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IMPLICITIZATION OF DE JONQUIÈRES
PARAMETRIZATIONS

SEYED HAMID HASSANZADEH AND ARON SIMIS

ABSTRACT. One introduces a class of projective param-
eterizations that resemble generalized de Jonquières maps.
Any such parametrization defines a birational map F of Pn

onto a hypersurface V (F ) ⊂ Pn+1 with a strong handle to
implicitization. From this side, the theory developed here
extends recent work of Beńıtez and D’Andrea on monoid
parameterizations. The paper deals with both the ideal theo-
retic and effective aspects of the problem. The ring theoretic
development gives information on the Castelnuovo-Mumford
regularity of the base ideal of F. From the effective side, we
give an explicit formula of deg(F ) involving data from the
inverse map of F and show how the present parametrization
relates to monoid parameterizations.

1. Introduction and notation. Let k denote an arbitrary infinite
field which will be assumed to be algebraically closed for the geometric
purpose. A rational map F : Pn 99K Pm is defined by m + 1 forms
f = {f0, . . . , fm} ⊂ R := k[x] = k[x0, . . . , xn] of the same degree d ≥ 1,
not all null. We often write F = (f0 : · · · : fm) to underscore the
projective setup.

The image of F is the projective subvariety W ⊂ Pm whose ho-
mogeneous coordinate ring is the k-subalgebra k[f ] ⊂ R after degree
renormalization. Write S := k[f ] ≃ k[y]/I(W ), where I(W ) ⊂ k[y] =
k[y0, . . . , ym] is the homogeneous defining ideal of the image in the em-
bedding W ⊂ Pm.

We say that F is birational onto the image if there is a rational map
backwards Pm 99K Pn such that the residue classes f ′ = {f ′

0, . . . , f
′
n} ⊂

S of its defining coordinates do not simultaneously vanish and satisfy
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the relations

(f ′0(f) : · · · : f ′n(f)) = (x0 : · · · : xn),(1)

(f0(f
′) : · · · : fm(f ′)) ≡ (y0 : · · · : ym) mod I(W ).

Let K denote the field of fractions of S = k[f ]. Note that the
set of coordinates (f ′

0 : · · · : f ′
n) defining the “inverse” map is not

uniquely defined; any other set (f ′′
0 : · · · : f ′′

n ) related to f ′ by
requiring that it defines the same element of the projective space
Pn
K = Pn

k ×Spec(k) Spec (K) will do as well; both tuples are called
representatives of the rational map (see [16] for details). If k is
algebraically closed, these relations translate into the usual geometric
definition in terms of invertibility of the map on a dense Zariski open
set.

A special important case is that of a Cremona map, that is, a
birational map

G = (g0 : · · · : gn) : Pn 99K Pn

of Pn onto itself. We assume, as usual, that the coordinate forms have
no proper common factor. In this setting, the common degree d ≥ 1
of these forms is called the degree of G. Having information about the
inverse map, e.g., about its degree, will be quite relevant in the sequel.
Thus, for instance, the structural equality

(2) (g0(g
′
0, . . . , g

′
n) : · · · : gn(g′0, . . . , g′n)) = (y0 : · · · : yn),

involving the inverse map gives a uniquely defined form D ∈ R such
that gi(g

′
0, . . . , g

′
n) = yiD, for every i = 1, . . . , n. We call D ∈ k[y] the

target inversion factor of G. By symmetry, there is a source inversion
factor C ∈ k[x].

Our basic reference for the above is [16], which contains enough of
the introductory material in the form we use here (see also [6] for a
more general overview).

Now, the problem envisaged in this paper emerges from a particular
situation of rational maps, known as elimination. Namely, one takes
m = n + 1 and assumes that dim k[f ] = dimR (= n + 1). Therefore,
W is a hypersurface defined by an irreducible form F ∈ k[y] =
k[y0, . . . , yn+1]. We speak of F informally as the implicit equation of F.
Elimination theory in this formulation is the problem of determining
F or at least its properties, such as its degree. The set of the given
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forms defining F is called a parametrization of F . The theory has an
applicable side shown in a very active research area; we refer to some
of the related modern work on the subject in the bibliography.

Although the main interest classically focused on implicitization, i.e.,
in deriving the implicit equation F , more recently quite some literature
has appeared on the ideal theoretic structure of the parametrization and
the algebras naturally involved [1, 2, 4, 5, 10, 11]. In this regard, a
source of inspiration has been the classical Sylvester forms, a slightly
imprecise notion to refer to certain generators of the defining ideal of
the Rees algebra associated to the base ideal of the rational map F (i.e.,
the ideal generated by the parameterizing forms).

Actually, we go even more special, by dealing with rational maps
which, in a sense, are allusive of the classical de Jonquières plane
Cremona map. Namely, the class of parametrizations used here are
suggestive of the stellar Cremona maps by Pan [13], a bona fide
generalization of the classical plane de Jonquières maps, and inspired
by the results of Beńıtez and D’Andrea [1] on the so-called monoid
parametrizations.

Precisely, start with a Cremona map G = (g0 : · · · : gn) : Pn 99K Pn

as explained above. Let f, g ∈ R be additional forms of arbitrary
degrees d ≥ 1 and d + d, respectively. We assume throughout that f
and g are relatively prime.

Definition 1.1. The rational map F = (g0f : · · · : gnf : g) : Pn 99K
Pn+1 will be called a de Jonquières parametrization.

