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A CONSTRUCTIVE THEORY OF MINIMAL
ZERO-DIMENSIONAL EXTENSIONS

FRED RICHMAN

ABSTRACT. Chiorescu characterized the minimal zero-
dimensional extensions of certain one-dimensional rings in
terms of families of ideals indexed by prime ideals. In this
paper we give a constructive development of these extensions,
which, to achieve maximum generality, must necessarily avoid
dependence on prime ideals. This forces us to develop a purely
arithmetic theory. Along the way we get a characterization,
in terms of the lattice of radicals of finitely generated ideals,
of when a ring with primary zero-ideal has dimension at most
one.

1. Introduction. In this paper we prove a constructive version
of Chiorescu’s theorem [3] that gives a complete set of invariants for
minimal zero-dimensional extensions of a commutative ring R which
satisfies the three conditions:

1. dimR ≤ 1.

2. The zero ideal of R is primary.

3. R has Noetherian spectrum.

Chiorescu’s invariants are phrased in terms of the prime ideals of R.
One of our goals was to formulate a theorem that would work when
R = k[X ] for k a (discrete) field. In that setting, we cannot necessarily
prove that every polynomial of degree greater than zero is a product
of irreducible polynomials, so Chiorescu’s theorem cannot be applied.
Generally, when doing constructive commutative ring theory, you avoid
formulations involving prime ideals because you might not have the
tools to construct them. But even, outside the constructive framework,
it is of interest to develop purely arithmetic theories when possible.

For our main theorem (Section 8), we don’t need the third condi-
tion. In order to derive Chiorescu’s theorem as she stated it, we will
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use a condition that is equivalent to Noetherian spectrum for finite-
dimensional rings, has lots of computational content, and applies, for
example, to the ring of integers of a finite-dimensional algebraic number
field.

We formulate the second condition as saying that every element of
R is either regular or nilpotent. This implies, for a nontrivial ring R
(or for a trivial ring R), the purely constructive condition that every
element of R is either nilpotent or not. That is, the nilradical of R is
detachable the only nonclassical condition that we impose on R for the
general theorem. We don’t impose any such conditions on the extension
ring.

For the first condition, we follow the constructive treatment of Krull
dimension in [5]. In the presence of the second condition, the condition
dimR ≤ 1 takes a particularly simple form.

The invariant for a zero-dimensional extension of R is a family of
ideals Ia of R indexed by the finitely generated regular ideals a of R.
We require, for all finitely generated regular ideals a, b of R, that

• a ⊂ rad Ia,

• Iab = Ia ∩ Ib,

• if a ⊂ b, then Ia ⊂ Ib.

For the integers Z, this is equivalent to specifying, for each prime
p, an ideal Ip, possibly improper, containing a power of p. Given a
zero-dimensional extension S of R, or even just a zero-dimensional R-
algebra, the ideal Ia is the R-annihilator of 1 − ea ∈ S. Equivalently,
it is R∩ Sea. Here ea is the unique idempotent of S such that ea ∈ aS
and an(1− ea) = 0 for some n (see Section 2).

While the ideals a are required to be finitely generated, no such
condition is imposed on the ideals Ia. We will show how to construct,
from any such family of ideals, a minimal zero-dimensional extension
of R with that family as its invariant (Theorem 15).

It might be argued that this invariant is too complicated to give any
insight into the minimal zero-dimensional extensions of R, but this is
already belied by its transparency in the case R = Z. We describe
two other situations in which the invariant becomes fairly simple. The
first is R = k[X ] where k is any algebraic number field, not necessarily
finite dimensional. For example, if P is an arbitrary proposition we
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could set k = Q∪{x ∈ Q[i] : P}. The invariant in this case is uniquely
specified by giving an ideal Ip in k[X ], containing some power of p, for
each monic irreducible polynomial p in Q[X ]. More generally, we may
replace Q by any factorial field (a field over which you can write every
nonconstant polynomial as a product of irreducible polynomials).

