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ABSTRACT. As defined by Ye [12], a ring is semiclean if
every element is the sum of a unit and a periodic element. Ahn
and Anderson [1] called a ring weakly clean if every element
can be written as u + e or u − e, where u is a unit and e an
idempotent. A weakly clean ring is semiclean. We show the
existence of semiclean rings that are not weakly clean. Every
semiclean ring is 2-clean. New classes of semiclean subrings of
R and C are introduced and conditions are given when these
rings are clean. Cleanliness and related properties of C(X,A)
are studied when A is a dense semiclean subring of R or C.

1. Introduction. All rings will be commutative with identity. As
defined by Nicholson, an element a in a ring R is clean [2, 7] if a can
be written as a = u + e, where u ∈ U(R), the group of units of R,
and e ∈ Id (R), the set of idempotents of R. R is a clean ring if every
element is clean. Ye [12] called an element a in a ring R semiclean if
a can be written as a = u + p, where u ∈ U(R) and p ∈ Per (R), the
set of periodic elements of R (that is, pk = pl for k �= l). R is called
a semiclean ring if every element is semiclean. Several related notions
have been studied in the literature, in particular, weakly clean rings [1],
n-clean rings and Σ-clean rings [11].

Let X be a completely regular Hausdorff space. Let 1 ∈ A be a sub-
ring and subspace of R in the usual topology, and let C(X,A) denote
the set of all continuous A-valued functions on X . Under pointwise
addition and multiplication C(X,A) is a commutative ring with unity.
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The subset C∗(X,A) of C(X,A), consisting of all bounded functions
in C(X,A), is a subring of C(X,A). When A = R, these rings are sim-
ply denoted C(X) (likewise C∗(X)) [4]. We are interested in studying
cleanliness and related properties for the rings C(X,A) and C∗(X,A)
which depend on the topological properties of X and algebraic prop-
erties of A. Azarpanah [3] and McGovern [6] independently proved
that C(X) and C∗(X) are clean if and only if X is a strongly zero-
dimensional space. If A is a proper subfield of R, then C(X,A) is
always clean regardless of X . Hager and Kimber [5] considered the
rings C(X,A) when A is a dense clean subring of R, with unity, which
is not a field and X is zero-dimensional. In this case, C(X,A) is clean
if and only if X is a P -space [4, 4J], that is, every Gδ-set in X is open
(or equivalently, every zero-set is open). We consider the case when
1 ∈ A is a dense semiclean subring of R or C which need not be clean.

In Section 2, we show the existence of semiclean rings that are not
weakly clean and prove that every semiclean ring is 2-clean. In Section
3, we introduce classes of dense semiclean subrings ofR andC, and give
conditions on when they will be clean. In Section 4, we go on to study
cleanliness and related properties of rings of continuous functions, in
particular we consider C(X,A), where A is a dense semiclean subring
of R. In the final section we study these properties for rings of complex
valued continuous functions.

2. Semiclean rings and other cleanliness related notions.

Example 2.1. For p prime, denote by Z(p) the ring {(m/n) ∈ Q |
n /∈ (p)}. It is easy to see that these rings are clean.

In fact, a ring having only trivial idempotents is clean if and only if
it is a local ring. In particular, an integral domain is clean if and only
if it is local. In [1] an element a in a ring R is called weakly clean if it
can be written as u + e or u − e, where u ∈ U(R) and e ∈ Id (R). R
is called weakly clean if every element is weakly clean. Clearly, every
weakly clean ring is semiclean.

Example 2.2. For p, q distinct primes, the ring Z(p) ∩ Z(q) =
{(m/n) ∈ Q | p � n, q � n} is not clean. For example, p/(p− q) is
not a clean element. But these rings are always weakly clean. Suppose



RINGS OF CONTINUOUS FUNCTIONS 3

m/n is not weakly clean. Then each of m/n, (m/n)± 1 is a non-unit.
This means each of m− n, m and m+ n is a multiple of either p or q.
Say, p divides two of them, then p divides n, a contradiction.