Note the easy, though important, fact that F is a birational map
onto its image W = V (F ). This follows immediately from the usual
field extension criterion (see, e.g., [6, Proposition 1.11]. Moreover, if
the inverse of G is G−1 = (g′0 : · · · : g′n), with g′i ∈ k[y0, . . . , yn], then

(g′0 : · · · : g′n) is a representative of the inverse F−1 of F, where the bar
over an element of k[y] denotes its class modulo (F ); note that this
representative of F−1 does not involve the last variable yn+1.

The Cremona map G may be called the underlying (or structural)
Cremona map of F.

The main results of the paper are stated in Theorem 2.6, Proposi-
tion 3.3, Proposition 4.2 and Theorem 4.5.

Let us briefly describe the contents of the next sections.
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Section 2 gives the main properties of the base ideal of the parametri-
zation, such as structure of syzygies, free resolution and regularity. Part
of the information of this section is crucial for introducing the concept
of syzygetic polynomials that arise as natural candidates for the implicit
equation (often with extraneous factors).

Section 3 deals with the implicit equation F . Here one introduces
the basic polynomials that play a role in the nature of F , such as
the syzygetic polynomials mentioned before. One heavily draws on
the hypothesis that the de Jonquières parametrization is birational,
by having the defining parametrization of the inverse map and the
inversion factor take control of the situation. This section also examines
the details of two main cases of the given de Jonquières parametrization,
called the inclusion case and the non-zero-divisor case, respectively. It
is worth pointing out that the first of these two cases covers as a very
special case the situation of a monoid parametrization.

In Section 4 one focuses on the so-called “Rees equations” of the
parametrization. These are the elements of a minimal set of generators
of a presentation ideal (the “Rees ideal”) of the Rees algebra of the base
ideal of F, one of which, of course, is F itself. These have been variously
studied by several authors, some listed in the references. The idea in
this section is based on the method of downgrading that has been used
in different sources (e.g., [2], [9], [11]). Ours is a modification of this
method, hereby called birational downgrading, by which we use the
forms defining the inverse map rather than the usual procedures in the
literature. The main result yields a set of Rees equations candidates for
a set of minimal generators, generating an ideal having as a minimal
prime component the entire Rees ideal. The sections end with a result
giving the precise relation between the Rees ideal of de Jonquières
parameterizations and the one of the monoid parameterizations.

2. Syzygetic background. In this section we establish the basic
relations of degree 1 of the forms g0f, . . . , gnf, g defining the rational
map F of Definition 1.1. For the next lemma and proposition (g0 : · · · :
gn) defines any rational map, not necessarily Cremona.

2.1. A mapping cone. In this part, we state a very general result
regarding a certain mapping cone naturally associated to the present
data. The construction is completely general and does not require a
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graded situation. Accordingly, we refresh our data just assuming that
I ⊂ R := k[x0, . . . , xn] is an arbitrary ideal and f, g ∈ R are given
elements.

Lemma 2.1. If gcd(f, g) = 1, then:

(a) If : (g) = (I : (g))f .
(b) Multiplication by g induces an isomorphism R/(I : (g))f ≃

(If, g)/If of R-modules.

Proof. (a) The inclusion If : (g) ⊃ (I : (g))f is obvious regardless of
any relative assumption about f, g. Conversely, let b ∈ R be such that
bg ∈ If . Then f divides bg and, since gcd(f, g) = 1, then f divides
b. Say, b = af , with a ∈ R. Then (ag)f ∈ If ; hence, ag ∈ I, i.e.,
a ∈ I : (g). Therefore, b ∈ (I : (g))f .

(b) One has (If, g)/If ≃ (g)/(g) ∩ If = (g)/(If : (g))g ≃ R/If :
(g), where the last isomorphism is multiplication by g−1. Now apply
(a). �

Quite generally, a surjective R-module homomorphism π : Rq � I :
(g) induces a content map c(g) : Rq → Rn+1. In explicit coordinates,
let π be induced by choosing a set of generators {c1, . . . , cq} of I : (g),
so that π(vj) = cj , where {v1, . . . , vq} is the canonical basis of Rq.
Given a set {g0, . . . , gp} of generators of I, let {e0, . . . , ep} denote the
canonical basis of Rp+1. Write cjg =

∑p
i=0 hijgi, with hij ∈ R. Then

c(g)(vj) =
∑p
i=0 hijei, for j = 1, . . . , q.

This simple construction will be used in the following result.

Lemma 2.2. Let R and S denote finite free resolutions of R/I and
R/(I : (g))f , respectively. Then multiplication by g lifts to a map
S → R whose associated mapping cone is a free resolution of R/(If, g).
In particular, a syzygy matrix of the generators of (If, g) has the form

Ψ =

(
φ c(g)
0 −fπ

)
,

where φ denotes a syzygy matrix of a given set of generators of I.

Proof. As in Lemma 2.1(b), multiplication by g induces an injective
R-module homomorphism R/(I : (g))f ↩→ R/If with image (If, g)/If .
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This homomorphism lifts to a map of complexes (free resolutions)

R : · · · → Rm1
φ→ Rp+1 fg−→ R → R/If → 0

↑ c(g) ↑ ·g ↑ ·g ↑

R : · · · → Rr1
ψ→ Rq

fπ−→ R → R/(I : (g))f → 0,

where g = (g0 · · · gp), and c(g) is the above content map. Then the cor-
responding mapping cone is an R-free resolution of (R/If)/((If, g)/If)
≃ R/(If, g) (see [7, Exercise A3.30]). �

2.2. Graded minimality and regularity. We move back to the
original graded situation. Namely, set I = (g0, . . . , gn), where the gi’s
are forms of degree d ≥ 1 minimally generating I, and f, g are forms
with deg(g) = d+deg(f) such that gcd(f, g) = 1. Also, let {c1, . . . , cq}
be a set of minimal generators of I : (g), with cj homogeneous of degree
Cj .