In the second situation, Chiorescu’s Noetherian-spectrum hypothesis
holds in a constructively strong form. Here the monoid of finitely
generated regular ideals of R, modulo the equivalence a ∼ b if rad a =
rad b, is naturally identified with the set of finite subsets of the nonzero
prime ideals M of R that are radicals of finitely generated ideals
(Theorem 17), and the invariant can be specified by giving an ideal
IM in R, containing some power of M , for each such ideal M of R. An
example of this situation is the ring of algebraic integers in a finite-
dimensional extension of Q.

2. Krull dimension zero. The following lemma is a combination
of [3, Lemma 1], which references [2, Lemma 4.1 and Lemma 2.1]. The
proofs there are straightforward and constructive.

Lemma 1. Let x be an element of a commutative ring R and n ∈ N.
Then the following are equivalent:

1. xn ∈ Rxn+1,

2. There is an idempotent e ∈ Rx such that xn(1− e) = 0.

3. There is an idempotent e such that Re = Rxn.

An idempotent e satisfies condition 2 for some n if and only if x(1−e)
is nilpotent and x+ 1− e is invertible.

There is at most one idempotent e satisfying 3 for some n. We denote
this idempotent, if it exists, by ex and denote 1− ex by fx.

We say that R is zero dimensional if for all x ∈ R, there exists n ∈ N
satisfying the conditions of Lemma 1. Possibly we should say that R is
at most zero dimensional, reserving dimension −1 for the trivial ring as
in [4], but I don’t think that this distinction will be important here. See
[2, Theorem 2.2] for a proof that this definition is classically equivalent
to the usual one.
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If R is a ring with exactly two idempotents, then R is zero dimensional
if and only if every element of R is either a unit or nilpotent. To see this,
note that the idempotents are 0 and 1, and that 0 �= 1. The statement
then follows from the fact that ex = 1 if and only if x is a unit, and
that ex = 0 if and only if x is nilpotent. As a consequence, the ring R
of real number is zero dimensional if and only if it is discrete, that is,
if each element of R were either zero or nonzero, which is one of the
traditional omniscience principles that admits no constructive proof.
That is not to say that there is no good notion of “zero dimensional”
such that R is zero dimensional from a constructive point of view, but
this is not such a notion.

Here are a few observations:

• If R is a discrete integral domain, and K is the quotient field of
R, then K is a minimal zero-dimensional extension of R. To see that
a discrete field K is zero dimensional, take n = 1. Then 0 ∈ K02 and
x ∈ Kx2 = K if x �= 0. To see that K is minimal, suppose K ′ ⊂ K is
a zero-dimensional extension R. If r is a nonzero element of R, then r
is cancellable, hence invertible in K ′, so K ′ = K.

• The homomorphic image of a zero-dimensional ring is zero dimen-
sional, as is the product of a finite number of zero-dimensional rings
and the direct limit of zero-dimensional rings. That’s because of the
logical form, “for all x there exist n and r such that r : xn = rxn+1.”
In particular, Q × (Zn/I) is zero dimensional for any ideal I of Zn.
Note that we cannot necessarily say that Zn/I is isomorphic to some
Zm it need not even be discrete.

• The ring Q × (Zn/I) is a minimal zero-dimensional extension of
Z. Suppose A is a zero-dimensional subring of Q × (Zn/I). Then
(n, 0) ∈ A, so (1/n, k) ∈ A for some k, so (1, 0) ∈ A whence (m, 0) ∈ A
for all m ∈ Z. If m �= 0, then (m, 0) ∈ A so (1/m, k) ∈ A for some k,
so (1/m, 0) ∈ A. Thus Q× {0} ⊂ A whence A = Q× (Zn/I).

• If R is zero dimensional, then every regular element of R is
invertible. That’s because if x is regular, and xn = rxn+1, then 1 = rx.