In [11] an element a is called n-clean if it can be written as the sum of
n units and an idempotent, and it is Σ-clean if it is the sum of a finite
number of units and an idempotent. Analogously, n-clean and Σ-clean
rings are defined. The ring Z of integers is Σ-clean but not n-clean for
any n.

Clearly, every clean ring is weakly clean and every weakly clean ring
is semiclean. Also every n-clean ring is Σ-clean. Below, we will see that
every semiclean ring is 2-clean.

All the examples of semiclean rings that we have seen in literature
happen to be weakly clean rings. For example, it was proven in [12,
Theorem 3.1] that the group rings Z(p)(G) where G is a cyclic group of
order 3 are semiclean but need not be clean. One can adapt the same
proof to prove the following result.

Theorem 2.3. The group rings Z(p)(G), where G = {1, a, a2} is a
cyclic group of order 3, are weakly clean whenever p is a prime.

Proof. Let us first consider the case p > 3. In this case the non-
trivial idempotents in Z(p)(G) are (1 + a+ a2)/3 and (2− a− a2)/3
[12, Proposition 3.1]. An element (k + la+ma2)/n, p � n in Z(p)(G)
can be expressed as:

0 +
k+la+ma2

n
= 1 +

(k−n)+la+ma2

n
= −1 +

(k+ n)+la+ma2

n

=
1+a+a2

3
+

(3k−n) + (3l−n)a+(3m−n)a2

3n

=
−1−a−a2

3
+

(3k+ n)+(3l+n)a+(3m+n)a2

3n

=
2−a−a2

3
+

(3k−2n)+(3l+n)a+(3m+n)a2

3n

=
−2+a+a2

3
+

(3k+2n)+(3l−n)a+(3m−n)a2

3n
.

We need to show that at least one of the fractional terms to the right
of the plus sign is a unit. Suppose not; then, by [12, Corollary 3.1], p
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divides all of:

k3 + l3 +m3 − 3klm
(2.1)

(k − n)3 + l3 +m3 − 3(k − n)lm
(2.2)

(k + n)3 + l3 +m3 − 3(k + n)lm
(2.3)

(3k − n)3 + (3l− n)3 + (3m− n)3 − 3(3k − n)(3l − n)(3m− n)
(2.4)

(3k + n)3 + (3l+ n)3 + (3m+ n)3 − 3(3k + n)(3l + n)(3m+ n)
(2.5)

(3k − 2n)3 + (3l + n)3 + (3m+ n)3 − 3(3k − 2n)(3l + n)(3m+ n)
(2.6)

(3k + 2n)3 + (3l − n)3 + (3m− n)3 − 3(3k + 2n)(3l − n)(3m− n).
(2.7)

As in [12, Theorem 3.1], (2.1), (2.2) and (2.3) above give:

p | (−3k2n+ 3kn2 − n3 + 3nlm)(2.8)

p | 3k.(2.9)

Using (2.9) and the fact that p � n, (2.8) further gives:

(2.10) p | (n2 − 3lm).

Subtracting (2.4) from (2.7) and using (2.9), we get that p divides

3n(4n2 + n2 − 2n2)− 9n(3l− n)(3m− n) = −27n(3lm− ln−mn).

Using (2.10), p > 3 and p � n gives:

(2.11) p | (n− l −m).

Similarly, subtracting (2.6) from (2.5) and using (2.9), we get that p
divides

3n(3n2)− 9n(3l+ n)(3m+ n) = −27n(3lm+ ln+mn).
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Using (2.10), p > 3 and p � n gives:

(2.12) p | (n+ l +m).

Adding (2.11) and (2.12) gives p | 2n, a contradiction. Hence, p does
not divide at least one of (2.1) (2.7). Subsequently, every element of
Z(p)(G) is weakly clean.