Let

· · · →
m1⊕
j=1

R(−a1j)
φ−→

n+1⊕
i=0

R(−d)
g−→ R → R/I → 0

and

· · · →
q1⊕
j=1

R(−C1j)
ψ−→

q⊕
j=1

R(−Cj)
π−→ R → R/I : g → 0

stand for minimal graded free resolutions of R/I and R/I : g, respec-
tively, from which we immediately derive minimal graded free resolu-
tions of R/If and R/(I : g)f :

· · ·
m1⊕
j=1

R(−a1j − deg(f))
φ1=φ−−−−→ R(−(d+ deg(f)))n+1

f g−−→ R → R/If → 0,

· · · →
q1⊕
j=1

R(−C1j − deg(f))
ψ1=ψ−−−−→

q⊕
j=1

R(−Cj − deg(f))

f π−−→ R → R/(I : g)f → 0.
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Shifting the second of these resolutions by −(d+ deg(f)), one obtains
a map of complexes, where the vertical homomorphisms are also ho-
mogeneous of degree 0

· · · →
⊕mi

j=1 R(−aij − d) → · · ·
ϕ1
→ R(−(d + d))n+1 → R → R/If →

ci(g) ↑ c(g) ↑ ·g ↑ ·g ↑

· · · →
⊕qi
j=1 R(−Cij − (d + 2d)) → · · ·

ψ1
→

⊕q
j=1 R(−Cj − (d+ 2d)) → R(−(d + d)) → R

(I:g)f
(−(d + d)) →

where we have written d := deg(f) for editing purposes.

We let reg (M) denote the Castelnuovo-Mumford regularity of a
graded R-module, and let pd (M) stand for its homological (i.e., pro-
jective) dimension.

One has:

Proposition 2.3. With the above notation, the associated mapping
cone C• is a graded free resolution of R/(If, g):

· · · →
( m1⊕

j=1

R(−a1j − deg(f))

)
⊕

( q⊕
j=1

R(−Cj − (d+ 2deg(f)))

)
Ψ−→ R(−(d+ deg(f)))

n+2 → R → R/(If, g) → 0.

Moreover, if reg (R/I) < d+deg(f)−2, then this resolution is minimal.

Proof. Applying the minimality criterion stated in [7, Exercise
A3.30] it suffices to show that −aij − deg(f) > −Cik − (d + 2deg(f))
for all i, j, k. Now, on one hand, aij − i − 1 ≤ reg(R/I), for any i, j,
and on the other hand, for any i, k, Cik ≥ i − 1, where C0k = Ck.
Therefore, the condition is fulfilled if the regularity of R/I is bounded
as stated. �

Corollary 2.4. With the above notation, assume that pd (R/(I :
g)f) ≤ pd (R/I)− 1 (e.g., if g ∈ I and I has codimension ≥ 2). Then

pd (R/(If, g)) ≤ pd (R/I),

with equality provided reg (R/I) < d+ deg(f)− 2.

Since the preceding regularity bound implies, in particular, the
minimality of the above graded free presentation of R/(If, g), thus
having a direct impact on the search for a minimal set of bihomogeneous
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Rees equations, it is pertinent to understand how this bound reflects
on the current data.

Proposition 2.5. Keeping the previous notation, one has:

(a) reg (R/(If, g)) ≤ max{reg (R/I)+deg(f), reg (R/(I : g))+d+
2deg(f)− 1}.

(b) If, moreover, reg (R/I) ≤ d+ deg(f)− 2, then

reg (R/(If, g)) = reg (R/(I : g)) + d+ 2deg(f)− 1.

Proof. (a) Computing the regularity in terms of the twists of the
graded free resolution C• in Proposition 2.3, one finds

reg (R/(If, g)) ≤ max{reg (R/If), reg (R/(I : g)f) + d+ deg(f)− 1}
= max{reg (R/I) + deg(f), reg (R/(I : g))

+ d+ 2deg(f)− 1}.

(b) By the second assertion in Proposition 2.3, the mapping cone is a
graded minimal free resolution. Therefore, if reg (R/I) < d+deg(f)−2,
then the maximum in (a) is the second term. �

2.3. Regularity in the case of isolated base points. We keep the
notation of the previous subsection. Namely, I = (g0, . . . , gn), where
the gi’s are forms of degree d ≥ 1 minimally generating I, and f, g are
nonzero forms such that deg(g) = d + deg(f) and gcd(f, g) = 1. For
any ideal a ⊂ R, we denote by asat its saturation a : (x)∞. If M is a
graded R-module, we will set

indeg (M) := inf{µ | Mµ ̸= 0},

with the convention that indeg (0) = +∞, and

end (M) := sup{µ | Mµ ̸= 0},

with the convention that end (0) = −∞.

Theorem 2.6. Suppose that dim(R/I) ≤ 1. Then

(1) reg (R/I) = max{(n + 1)(d − 1) − indeg (Isat/I), n(d − 1) −
indeg ((α) : I/I)}, where α denotes a maximal regular sequence
of d-forms in I.
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(2) If in addition I is the base ideal of a Cremona map, then
reg (R/I) ≤ n(d− 1)− 1.

(3) reg (R/(If, g)) ≤ reg (R/I) + d+ 2deg(f)− 1.

Proof. (1) We copy ipsis litteris the argument in the proof of [8,
Theorem 1.2], updating the setup. Thus, the ground ring now has
dimension n + 1, the base ideal I ⊂ R has codimension n (hence,
Iun = Isat and, necessarily, d ≥ 2). Note that one can always
pick a maximal regular sequence of d-forms in I. We thus obtain
(Isat/I)ˇ= (Isat/I)((n+1)(d−1)); hence, end (Isat/I)+indeg (Isat/I) =
(n+ 1)(d− 1).