We need to generalize the notion of ex to ideals. Let R be a
commutative ring and S an R-algebra. Let a and b be two ideals
of R. Then

1. There is at most one idempotent e ∈ A such that a(1 − e) is nil
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and e ∈ aS. This idempotent is denoted ea and we set fa = 1− ea.

2. If a = (x1, . . . , xk), and each exi exists, then ea = ex1 ∨· · ·∨ exk
=

1− fx1 · · · fxk
.

3. If ea and eb exist, then eab = eaeb.

4. If ea exists, then erada = ea. If erad a exists, then ea = erad a.

These four statements are proven in [3] as Theorem 8 and Lemmas 9 11.
The proofs are straightforward computations with no constructive
problems.

3. The invariant. We will be interested in families of ideals Ia of
R, indexed by a multiplicative monoid M of finitely generated regular
ideals a of R, such that for all a and b in M ,

1. a ⊂ rad Ia,

2. Iab = Ia ∩ Ib,

3. if a ⊂ b, then Ia ⊂ Ib.

Call such a family admissible. We define rad I to be

{r ∈ R : rn ∈ I for some positive integer n} ,

whence the term “radical,” rather than the intersection of all prime
ideals containing I. The admissible families will be the invariants for
minimal zero-dimensional extensions of appropriate rings R. If a ∈ R
is regular, we set Ia = IRa.

Here are a couple of easy examples of admissible families: Set Ia = R
for each a. Set Ia = rad a for each a.

We say that two ideals a and b of R are comaximal if a+ b = R.

Lemma 2. Let Ia be an admissible family of ideals of R. If
rad a = rad b, then Ia = Ib. If a and b are comaximal, then Iab = IaIb
and

Ia = {r ∈ R : rbn ⊂ Iab for some n} .

Proof. For the first claim, note that property 2 implies that Ian = Ia
so if a ⊂ rad b, then an ⊂ b for some n, so Ia = Ian ⊂ Ib by property 3.
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Now suppose a and b are comaximal. Because a ⊂ rad Ia and
b ⊂ rad Ib and a + b = R, it follows that Ia + Ib = R, hence
Ia ∩ Ib = IaIb. For the second claim, first suppose r ∈ Ia. Then
rbn ⊂ Ia ∩ Ib for some n. Conversely, if rbn ⊂ Iab for some n, then
rbn ⊂ Ia because Iab ⊂ Ia. But bn and Ia are comaximal, because b
and a are comaximal, so r ∈ Ia.

Because rad a = rad b implies Ia = Ib, we could take the index set of
an admissible family to be ideals that are radicals of finitely generated
ideals. The second condition would more naturally be written as
Ia∩b = Ia ∩ Ib. The ideal a∩ b is of the right kind because if a = rad a′

and b = rad b′, then a ∩ b = rad a′b′. The third condition would then
follow from the second. So an admissible family is simply a monoid
homomorphism from a monoid of radicals of finitely generated regular
ideals to the monoid of all ideals, subject to the condition a ⊂ rad Ia,
the binary operation in each monoid being intersection.

The following lemma shows why we are interested in admissible
families.

Lemma 3. Let S be a zero-dimensional extension R. For each
finitely generated regular ideal a of R, define Ia = annRfa. Then the
family of ideals Ia is admissible. Moreover, if a and b are comaximal,
then fa and fb are orthogonal idempotents.

Proof. The first property of admissibility follows from the fact
that afa is nil. For the second property, note that if rfab = 0,
then r(1 − eaeb) = 0, so r ∈ Rea. Therefore r = rea whence
rfa = 0. Similarly for fb, so Iab ⊂ Ia ∩ Ib. Conversely, suppose that
rfa = 0 = rfb. Then r = rea and r = reb = reaeb = reab. For the
third property, if a = (x1, x2, . . . , xm) and b = (x1, x2, . . . , xn), with
m ≤ n, then

fa =
m∏

i=1

fxi is a factor of fb =
n∏

i=1

fxi .