When p = 3, (2.1) and (2.2) give (2.8) which implies p | n3, a
contradiction. So Z(3)(G) is clean. When p = 2, we can argue similar
to [12, Theorem 3.1] to show that Z(2)(G) is clean.

Is there a semiclean ring which is not weakly clean? The answer is
affirmative. But, in order to have this affirmative answer, we need the
next lemma.

Lemma 2.4. Let pi be a periodic element in ring Ri : 1 ≤ i ≤ N .
Then p = (p1, p2, . . . , pN) is a periodic element in R = R1×R2×· · ·×
RN .

Proof. If pmi

i = pni

i (mi > ni), then pni

i = pmi

i = pmi−ni+ni

i =

p
2(mi−ni)+ni

i = · · · = p
k(mi−ni)+ni

i for any positive integer k. Let
K = (m1 − n1)(m2 − n2) · · · (mN − nN ), L = max(n1, n2, . . . , nN ).

Then pK+L = (p
K+n1+(L−n1)
1 , p

K+n2+(L−n2)
2 , . . . , p

K+nN+(L−nN )
N ) =

(p
n1+(L−n1)
1 , p

n2+(L−n2)
2 , . . . , p

nN+(L−nN )
N ) = pL.

Theorem 2.5. Let {Ri : 1 ≤ i ≤ N} be commutative rings. Then
the direct product R = R1 × R2 × · · · × RN is semiclean if and only if
each Ri is semiclean.

Proof. (⇒). This is clear since every homomorphic image of a
semiclean ring is semiclean [12, Lemma 2.1].

(⇐). Suppose each Ri is semiclean. Let x = (xi) ∈ R. For each i, let
xi = ui + pi, where ui is a unit and pi a periodic element in Ri. Then
x = u + p, where u = (ui) is a unit and p = (pi) is a periodic element
in R by Lemma 2.4. Hence, R is semiclean.

In particular, a direct product R = R1×R2 of two weakly clean rings
is semiclean. However, by [1, Theorem 1.7], R will be weakly clean
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if and only if at least one of R1 or R2 is clean. This proves that a
semiclean ring need not be weakly clean.

Example 2.6. Let R = Z(3) ∩ Z(5). ((3/2), (5/2)) ∈ R × R is
not weakly clean. But, subtracting (1,−1) from this gives a unit. By
Theorem 2.5, R×R is a semiclean ring.

An element x of a ring R is strongly π-regular if there exists an n ∈ N
and b ∈ R such that xn = xn+1b.

Theorem 2.7. Every semiclean ring is 2-clean.

Proof. Clearly, every periodic element is strongly π-regular and, by
[8, Theorem 1], every strongly π-regular element is strongly clean. In
particular, every periodic element is clean. Hence, every semiclean
element can be written as the sum of two units and an idempotent.

Again, the subset relation is proper. For example, we will see that
C(X) is semiclean if and only if X is strongly zero-dimensional. But
every f ∈ C(X) can be written as the sum of two units (irrespective
of X) as f = (f + |f |+ 1)/2 + (f − |f | − 1)/2. So C(X) is 2-clean
irrespective of the topology of X . For more details on the rings
generated by the units, see [9, 10].

Hence, the family of all weakly clean rings is properly contained in the
family of all semiclean rings, and the latter family is properly contained
in the family of all 2-clean rings.

3. Semiclean subrings of R and C. Note that the only idem-
potents in R are {0, 1}, and the only periodic elements are {0, 1,−1}.
Hence, the notions of semiclean and weakly clean coincide for subrings
of R. Our conjecture is that this may not be the case with C which
has infinitely many periodic elements.

Below we give more examples of semiclean subrings ofR and C which
need not be clean. We also give the condition when they will be clean.