(2) In the case where I is the base ideal of a Cremona map,
indeg (Isat/ I) ≥ d + 1 according to [14] (by convention, if I is
saturated, one sets indeg (Isat/I) = +∞). Therefore, (n+ 1)(d− 1)−
indeg (Isat/I) ≤ n(d − 1) − 2. On the other hand, (α) ( I since I
defines a Cremona map and d ≥ 2, where α is as in item (1). This
gives indeg ((α) : I/I) ≥ 1 which implies that n(d − 1) − indeg ((α) :
I/I) ≤ n(d− 1)− 1. The assertion then follows from (1).

(3) The following result was proved in [3]: if M,N are finitely

generated graded modules over R such that dim(TorR1 (M,N)) ≤ 1,

then reg TorR0 (M,N)) ≤ reg(M) + reg(N).

We will apply this assertion with M = R/If and N = R/(g). One
has

TorR1 (R/If,R/g)) ≃ If ∩ (g)/(g)If ≃ (If : g)g/If · g
≃ (If : g)/If(− deg(g))

≃ (I : g)/I(− deg(f)− deg(g)),

whose annihilator is the ideal I : (I : g). Thus, this module has
dimension at most one as dimR/(I : (I : g)) ≤ dim(R/I) ≤ 1 by
assumption. Now, applying the above yields

reg (R/(If, g)) = reg (TorR0 (R/If,R/g)))

≤ reg(R/If) + reg(R/(g))

= reg (R/I) + deg (f) + d+ deg (f)− 1

= reg (R/I) + d+ 2deg(f)− 1,

as was to be shown. �



158 S.H. HASSANZADEH AND A. SIMIS

3. The search for the implicit equation. We keep the notation
of Section 1.

3.1. Monoids and syzygetic polynomials. A form F of the shape
F = G + Hyn+1, where G,H are forms in k[y0, . . . , yn], is called a
monoid (cf., [12] for generalities on these forms). Thus, this is simply
a polynomial of degree 1 in the one variable polynomial ring B[yn+1],
with homogeneous coefficients in B = k[y0, . . . , yn]. As we will see, a
good deal of the results will hereafter involve monoids. We will often
say an yn+1-monoid to stress the privileged variable yn+1.

The following gadget will be basic throughout. Consider a syzygy
of J = (If, g) as in Lemma 2.2 with nonzero last coordinate. Its
polynomial version is a 1-form in R[y0, . . . , yn, yn+1]

(3)

n∑
i=0

hijyi − fcjyn+1,

where I : (g) = (. . . , cj , . . .) and cjg =
∑n
i=0 hijgi.

Definition 3.1. Suppose that (g0 : · · · : gn) defines a Cremona map,
and let (g′0 : · · · : g′n) define its inverse map. The jth syzygetic
polynomial is the form

(4)

n∑
i=0

hij(g
′
0, . . . , g

′
n)yi − f(g′0, . . . , g

′
n)cj(g

′
0, . . . , g

′
n)yn+1 ∈ k[y]

:= k[y0, . . . , yn, yn+1],

obtained from (3) by evaluating xi 7→ g′i, for i = 0, . . . , n.

The main property of such forms is the following.

Lemma 3.2. The jth syzygetic polynomial as introduced in Defini-
tion 3.1 belongs to the defining ideal of the Rees algebra of the ideal
(If, g); in particular, it is a multiple of the implicit equation of the
parametrization given by {If, g}.

Proof. To see this, recall that, since the rational map defined by
the generators of (If, g) is birational onto V (F ), one has a k-algebra
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isomorphism of the Rees algebras

(5) RR((If, g)) ≃ RS(I
′),

where I ′ = (g′0, . . . , g
′
n) and S = k[y]/(F ) (see [6, Theorem 2.18, proof

of (a) ⇒ (b)]). This isomorphism is induced by the identity map of
R[y] = k[y][x] = k[x,y]. In terms of the respective defining ideals J
and K over k[x,y], we have an equality J = K. Therefore, by definition
of K, the syzygetic polynomial

P = P (y) :=

n∑
i=0

hi(g
′
0, . . . , g

′
n)yi − f(g′0, . . . , g

′
n)cj(g

′
0, . . . , g

′
n)yn+1

vanishes modulo Fk[x,y]. But, since it is a polynomial in y only, it
necessarily belongs to (F ) ⊂ k[y], i.e., it is a multiple of the implicit
equation F . �

This suggests that a syzygetic polynomial is a fair candidate for the
implicit equation F and will coincide with F up to a nonzero field
element provided it be irreducible.

3.2. The degree of the implicit equation. In this part we establish
a formula for the degree of F in terms of the data introduced so far.

Proposition 3.3. Suppose that G = (g0 : · · · : gn) : Pn 99K Pn defines
a Cremona map of degree d with inverse map G−1 = (g′0 : · · · : g′n) and
target inversion factor D ⊂ k[y0, . . . , yn]. Let f, g ∈ R = k[x0, . . . , xn]
be forms, with deg(g) = d + deg(f). Letting F ⊂ k[y0, . . . , yn, yn+1]
denote the implicit equation of the parametrization (fg0 : · · · : fgn :
g) : Pn 99K Pn+1, one has:

(i) F is the yn+1-monoid

(6)
g(g′)− yn+1f(g

′)D

gcd(g(g′), f(g′)D)
.

(ii) deg(F ) = deg(g) deg(G−1)−deg(gcd(g(g′), f(g′)D)) = deg(f)
deg(G−1) + deg(D) + 1− deg(gcd(g(g′), f(g′)D)).