For the last claim, we know that Ia and Ib are comaximal and are both
contained in annRfafb. It follows that annRfafb = R so fafb = 0.
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For suitable rings, we will show that every admissible family arises
from a minimal zero-dimensional extension (Theorem 15), and that this
family characterizes those minimal zero-dimensional extensions up to
isomorphism (Theorem 16).

4. The lattice L(R). Let R be any commutative ring. We are
interested in the lattice of radical ideals. The elements of this lattice
are ideals of R and the preorder is given by a ≤ b if rad b ⊂ rad a.
Perhaps this preorder seems back-to-front, but I’m motivated partly
by the aphorism that “to contain is to divide,” and I would also like
relatively prime elements to be disjoint in the lattice. This preorder
induces an equivalence relation which we will denote by a ∼ b when we
don’t want it to be confused with equality of sets. Of course we could
restrict our attention to radical ideals, but it is often more convenient
to consider all ideals together with the equivalence relation.

The lattice operations are given by a ∨ b = ab and a ∧ b = a + b.
Note that we could as well define a ∨ b to be the equivalent ideal
a ∩ b, but ab has the virtue of being finitely generated if a and b
are. Moreover, multiplication of ideals distributes over addition, so
this makes it immediately apparent that the lattice is distributive. The
bottom element of the lattice is the improper ideal R. The top element
is the zero ideal, but we will normally restrict ourselves to regular ideals.

In a distributive lattice with a bottom element 0, the relative comple-
ment a\b is defined to be that element c, if it exists, such that c∧b = 0
and c ∨ (b ∧ a) = a. Note that c ∨ (b ∧ a) = a is equivalent to c ≤ a
and c∨ b ≥ a. That the relative complement is unique is easily seen by
forming the meet of c′ with a = c ∨ (b ∧ a).

The finitely generated regular ideals of R form a sublattice L(R). A
regular ideal is one that contains a regular element an element that
is cancellable under multiplication. It is this lattice that we will
be concerned with. The lattice L(Z) is naturally isomorphic to the
lattice of finite subsets of the primes, so is a relatively complemented
distributive lattice. That’s a good thing for our purposes. This is also
true for L(R) when R = k[X ] where k is a (discrete) field. Classically
the reason is the same as for L(Z), but constructively we cannot
assume that every nonconstant polynomial is a product of irreducible
polynomials. However, it is still true that every finitely generated
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regular ideal is generated by a nonzero polynomial, and if f and g are
nonzero polynomials, then, in the lattice L(R), the relative complement
Rf \Rg is generated by f/ gcd(f, gdeg f ).

If a, b, and c are finitely generated regular ideals of R, then c = a \ b
in the lattice L(R) exactly when a ∼ c(a + b) and b+ c = R.

We will focus on commutative rings R with detachable nilradical, that
is, for each x ∈ R, either x is nilpotent or it is not. We will say that
0 is a primary ideal of R if every nonnilpotent element of R is regular.
This agrees with the classical definition. The two conditions imply that
every element of R is either nilpotent or regular. The converse is true
for nontrivial rings (and for trivial ones). In fact, the two conditions
are equivalent to the two conditions

(1) every element of R is either nilpotent or regular, and

(2) R is either trivial or nontrivial.

Notice that any discrete integral domain satisfies these two conditions.
By “discrete,” I mean that each x in R is either zero or nonzero.
Actually, I’m not quite sure what an integral domain is in the general
constructive context except that it probably should be the same as a
subring of a field. But then, I’m not quite sure what a field should be,
other than a discrete field.

We are interested in the conditions that dimR ≤ 1 and dimT (R) = 0
where T (R) is the total ring of quotients of R.

What do we mean by dimR ≤ 1? As in [5] we define, for each x ∈ R,
the ideal

N (x) = Rx+
⋃

n∈N

(0 : xn)R .

