded and pω+1-bounded;
i.e., (c) is valid. Since each Gβ is separable (and pure) in Gα, it easily
follows that Gα is also separable; and since it is countable, (b) must
hold, as well. As for (e), let {βk}k<ω be a strictly ascending sequence
of isolated ordinals, starting at β0 = β, with limit α. It follows that
each Gβk

is a summand of Gβk+1
, so that Gβ is a summand of Gα.

We now need to show how to define Gα+1 once we have constructed
Gα. In fact, we will need to be a bit more careful, adding yet one
more condition because of our use of ♢. Let {Yα, Zα}α<ω1 be a double
♢-system for X (i.e., for any pair of subsets Y, Z ⊆ X, if C ⊆ ω1 is
closed and unbounded, then there is an α ∈ C such that Yα = Xα ∩ Y
and Zα = Xα ∩ Z–a double ♢-system for X can easily be constructed
from a ♢-system for X ×X). We have two cases:

Case I. α is a limit ordinal, Yα ⊕ Zα is a valuated decomposition of
Gα[p] = Xα, Yα is unbounded and Yα ⊆ Xγ for some γ < α.

Let {βk}k<ω be a strictly increasing sequence of isolated ordinals
with limit α such that γ ≤ β0. Since, for all k < ω, we have Xβk

=
Yα⊕ (Xβk

∩Zα), and Xβk
= Gβk

[p] is a valuated summand of Xβk+1
=

Gβk+1
[p], we can conclude that there are valuated decompositions

Xβk+1
= Xβk

⊕ Z ′
k, where each Z ′

k ⊆ Xβk+1
∩ Zα is unbounded. It

follows that there are valuated decompositions

Gα[p] = Xα = Yα ⊕ Zα = Yα ⊕ (Xβ0 ∩ Zα)⊕
(⊕

j<ω

Z ′
j

)
,

where Xβk
= Xβ0 ⊕ (

⊕
j<k Z

′
j).

In the torsion-completion Gα, let yα ∈ Y α − Yα. Next, for each
j < ω, choose a non-zero zj ∈ Z ′

j such that |zj |Gα is a strictly increasing
sequence. Now, let

xα = yα +
∑
j<ω

zj ∈ Gα[p],

and define Wα = Xα + ⟨xα⟩ ⊆ Gα[p].
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The projection Xα → Yα extends to a valuated homomorphism
Wα → Yα + ⟨yα⟩ ⊆ Gα[p] whose kernel is Zα; so Zα is closed in Wα.
Similarly, if k < ω, then the projection X →

⊕
k≤j<ω Z ′

j extends to a
valuated homomorphism

Wα −→
⊕

k≤j<ω

Z ′
j +

⟨ ∑
k≤j<ω

zj

⟩
⊆ Gα[p],

with kernel Xβk
; so again, Xβk

will be closed in Wα. In addition,
if β < α is isolated, then there is a k < ω such that β < βk. By
induction, Xβ will be closed in Xβk

, so that, in fact, Xβ will be closed
in Wα whenever β < α is isolated.

Let Hα be a pure subgroup of Gα containing Gα so that Hα[p] =
Wα = Xα + ⟨xα⟩. Since Hα is countable and separable, it also is
Σ-cyclic.

Let Gα+1 = Hα ⊕ pGα; in particular, we think of Hα as a subgroup
of Gα+1. Define a map ϕ : Gα → Gα+1 by ϕ(x) = (x, px). For all
x ∈ Gα[p] = Xα, we have |x|Gα

= |x|Hα
= |ϕ(x)|Gα+1

; so ϕ is an
embedding and ϕ(Gα) is pure in Gα+1. We identify Gα with ϕ(Gα);
so we are no longer thinking of Gα as a subgroup of Hα, but rather as
a subgroup of Gα+1 = Hα ⊕ pGα. However, the socle Gα[p] remains
the same, namely, Xα, which is a dense subsocle of Wα = Hα[p] of
corank 1.

If we identify Gα+1[p] with Xα+1, then we need to check (b)–(e)
continue to hold for α+ 1. First, since Hα and pGα are countable and
Σ-cyclic, so is Gα+1, i.e., (b) is satisfied.

Turning to (c), it is easy to check that

Gα+1/Gα = (Hα +Gα)/Gα
∼= Hα/(Hα ∩Gα) = Hα/Xα,

is unbounded and pω+1-bounded, as required.

To verify (d), we already know that Gα is pure in Gα+1. And, if
β < α, then Gβ is pure in Gα, so that it is also pure in Gα+1, as stated.

Considering (e), if β < α+ 1 is isolated, then in fact, we must have
β < α. We already know that Xβ = Gβ [p] is closed in Wα = Hα[p].
Since Hα[p] is a valuated summand of Gα+1[p], it follows that Xβ is
also closed in Gα+1[p], as required.
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Case II. The first case does not apply. If this occurs, we just set
Gα+1 = Gα ⊕ Kα, where Kα is an unbounded countable Σ-cyclic
group. If we identify Gα+1[p] with Xα+1, it is easy to check that
(b)–(e) continue to hold.