In particular, deg(F ) ≤ deg(g) deg(G−1).
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Proof. (i) Set S := k[y0, . . . , yn+1]/(F ) for the homogeneous co-
ordinate ring of the image of F. Since the associated de Jonquières
parametrization defined by the generators of (If, g) is birational, a
formula such as (2) implies the vanishing of the 2× 2 minors of(

(fg0)(g
′) · · · (fgn)(g

′) g(g′)
y0 · · · yn yn+1

)
modulo (F ). In particular, each of the minors

Pi := yig(g
′)− yn+1f(g

′)gi(g
′)

fixing the last column, is a multiple of F . On the other hand, using (2)
for the Cremona map G yields gi(g

′) = yiD, for i = 0, . . . , n. Since yi
is not a factor of F , it follows that F divides the nonzero yn+1-monoid
g(g′)−yn+1f(g

′)D. Clearly, F is not a factor of gcd(g(g′), f(g′)D) as
the latter lives in k[y0, . . . , yn] while F involves effectively the variable
yn+1.

Now
g(g′)− yn+1f(g

′)D

gcd(g(g′), f(g′)D)

is an yn+1-monoid with relatively prime components, hence is irre-
ducible. Therefore, it must coincide with F .

(ii) Taking degrees, the first equality in the stated formula fol-
lows readily, while the subsequent equality follows from the stand-
ing assumption that deg(g) = deg(f) + deg(G) and from the equality
deg(G) deg(G−1) = deg(D) + 1 by definition of the inversion factor
D. �

Corollary 3.4. If gcd(f(g′), g(g′)) = 1, then

deg(F ) = deg(g) deg(G−1)− deg(gcd(g(g′), D)).

In particular, deg(f) deg(G−1) + 1 ≤ deg(F ) < deg(g) deg(G−1).

Proof. The displayed equality follows immediately from the formula
in Proposition 3.3, so only the lower bound is the question. For that,
writing deg(g) = deg(f) + deg(G) yields deg(F ) = deg(f) deg(G−1) +
deg(G) deg(G−1)−deg(gcd(g(g′), D)). But deg(G) deg(G−1) = deg(D)
+1, while obviously deg(gcd(g(g′), D)) ≤ deg(D). �
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3.3. The inclusion case. We focus on the case where g ∈ I.

Here one has I : (g) = R, which in the notation of subsection 2.1
tells us that π : R → R can be taken to be the identity map and the
content map c(g) : R → Rn+1 picks up only one additional syzygy.
Here the syzygy matrix of the given generators of (If, g) is of the form

(7) Ψ =

(
φ c(g)
0 −f

)
,

where φ denotes a syzygy matrix of the given set of generators of I and
c(g) stands for the column vector defining the content map.

Thus, there is only one syzygetic polynomial P :=
∑n
i=0 hi(g

′)yi −
f(g′)yn+1. Keeping the assumptions of Proposition 3.3, one has:

Proposition 3.5. Assume that gcd(f(g′), g(g′)) = 1. If P ∈ k[y0, . . . ,
yn, yn+1] is a syzygetic polynomial, the following conditions are equiv-
alent :

(i) g ∈ I.
(ii) deg(F ) = deg(f) deg(G−1) + 1 and (F ) = (P ).

Proof. (i) ⇒ (ii). Quite generally, when g ∈ I, one has deg(P ) =
deg(f) deg(G−1) + 1. On the other hand, by Corollary 3.4, deg(F ) ≥
deg(f) deg(G−1) + 1. Since F is a factor of P , we are through.

(ii) ⇒ (i). Since deg(P ) = deg(f) deg(G−1)+1, confronting with the
general shape of P as in Definition 3.1 yields deg(cj(g

′
0, . . . , g

′
n)) = 0

for a generator cj of the conductor I : g. This forces cj to be invertible,
so g ∈ I. �

A special case of Proposition 3.5 is a result of [1]:

Corollary 3.6. If G is the identity map of Pn and gcd(f, g) = 1, then

(8) F = g(y0, . . . , yn)− f(y0, . . . , yn) yn+1.

In particular, deg(F ) = deg(f) + 1.

Proof. In this case, the inverse is also the identity, so gcd(f(g′), g(g′))
= gcd(f(y), g(y)) = 1. On the other hand, the target inversion factor
is 1, so the polynomial (6) is g(y0, . . . , yn)− f(y0, . . . , yn) yn+1. �
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At the other end of the spectrum, so to say, we find as a consequence
a more “typical” situation:

Corollary 3.7. Keeping the notation of Proposition 3.3, assume that
g ∈ I. If f is a general form, then (F ) = (P ).

Proof. Since f is chosen to be general and g and g′ are fixed once
for all, the condition gcd(f(g′), g(g′)) = 1 is fulfilled. �

If f is not sufficiently general it may happen that P as above is not
irreducible as the following example entails.

Example 3.8. Take the maximal minors of the following 4× 3 matrix
over R = k[x0, x1, x2, x3]

0 0 −x1

−x0 x0 − x1 x1

x0 0 0
x2 −x3 x3

 .

These 3-forms g0, g1, g2, g3 define a Cremona map of P3 with inverse
given by the 2-forms

−y0y3, y0y2, −y1y3 − y2y3, −y22 − y2y3

([15, Section 2.1]). If one takes g ∈ I = (g0, g1, g2, g3) and f sufficiently
special, but still such that gcd (f, g) = 1, then it is apparent that y3
will come out as a factor of P , e.g., take g = x0g3 = x3

0x3 (the minor
corresponding to the last three rows) and f = x0+x2; then P = −y3F ,
where F is the implicit quadric equation.