By Z(p)[
√
q], where p ∈ N is a prime and q ∈ N is not a square,

denote the set {a0 + a1
√
q | a0, a1 ∈ Z(p)}. Clearly these are subrings

of R.
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Also note that an element in these rings can be represented as
(k0 + k1

√
q)/m, k0, k1,m ∈ Z, p � m.

Lemma 3.1. The element (k0 + k1
√
q)/m in Z(p)[

√
q] is a unit ⇔ p

does not divide k20 − qk21.

Proof. The inverse of (k0 + k1
√
q)/m in R is (m(k0 − k1

√
q))/

(k20 − qk21). This is in Z(p)[
√
q] if and only if p does not divide the

denominator. (Note that the representation a0 + a1
√
q for a real

number with a0, a1 ∈ Q is unique; otherwise, we can represent
√
q

as a rational.)

Now, Z(p)[
√
q] may or may not be clean as shown by the examples

below.

Example 3.2. Consider R = Z(2)[
√
q]. This is a clean ring for all

q. Suppose a = (k0 + k1
√
q)/n ∈ R (n odd) is such that a and a − 1

are not units. By Lemma 3.1, 2 | k20 − k21q and 2 | (k0 − n)2 − k21q.
Subtracting, we get 2 | n(2k0 − n). Since n is odd, this is impossible.

Example 3.3. Consider S = Z(7)[
√
2]. Let a = (2 + 3

√
2)/4 ∈ S.

Clearly, 7 | 22 − 2 · 32 = −14 as well as (−2)2 − 2 · 32 = −14. Hence, a
and a− 1 are both non-units. S is not a clean ring.

Theorem 3.4. Let p ∈ N be an odd prime, q ∈ N is not a square.
Let R be the ring Z(p)[

√
q]. If p | q, then the ring R is clean. Otherwise,

R is clean ⇔ q is a quadratic nonresidue of p.

Proof. Case 1. p | q. Let a = (k0 + k1
√
q)/n, p � n. Suppose a and

a− 1 are not units. So p | k20 − k21q ⇒ p | k0 and p | (k0 − n)2 − k21q ⇒
p | k0 − n. Subtracting, we get p | n, a contradiction. Hence, R is a
clean ring.

Case 2. p � q. (⇒). Suppose q is a quadratic residue of p, that
is, there exists a k ∈ [1, p − 1] such that k2 ≡ q (mod p). Take
a = (k +

√
q)/(2k) ∈ R. Clearly a and a − 1 are non-units, hence

R cannot be clean.
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(⇐). SupposeR is not clean. Then there exists an a = (k0 + k1
√
q)/n,

p � n, such that both a and a− 1 are non-units. So,

p | k20 − qk21(3.1)

p | (k0 − n)2 − qk21 .(3.2)

Subtracting these two, we get p | n(2k0 − n). Since p � n, p � k0. Using
(3.1), p � k1. Hence, there exists a multiplicative inverse (mod p) of k1.
Now, from (3.1), (k−1

1 k0)
2 ≡ q (mod p). So, q is a quadratic residue of

p.

Theorem 3.5. The rings Z(p)[
√
q], for p prime, are dense weakly

clean subrings of R which need not be clean.

Proof. We only have to prove that these rings are weakly clean.
Suppose, on the contrary, there exists a = (k0 + k1

√
q)/n, p � n, such

that none of a, a− 1, a+ 1 is a unit. This means

p | k20 − qk21(3.3)

p | (k0 − n)2 − qk21(3.4)

p | (k0 + n)2 − qk21(3.5)

Subtracting (3.4) from (3.3) and (3.3) from (3.5) gives

p | n(2k0 − n) =⇒ p | 2k0 − n(3.6)

p | n(2k0 + n) =⇒ p | 2k0 + n.(3.7)

Subtracting these two gives p | 2n. Since p � n, this can happen only if
p is 2. But then (3.6) implies p | n. Again, a contradiction.

Thus, every element a is weakly clean, and hence the ring Z(p)[
√
q] is

weakly clean.