We now define G = ∪α<ω1Gα; we need to verify that X = G[p] is
efi. So, assume that there is a valuated decomposition G[p] = Y ⊕ Z,
where Y is countable and unbounded. Choose γ < ω1 such that
Y ⊆ Xγ . Since the limit ordinals greater than γ form a closed
unbounded subset of ω1, it follows that there is a limit ordinal α > γ
such that Y = Y ∩Xα = Yα and Z ∩Xα = Zα. This shows that there
is a valuated decomposition Xα = Yα⊕Zα, so that we are in the above
Case I.

Using the notation there, we will have a valuated decomposition
Wα = Y ⊕ (Z ∩ Wα), where Zα ⊆ Z ∩ Wα. We observed before
that Zα is closed in Wα, so it is also closed in Z ∩ Wα. Since Y is
obviously closed in Y , we can conclude that Xα = Y ⊕ Zα is closed
in Wα = Y ⊕ (Z ∩ Wα). However, as this is obviously not the case
(xα ∈ Wα is in Xα − Xα), we can conclude that G[p] cannot have a
countable unbounded valuated summand such as Y . So G[p] is efi.

We will therefore be done if we can show that G is p̃ω+1-bounded.
Assume otherwise, and let T ∈ Lω+1

G be some element minimal under
inclusion. Since pω+1G = {0}, we can conclude that T ̸= ∅; and since
|G| = ℵ1, by [19, Lemma 2.1 (g)] we can conclude T = {ℵ1}. For every
i < ℵ1, Ti = ∅, which implies that Υω+1

T (G) = ∅. Therefore, we can
conclude that

Λω+1
T (G) = {i < ω1 : Ti ∈ Lω+1

G/Gi
} = {i < ω1 : pω+1(G/Gi) ̸= 0}

is stationary in ℵ1. However, if γ > i, then by (e) there is a
decomposition

Gγ/Gi
∼= (Gγ/Gi+1)⊕ (Gi+1/Gi).

The first term in the above is actually Σ-cyclic; and by (c), the second
is pω+1-bounded. Considering this condition for all γ > i implies that
G/Gi is always p

ω+1-bounded. Therefore, Λω+1
T (G) is actually empty;

and this contradiction completes the argument. �

Recall from [14] that a group G is cothin if, whenever A =
⊕

i∈I Ai

is a direct sum, then a homomorphism G → A is small if and only if
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for each i ∈ I, the composition G → A → Ai is small. It was shown
that, if G is cothin, then it is thick ([14, Proposition 13]), and if G is a
separable group such that G[p] is efi, then it is cothin ([14, Proposition
18]). This immediately implies the following.

Corollary 4.1. (V = L) Assuming the axiom of constructibility, there
is an unbounded, p̃ω+1-bounded separable group that is cothin, and
hence thick.

We next apply these ideas to p∞∗ -projectives.

Corollary 4.2. If G is an unbounded separable group that is cothin,
then G is not p∞∗ -projective.

Proof. If G is p∞∗ -projective, then there is an embedding G ⊆ H
where H is a reduced simply presented group. It follows from ([14,
Corollary 11]) that this inclusion must be a small homomorphism,
which cannot be if G is unbounded. �

Putting together Corollaries 4.1 and 4.2, we have the following
statement.

Corollary 4.3. (V = L) Assuming the axiom of constructibility, there
is a separable p̃ω+1-bounded group that is not p∞∗ -projective.

To repeat, in [4], a group was constructed similar to the one
constructed in Theorem 4.1. In this previous paper, it was noted that
the resulting group was not pω+1-projective. In contrast, Corollary 4.3
states that our group not only fails to be pω+1-projective, it actually
fails to be pλ-projective for any ordinal λ; and, further, one cannot
even embed it in such a pλ-projective.

This discussion resolves a couple of the Questions/Conjectures of
[19]. For example, if α is an ordinal, let Cα be the class of groups
that can be embedded in a direct sum

⊕
i∈I Hi, where each Hi is

pα-bounded and has a countable subgroup Ci such that Hi/Ci is pα∗ -
projective. Conjecture 18 states that a group G is p̃α-bounded if and
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only if it is in Cα. By ([19, Proposition 3.11]), any group in Cα is p̃α-
bounded. On the other hand, for α = ω + 1, the reverse containment
does not hold in V = L.

Corollary 4.4. (V = L) Assuming the axiom of constructibility, there
is a separable p̃ω+1-bounded group that is not in Cω+1.

Proof. The class of p∞∗ -projective groups is additively bounded,
closed under extension (i.e., if X is a subgroup of Y and both X and
Y/X are p∞∗ -projective, then so is Y ), and it contains the reduced
countable groups, as well as the pω+1-projective groups. This means
that every group in Cω+1 is p∞∗ -projective. So, the group from Theo-
rem 4.1 satisfies our requirements. �

In [19], Question 19 asks if a group is p̃∞-bounded if and only if
it is p∞∗ -projective. Since every p∞∗ -projective group is p̃∞-bounded,
this question is restated as Conjecture 20, which is answered in the
constructible universe by the following.

Corollary 4.5. (V = L) Assuming the axiom of constructibility, there
is a p̃∞-bounded group that is not p∞∗ -projective.

Proof. Since any group that is p̃ω+1-bounded is clearly p̃∞-bounded,
the group from Theorem 4.1 again satisfies our requirements. �
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