Yet another special notable case of g ∈ I is worth isolating as well,
where the data are somewhat twisted around. We recall that a form
g ∈ R = k[x] is called homaloidal if its partial derivatives (the so-called
polar map of G) define a Cremona map. The ideal generated by the
partial derivatives of a form is often called its gradient ideal.

Corollary 3.9. (char (k) = 0). Let g ∈ R = k[x] denote a reduced
homaloidal form of degree d+ 1, let I ⊂ R stand for the gradient ideal
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of g, and let {g′0, . . . , g′n} ⊂ k[y0, . . . , yn] define the inverse map of the
polar map of g. If f =

∑n
i=0 λixi is a general linear form, then

(9) F =
n∑
i=0

(yi − (d+ 1)λi yn+1) g
′
i(y0, . . . , yn).

In particular, deg(F ) = deg(g′i) + 1.

The polynomial (9) might be called the general Eulerian equation of
a polar Cremona map.

Remark 3.10. We note that, under the hypothesis that g ∈ I, there
is an inclusion J ⊂ I. This triggers a natural injection R(J) ⊂ R(I) of
Rees algebras. Thus, in principle, this would give information about the
defining Rees equations of J out of these of the base ideal I. However,
setting up explicit presentations requires moving around variables, so
the ultimate computational advantage is not so clear. Also note that, if,
moreover, I is saturated and f is sufficiently general, then J = I∩(f, g)
and J : I = (f, g) (to see the last equality, note it is obvious if ht I ≥ 3
since {f, g} is a regular sequence, and if ht I = 2 we just need that no
minimal prime of I be a minimal prime of (f, g), which is the case if
f is sufficiently general). One may ask how implicitization may profit
from this simple situation of linkage in a coarse sense.

3.4. The non-zero-divisor case. Assume that g is a non-zero-
divisor on R/I. In this situation, I : (g) = I; hence, the map π in
Lemma 2.2 boils down to the structural surjection φ : Rn+1 → I. Ac-
cordingly, the content map c(g) reduces to g times the identity map
of Rn+1. Therefore, a presentation matrix of J = (If, g) now has the
form

Ψ =

(
φ g · 1n+1

0 −fg

)
,

where φ is a syzygy matrix of I and g = (g0 · · · gn).

Proposition 3.11. Let G = (g0 : · · · : gn) : Pn 99K Pn stand for
a Cremona map of degree d with base ideal I = (g0, . . . , gn), and let
f, g ∈ R be given as before. Suppose that g is a non-zero-divisor on
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R/I. Then the implicit equation F is a factor of

P := g(g′0, . . . , g
′
n)− f(g′0, . . . , g

′
n)Dyn+1,

where g′0, . . . , g
′
n ⊂ k[y0, . . . , yn] define the inverse G−1 to G and D is

the target inversion factor. In particular, one has

deg(F ) ≤ deg(f) deg(G−1) + deg(D) + 1.

Moreover, the following conditions are equivalent :

(a) (P ) = (F ),
(b) gcd(g(g′), f(g′)D) = 1,
(c) deg(F ) = deg(f) deg(G−1) + deg(D) + 1.

Proof. Drawing on the above format of Ψ, consider the 1-form
corresponding to a Koszul syzygy as above

Qi(x,y) := gyi − fgiyn+1, i ∈ {0, . . . , n},

and take the corresponding syzygetic y-polynomial

Pi := g(g′0, . . . , g
′
n)yi − f(g′0, . . . , g

′
n) gi(g

′
0, . . . , g

′
n) yn+1.

Note that Pi is the numerator in the expression of F as obtained in the
proof of Proposition 3.3 (i).

Clearly, then, (a) through (c) are equivalent assertions. �

Remark 3.12. One wonders what is a more precise choice of f, g that
guarantees the irreducibility of the form P in the above proposition.
Note that all Koszul-like syzygies of J = (If, g) give rise to the same
polynomial P , so there is not much elbow room from this angle.
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4. The search for Rees equations.

4.1. The birational downgrading method. For the results of this
section, we recall a form of the so-called downgrading map in the
context of birational maps. Versions of this notion have been considered
before in different contexts ([2], [9], [11]).

Let x := {x0, . . . , xn} and y := {y0, . . . , yn} be two sets of mutually
independent variables over k. Given a bihomogeneous polynomial
Q = Q(x,y) ∈ k[x,y] of bidegree (p, q) (p ≥ 1), choose bihomogeneous
polynomials Qi(x,y), 0 ≤ i ≤ n, such that Q =

∑n
i=0 xiQi(x,y),

called an x-framing of Q. In addition, fix a sequence of forms of the
same degree H := {h0, . . . , hn} ⊂ k[y].

The polynomial
∑n
i=0 hiQi(x,y) is called an H-downgraded polyno-

mial of Q. We use the notation DH(Q) for an H-downgraded poly-
nomial even though it is not well-defined since the x-framing is only
stable modulo the trivial (Koszul) relations of x. We will also allow
for a harmless flat extension such as k[x,y] ⊂ k[x,y, z], where z is an
additional set of variables.

This general notion will be applied to forms in k[y, yn+1] while
H ⊂ k[y] is the set of forms defining the inverse of a Cremona map
F : Pn 99K Pn–in which case, we talk informally about a birational
downgrading. The common downgrading is typically the case where
the Cremona map is the identity map.

As in subsection 3.1, we stick to the notation RR(J) ≃ R[y]/J for
the Rees algebra of an ideal J ⊂ R := k[x] even if x and y have different
cardinalities.