Therefore, there are ample examples of dense weakly clean (hence,
semiclean) subrings of R which are not clean. Also, in this case
we can find units u in these rings such that u − 1 and u + 1 are
both non-units. This is because Theorem 3.4 implies we can find
a ∈ [1, p − 1] such that a2 ≡ q (mod p). Then (p+

√
q)/a is one
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such unit, because p � p2 − q, but p | (p− a)2 − q = p(p− 2a) + a2 − q
and p | (p+ a)2 − q = p(p+ 2a) + a2 − q.

For p ∈ N, a prime, let us now consider subrings of C: Z(p)[i] =
{a+ bi | a, b ∈ Z(p)}.
We will see that again these rings are weakly clean but need not be

clean. Note that there are many more periodic elements in C. So it
may be possible to have semiclean subrings of C which are not weakly
clean. For example, one might want to consider rings Z(p)[α] where α
is a kth root of unity.

Lemma 3.6. An element (k0 + k1i)/m ∈ Z(p)[i] is a unit ⇔ p �
k20 + k21.

Proof. The inverse in C of the above element is m(k0 − k1i)/
(k20 + k21).

Theorem 3.7. For any odd prime p, Z(p)[i] is a dense weakly clean
(hence, semiclean) subring of C, which is clean if and only if p ≡ 3
(mod 4).

Proof. Suppose Z(p)[i] is not weakly clean. Then there exists an
element a = (k0 + k1i)/n, p � n such that a, a − 1, a + 1 are all non-
units. Therefore, by Lemma 3.6,

p | k20 + k21(3.8)

p | (k0 − n)2 + k21(3.9)

p | (k0 + n)2 + k21 .(3.10)

Subtracting (3.9) from (3.10), p | 2k0 · 2n ⇒ p | 2k0. Subtracting (3.8)
from (3.10), p | n(2k0 + n) ⇒ p | 2k0 + n. These two give p | n, a
contradiction.

Hence, every element of Z(p)[i] has to be weakly clean. However, it
need not be clean. For example, consider the element b = (7 + 6i)/4 ∈
Z(5)[i]. Both b and b−1 are non-units in Z(5)[i] since 3

2+62 and 72+62

are both multiples of 5.

As in Theorem 3.4, we can get that Z(p)[i] is clean⇔ −1 is a quadratic
non-residue of p. By Euler’s criterion, this will happen whenever
(−1)(p−1)/2 �≡ 1 (mod p), that is, p ≡ 3 (mod 4).
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The rings Z(2)[i] are clean. The proof is similar to that for the rings
Z(2)[

√
q].

4. Cleanliness in C(X,A). A non-empty T1 space is zero-
dimensional if it has a base of clopen sets. The rings C(X) are known
[3, 6] to be clean if and only if X is strongly zero dimensional, i.e., the
Stone-Čech compactification βX is zero-dimensional.

Theorem 4.1. The following are equivalent.

(1) C(X) is clean.

(2) C(X) is weakly clean.

(3) C(X) is semiclean.

Proof. (1) ⇒ (2) ⇒ (3). Clear.

(3) ⇒ (1). This follows from [6, Theorem 13 (iv)] since the periodic
elements in C(X) overlap with roots of idempotents. Here we give a
direct proof since [6] had omitted one. Suppose C(X) is semiclean. Let
f be any function in C(X). Then g = 2f − 1 is 1 on Z(1 − f) and
−1 on Z(f). Since C(X) is semiclean, there exists a periodic function
p, which assumes one of the values −1, 0, 1, such that g − p is a unit
u. It is clear that u < 0 on Z(f) and u > 0 on Z(1 − f). Hence, if
we let K = {x : u(x) < 0}, a clopen set, and χK be the characteristic
function of K, then f − χK is nowhere zero and hence a unit. So f is
clean.