Lemma 4.1. Let g = {g0, . . . , gn} ⊂ R be forms of fixed degree
defining a Cremona map G of Pn, not necessarily without a proper
common divisor. Let g = gn+1 ∈ R stand for an additional form, of
the same degree. Write J ⊂ R[y, yn+1] for the presentation of the
Rees algebra of the ideal J = (g, g) based on these generators. Let
H := {g′0, . . . , g′n} ⊂ k[y] denote the set of defining forms of the inverse
map to G, and let DH denote the corresponding birational downgrading.
Then

Q =
∑
r≥0

Qr(x,y)y
r
n+1 ∈ J =⇒ DH(Q) =

∑
r≥0

DH(Qr)y
r
n+1 ∈ J .
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Proof. Since the rational map Pn 99K Pn+1 is birational onto its
image and H (modulo the implicit equation) defines its inverse, by a
similar token as in (5), one has an isomorphism

(10) RR((g, g)) ≃ RS((H)),

where S = k[y, yn+1]/(F ) is the homogeneous coordinate ring of the
image of F. One proceeds as in the argument of Lemma 3.2, with the
obvious adaptation, namely, instead of evaluating fully by xi 7→ g′i, one
only evaluates the variables in a frame. Since fully evaluating either Q
or its downgraded partner DH(Q) gives a form vanishing on H by the
isomorphism (10), one has DH(Q) ∈ J as stated. �

For the subsequent results, we need an iterated version of the
framing-downgrading gadget DH(Q). Namely, one sets

(11) D0
H(Q) = Q, D

(ℓ)
H (Q) := DH(D

(ℓ−1)
H (Q)), for all ℓ ≥ 1.

We say that D
(ℓ)
H (Q) is fully downgraded when it eventually lands in

k[y0, . . . , yn+1], that is, when ℓ = degx(Q).

We now apply to the original setup of the base ideal (If, g) ⊂ R,
where I = (g0, . . . , gn) is the base ideal of the Cremona map G,
and gcd (f, g) = 1. As before, let g′0, . . . , g

′
n have gcd 1, defining the

inverse map to G. Accordingly, we take H = {g′0, . . . , g′n}. Note that
our previous syzygetic polynomials are among the fully downgraded

D
(ℓ)
H (Q), for Q a syzygy of J with nonzero last coordinate.

Proposition 4.2. The defining ideal of the Rees algebra of the ideal
J = (If, g) is a minimal prime of the ideal

D :=
(
I, {D(ℓ)

g′0,...,g
′
n
(Q), 0 ≤ ℓ ≤ degx(Q)}

)
,

where I stands for the defining ideal of RR(I) and Q ∈ k[x,y] runs
through the biforms corresponding to the syzygies of J with nonzero last
coordinate.

Proof. By Lemma 4.1, D is contained in the presentation ideal of
RR(J) which has codimension n + 1 and is a prime ideal. Therefore,
it suffices to show that D has codimension n + 1 as well. But I is a
prime ideal of codimension n and, moreover, is contained in the ideal
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(x)k[x,y, yn+1] because I is generated by algebraically independent
elements over k. Since the fully downgraded elements of D belong to
k[y, yn+1], this ideal has codimension at least one more. �

Concerning the problem of determining a set of generators of the
presentation ideal of RR(J), it is not enough to assume that f is a
general form in order that the (uniquely determined) fully downgraded
be irreducible, as we have seen in the non-zero-divisor case. But, even
when no Koszul relation is a minimal syzygy generator, taking f general
may not help, as the following simple example indicates.

Example 4.3. Let I = (x0x1, x0x2, x1x2) define the standard qua-
dratic plane Cremona map. Let f = λ0x0 + λ1x1 + λ2x2 be a general
form (at least λ0λ1λ2 ̸= 0). Take g = x2

0x1−x3
2, for example. The con-

ductor I : (g) is generated by {x0, x1}. Accordingly, a set of minimally
generating syzygies of J = (If, g) consists of two linear syzygies com-
ing from I and two additional syzygies corresponding to x0, x1. The
syzygetic polynomial out of any of the two last syzygies has degree 5
and has a so-called extraneous factor of degree 1.

Question 4.4. Suppose that f is a general form. Does a set of
generators of the presentation ideal of RR(J) consist of those of I plus
the downgraded polynomials

{D(ℓ)
g′0,...,g

′
n
(Q), 0 ≤ ℓ ≤ degx(Q)}

divided by the corresponding extraneous factors?

The question lacks any precision since one would have to define
“extraneous factor.” In any case, the ideal D has a central place in
this approach, which could be called the downgraded Rees ideal.

4.2. The method of the associated monoid parametrization.
In this subsection we will take a slightly different approach to get
to the presentation ideal of the Rees algebra of J = (If, g) ⊂ k[x]
defining a de Jonquières parametrization F : Pn 99K Pn+1, with
underlying Cremona map G : Pn 99K Pn. As in the earlier notation,
I = (g0, . . . , gn) ⊂ k[x], while the inverse map G−1 is defined by certain
forms g′0, . . . , g

′
n ∈ k[y] = k[y0, . . . , yn].
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By Proposition 3.3 (i), F is an yn+1-monoid, say, F = Fδ−yn+1Fδ−1,
where δ = deg(F ) and Fδ, Fδ−1 ∈ k[y] are forms of degrees δ, δ − 1,
respectively, such that gcd(Fδ, Fδ−1) = 1.

Set hδ := Fδ(x) and hδ−1 := Fδ−1(x), so hδ, hδ−1 ∈ k[x] are
forms of degrees δ, δ − 1, respectively. Consider the standard monoid
parametrization of Im (F) defined by hδ, hδ−1, namely:

(12) M := (hδ−1x0 : · · · : hδ−1xn : −hδ) : P
n 99K Pn+1.