Let A be a dense clean subring of R, with unity, which is not a field.
Let u(A) denote the set of its units and c(A) = {a ∈ A \ u(A) : a− 1 ∈
u(A)}. By [5, Lemma 2.2], u(A) and c(A) are dense in R. Further, in
[5] it was proved that the rings C(X,A), with X zero-dimensional, are
clean if and only if X is a P -space.

Is it again the case that C(X,A) is semiclean if and only if it is clean?
It certainly is the case when 2 is not a unit in A. As in [5], we assume,
without loss of generality, that the space X is zero-dimensional. First,
we need a couple of lemmas.

Lemma 4.2. Let A be a clean (local) ring with trivial idempotents.
Then A has a unit u such that both u ± 1 are non-units if and only if
2 is not a unit in A.
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Proof. (⇐). Take u = 1.

(⇒). Let u be such a unit and suppose 2 is a unit. Then (u ± 1)/2
are both non-units. So (u+ 1)/2 is not clean, a contradiction.

Lemma 4.3 [5, Lemma 3.6]. Let X be a completely regular Hausdorff
space. The following are equivalent.

(1) X is a P -space.

(2) X is zero-dimensional and every countable union of clopen sets
is closed.

(3) f−1(T ) ∈ clop (X) for every f ∈ C(X) and for every T ⊆ R.

Theorem 4.4. Let A be a dense clean subring of R, with unity,
which is not a field, and let X be a zero-dimensional space. If 2 is not
a unit in A, the following are equivalent.

(1) X is a P -space.

(2) C(X,A) is a pm-ring.

(3) C(X,A) is clean.

(4) C(X,A) is semiclean.

Proof. In view of [5, Theorem 3.7], it suffices to prove that X is
a P -space whenever C(X,A) is semiclean. Let Kn be a sequence of
pairwise disjoint clopen sets in X . Let u be a unit such that u ± 1
are both non-units. Since c(A) is dense in R, let (bn) be a sequence in
c(A) that converges to u. Define f ∈ C(X,A) such that f | Kn = bn
and f(x) = u otherwise. Let U be an open set in A. If u ∈ U , then U
contains all but finitely many bn’s; thus, X \ f−1(U) is closed being a
finite union of clopen sets. If u /∈ U , then f−1(U) is a union of clopen
sets and so open. Thus, f ∈ C(X,A). Since C(X,A) is semiclean,
there exist disjoint clopen sets U and V such that f − χU + χV is a
unit of C(X,A). f is already a unit (= u) outside ∪nKn and adding
±1 will make it a non-unit. In ∪nKn it is a non-unit so its value needs
to be changed. Hence, ∪nKn has to be U ∪V , a clopen set. By Lemma
4.3 (2), it follows that X is a P -space.

Now the question arises as to what happens if 2 ∈ u(A).
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Theorem 4.5. Let A be a dense clean subring of R, with unity,
which is not a field and such that 2 ∈ u(A). If X is a P -space, then
C∗(X,A) is a semiclean ring.

Proof. Let f ∈ C∗(X,A). Let c+(f) = {x ∈ X | f(x) ≥ 0 ∈ c(A)}
and c−(f) = {x ∈ X | f(x) < 0 ∈ c(A)}. Further, let u+(A) =
{a ∈ u(A) | a + 1 ∈ u(A)} and u−(A) = {a ∈ u(A) | a − 1 ∈ u(A)}.
Since 2 ∈ u(A), by Lemma 4.2, u+(A) ∪ u−(A) = u(A). Let u+(f) =
{x ∈ X | f(x) ∈ (−1/2, 1/2) ∩ u+(A)} and u−(f) = {x ∈ X | f(x) ∈
(−1/2, 1/2)∩u−(A)}. By Lemma 4.3 (3) (and looking at f as a member
of C(X)), the sets c+(f), c−(f), u+(f) and u−(f) are all clopen sets and
f − χc−(f)∪u−(f) + χc+(f)∪u+(f) is a unit in C∗(X,A).

Theorem 4.6. Let A be a dense clean subring of R, with unity,
which is not a field. If X is an infinite zero-dimensional space, then
C∗(X,A) is not a weakly clean ring.

Proof. We can find a sequence {Un}n∈N of disjoint non-empty clopen
sets in X , since X is infinite, Hausdorff and zero-dimensional. Let
{an}n∈N ⊆ c(A) be a sequence such that an → −1 and {bn}n∈N ⊆ c(A)
such that bn → 1. Let f ∈ C∗(X,A) be such that f |U2n= an + 1,
f |U2n−1= bn − 1 and f(x) = 0 otherwise. If f = u + e, with u a unit
and e an idempotent, then u |U2n= an + 1. Since an + 1 → 0, this
makes u−1 unbounded, a contradiction. Similarly, f = u − e implies
u |U2n−1= bn − 1, again a contradiction.

Every P -space is zero-dimensional [4]. Hence, by Theorems 4.5 and
4.6, we have a semiclean ring of continuous functions which is not
weakly clean.

The above results suggest that if we can find a suitable topological
space with lots of clopen sets which is not a P -space, we may also be
able to demonstrate:

Conjecture 4.7. If 2 is invertible in A, a dense clean subring of
R, then C(X,A) can be semiclean without being clean.

Let us now consider dense semiclean subrings of R that are not fields
and are not necessarily clean (recall the semiclean rings introduced in
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previous section). Let S denote one such semiclean ring, and consider
the ring C(X,S). If S is not clean, then there exists an element s such
that both s and s − 1 are not units. Then the constant function s on
any space is not clean. On the other hand, we will see that C(X,S) is
semiclean whenever X is a P -space. This gives another trivial example
of a semiclean ring of continuous functions which is not clean.

Lemma 4.8. Let S be a commutative semiclean ring with unity and
only periodic elements {−1, 0, 1}. If S is not clean, then S has a unit
u such that u − 1 and u + 1 are both non-units. If 2 ∈ u(S), then the
converse is also true.

Proof. If S is not clean, there exists an s ∈ S such that s and s− 1
are both non-units. Hence, 2s and 2s − 2 are also non-units. Then,
2s − 1 is the required unit by semicleanliness, since the only periodic
elements are {−1, 0, 1}.
If 2 ∈ u(S), then by Lemma 4.2, it follows that S is not clean.

Lemma 4.9. If S is a dense semiclean subring of R that is not a
field, then the set of all non-units in S is also dense in R.

Proof. Let b be a nonzero non-unit in S. For every s ∈ S, αs = sb
is also a non-unit. For r ∈ R, let (sn) be a sequence in S such that
sn → r/b. Then αsn → r shows that the set of non-units is dense in
R.

Theorem 4.10. Let S be a dense semiclean subring of R with unity
that is not a field. Let X be a zero-dimensional space.

(1) If X is a P -space, then C(X,S) is semiclean.

(2) If S is not clean, then the converse of the above also holds true.

(3) C(X,S) is clean ⇔ X is a P -space and S is clean.

Proof. (1) Let f ∈ C(X,S). Since we are considering the subspace
topology on S, f is also in C(X). Let c+(f) = {x|f(x) /∈ u(S), f(x) +
1 ∈ u(S)}, c−(f) = {x|f(x) /∈ u(S), f(x) − 1 ∈ u(S)}. Since X is a
P -space, by Lemma 4.3 (3) it follows that c+(f) and c−(f) are clopen
sets and f+χc+(f)−χc−(f)\c+(f) is a unit. Hence, C(X,S) is semiclean.
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(2) If S is not clean, then by Lemma 4.8, there exists a unit u such
that u − 1 and u + 1 are both non-units. By arguing similarly as in
Theorem 4.4 and observing that the set of non-units in S is dense in
R, we can now show that the converse holds as well.