Write K := (hδ−1x0, . . . , hδ−1xn, hδ) ⊂ k[x] for the base ideal of M.

Next is the main result of this part.

Theorem 4.5. With the above notation, one has:

(a) F and M have the same implicit equation.

(b) F = G ◦M.

(c) Let

R(J) ≃ k[x,y, yn+1]/IF

and

R(K) ≃ k[x,y, yn+1]/IM

be presentations of the two Rees algebras based on the given generators.
Then

IF = IM(G) : C∞

and

IM = IF(G−1) : D∞,

with

IM(G) := {h(g0, . . . , gn;y, yn+1) | h(x;y, yn+1) ∈ IM}

and

IF(G−1) := {h(g′0(x), . . . , g′n(x);y, yn+1) | h(x;y, yn+1) ∈ IF}

where C ∈ k[x] and D ∈ k[y] are, respectively, the source inversion
factor and the target inversion factor of G.
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Proof. (a) This follows immediately from Corollary 3.6 and the
definition of the forms hδ, hδ−1.

(b) This is pretty much tautological as the inverse of M is the
restriction to V (F ) ⊂ Pn+1 of the map (y0 : · · · : yn), a special case of
a de Jonquières parametrization, but otherwise very well known (see,
e.g., [12]). Then, obviously M−1 ◦ F = G, as required.

(c) We first show the inclusions IF(G−1) ⊂ IM and IM(G) ⊂ IF.
For the first of these, let h(x;y, yn+1) ∈ IF be a bihomogeneous

element. By definition, one has h(x; fg0, . . . , fgn, g) = 0, while we
wish to show that h(g′(x);ha−1x0, . . . , ha−1xn, ha) = 0. For this, let
D denote the target inversion factor of G. Recall that

hδ =
g(g′(x))

deg(f)
and hδ−1 =

f(g′(x))D(x)

deg(f)
,

where deg(f) = gcd(g(g′(x)), f(g′(x))D(x)). Since h is bihomoge-
neous, we can pull out a power of deg(f) as a factor; hence, the asser-
tion is equivalent to showing that

(13) h(g′(x); f(g′(x))D(x)x0, . . . , f(g
′(x))D(x)xn, g(g

′(x))) = 0.

By definition,D(x)xi = gi(g
′(x)), for all i. Therefore, (13) is equivalent

to the vanishing of

h(g′(x); f(g′(x))g0(g
′(x)), . . . , f(g′(x))gn(g

′(x)), g(g′(x)))

= h(x; fg0, . . . , fgn, g)(g
′(x)).

The rightmost polynomial is the result of evaluating the null polyno-
mial, so itself is null.

To argue for the second inclusion above, likewise let h(x;y, yn+1) ∈
IM be a bihomogeneous element. By definition, h(x;hδ−1x, hδ) = 0,
whereas one wishes to show that

H := h(g(x); f(x)g(x), g(x)) = 0.

For this, we first prove that substituting g′(x) for x in H gives zero;
namely, by a similar token as above, using the characteristic property
of the target factor D, there are suitable integers s, r such that:

H(g′(x)) = h(g(g′(x)); f(g′(x))g0(g
′(x)), . . ., f(g′(x))gn(g

′(x)), g(g′(x)))
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= deg(f)rDsh

(
x;

f(g′(x))

deg(f)
g(g′(x)),

g(g′(x))

deg(f)

)
= deg(f)rDsh(x;hδ−1x, hδ) = 0.

Consider now the source inversion factor C ∈ k[x], whose characteristic
property is that g′i(g) = Cxi, for all i. Then, for a suitable exponent t,
one has

CtH = Ct h(g(x); f(x)g(x), g(x))=(h(g(x); f(x)g(x), g(x)))(g′(g(x)))

= ((h(g(x); f(x)g(x), g(x))) (g′(x))) (g(x)) = H(g′(x))(g(x)) = 0,

which proves the assertion.

To complete the proof of the theorem, we show the equality IF =
IM(G) : C∞, the other equality being proved in the same fashion.
Since IM(G) ⊂ IF and the ideal IF is prime, the inclusion IF ⊃
IM(G) : C∞ is clear. Conversely, let h(x;y) ∈ IF. By what we have
proved above, h(g′(x);y) ∈ IM, and hence h(g′(g(x));y) ∈ IM(G).
Again, g′(g(x)) = Cx and h(x;y) is bihomogeneous. Therefore, for a
suitable exponent u, one has C uh(x;y) = h(g′(g(x));y) ∈ IM(G),
which says that h(x;y) ∈ IM(G) : C∞. This proves the other
inclusion. �

Remark 4.6. The result of Proposition 4.2 and the one of Theorem
4.5 (c) give different approaches to describe the presentation ideal IF in
an explicit way. The first has the advantage of stressing a mechanical
way to get the downgraded Rees ideal D; unfortunately, the final step
may depend on the knowledge of the primary decomposition of D. The
second has the advantage of starting with the simpler ideal IM but is
dependent on knowing the implicit equation beforehand and a source
inversion factor (the latter being equivalent, in practice, to be able to
get an inverse map explicitly). This ideal has also been described in
[1, Theorem 3.1] in a sort of “reverse” downgrading process starting
with the equation F .

It might be appropriate comparing the two procedures for compu-
tational as well as theoretical purposes.
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1. T.C. Beńıtez and C. D’Andrea, Minimal generators of the defining ideal of the
Rees algebra associated to monoid parameterizations, Comput. Aid. Geom. Design
27 (2010), 461-473.
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