(3) IfX is a P -space and S is clean, then by [5, Theorem 3.7], C(X,S)
is clean. Conversely, if C(X,S) is clean then S, being a homomorphic
image of C(X,S), will be clean. Once again by [5, Theorem 3.7], X
has to be a P -space.

5. Complex valued continuous functions. In this section we
would like to consider the rings of complex valued continuous functions.

For S a non-empty set of periodic elements of R, we say R is S-
semiclean if each x ∈ R can be written as x = u + p where u is a unit
and p ∈ S.
We begin with proving the following theorem.

Theorem 5.1. The following are equivalent.

(1) C(X) is clean.

(2) C(X) is weakly clean.

(3) C(X) is semiclean.

(4) C(X,C) is clean.

(5) C(X,C) is weakly clean.

(6) C(X,C) is S-semiclean, where S is the family of all continuous
{−1, 0, 1}-valued functions.

(7) X is strongly zero-dimensional.

Proof. (1) ⇔ (2) ⇔ (3). Theorem 4.1.

(4) ⇒ (5) ⇒ (6). Clear.

(6) ⇒ (4) Similar to (3) ⇒ (1) of Theorem 4.1.

(4) ⇒ (1). Given C(X,C) is clean. For f ∈ C(X,R) ⊆ C(X,C),
let f = u + e where u = u1 + iu2 is a unit in C(X,C) and e is an
idempotent in C(X,C). Now the only idempotents in C are 0 and 1,
since for a complex c, c = c2 implies c = 0 or c = 1. So e is real valued,
implying u is real valued. Therefore, f is clean in C(X,R) as well.
Hence, C(X,R) is clean.
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(1) ⇒ (4). Given C(X,R) is clean. Let f ∈ C(X,C) and f = f1+if2.
It is known that f ∈ C(X,C) ⇔ f1, f2 ∈ C(X,R).

From the hypothesis, there exist units u1, u2 and idempotents e1, e2
in C(X,R), such that f1 = u1 + e1 and f2 = u2 + e2. So f =
u1 + e1 + i(u2 + e2). Now e1 is also an idempotent in C(X,C) and
u1 being non-zero, u1 + i(u2 + e2) is a unit in C(X,C). Hence, f is
clean and so is C(X,C).

(1) ⇔ (7). Proved in [3, 6].

Now we would like to generalize some of the results of [5] for C(X,A)
where A is a subring and subspace of C.

Let A be a dense clean subring of C with unity, which is not a field.
We can generalize Lemma 2.2 of [5] to show that the set u(A) of units
in A and c(A), non-units in A, are both dense sets in C. Further,
Lemma 4.3 (3) can be generalized so that f−1(T ) ∈ clop (X) for every
f ∈ C(X,A) and every T ⊆ C. Using these we can show, as in [5,
Theorem 3.7] that C(X,A) is clean if and only if X is a P -space.

Now, let us consider the case when S is a dense semiclean subring of
C with unity, which is not a field.

Theorem 5.2. Let S be a dense semiclean subring of C with unity
that is not a field. Let X be a zero-dimensional space.

(1) If X is a P -space and |Per (S)| < ∞, then C(X,S) is semiclean.

(2) C(X,S) is clean ⇔ X is a P -space and S is clean.

Proof. (1) As in Lemma 4.3 (3), we can show that f−1(T ) ∈ clop (X)
for every f ∈ C(X,S) and every T ⊆ C whenever X is a P -space. Let
{p1, p2, . . . , pn} be the set of periodics in S. Let c0(S) = u(S) and, for
1 ≤ i ≤ n, ci(S) = {a ∈ S | a − pi ∈ u(S), a /∈ cj(S) for j < i}. Then
ci(f) = {x ∈ X | f(x) ∈ ci(S)} are clopen sets. Let p = Σpiχci(f). It
is easy to show that p is periodic. Then f − p is a unit. Hence C(X,S)
is semiclean.

(2) Clear.
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