Then dimR ≤ 1 exactly when dimR/N(x) = 0 for all x ∈ R. This
is equivalent, classically, with the usual definition in terms of prime
ideals. If 0 is a primary ideal, and R has a detachable nilradical,
then (0 : xn) = 0 unless x is nilpotent, in which case N(x) = R. So
dimR ≤ 1 if and only if dimR/Rx = 0 whenever x ∈ R is not nilpotent.
We might also note that dimR = 0 if and only if R/N(x) = 0 for all x
in R.

Lemma 4. If every element of R is either nilpotent or regular, then
dimT (R) = 0.
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Proof. Given x ∈ R, we must find n ∈ N, a regular element s ∈ R
and an element t ∈ R such that sxn = txn+1. If x is nilpotent, take n
so that xn = 0 and s = t = 1. If x is regular, take s = x and t = 1.

The following lemma relates relative complements of finitely gener-
ated ideals to relative complements of principal ideals.

Lemma 5. Let L be a distributive lattice with least element 0. Let
S be a subset of L and M the set of finite meets of elements of S. If
any two elements of S have a relative complement in L, then any two
elements of M have a relative complement in L.

Proof. We will show that if a, b, c ∈ L, then

(a ∧ b) \ c = (a \ c) ∧ (b \ c)
c \ (a ∧ b) = (c \ a) ∨ (c \ b)

in the sense that, if the right side exists, then so does the left. The
lemma then follows by induction on the number of meets in the
expressions for the two elements of M . We have

(a \ c) ∧ (b \ c) ∧ c = (a \ c) ∧ 0 = 0

((a \ c) ∧ (b \ c)) ∨ c = (((a \ c) ∨ c) ∧ ((b \ c) ∨ c)) ≥ a ∧ b

((c \ a) ∨ (c \ b)) ∧ (a ∧ b) = ((c \ a) ∧ (a ∧ b)) ∨ ((c \ b) ∧ (a ∧ b))

= 0

((c \ a) ∨ (c \ b)) ∨ (a ∧ b) = (((c \ a) ∨ (c \ b)) ∨ a)

∧ (((c \ a) ∨ (c \ b)) ∨ b)

≥ c ∧ c = c

It turns out that the existence of relative complements in L(R) is
intimately related to the dimension of R.

Theorem 6. Let R be a ring in which every element is either regular
or nilpotent. Then the following are equivalent:

1. dimR ≤ 1.
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2. For all regular x, y ∈ R there exist (finitely generated) ideals
a, b, b′, c of R such that

(a) Rx = ab and Ry = b′c,

(b) a+Ry = R = c+Rx,

(c) b ∼ b′.

3. The lattice L(R) is relatively complemented.

Proof. Condition 2 implies that principal ideals of R have relative
complements in L(R) because Rx \ Ry = a. So 3 holds by Lemma 5.
Suppose 3 holds. We will show that if x ∈ R is regular, then
dimR/Rx = 0. That is, we will show that if y ∈ R, then there
is a positive integer n, and an element r ∈ R, such that x divides
yn − ryn+1 = yn(1 − ry). If y is nilpotent, that’s clear. Otherwise,
Rx = ab and Ry = b′c as in 2. First note that, because a + Ry = R,
there exists r ∈ R so that 1 − ry ∈ a. Then, because b ∼ b′, there is
a positive integer n such that yn ∈ b. So yn(1 − ry) is in ab, hence is
divisible by x.

Finally suppose dimR ≤ 1 and let x, y ∈ R be regular. There is a
positive integer n and elements r, s ∈ R such that x divides yn(1− ry)
and y divides xn(1 − sx). Let a = (x, 1 − ry) and b = (x, yn). Note
that (1− ry, yn) = R. Similarly let c = (y, 1− sx) and b′ = (y, xn).

If k is a discrete field, and x is a nonzero element of R = k[X ], then
R/(x) is a finite dimensional vector space over k, hence zero dimen-
sional. Thus dimR ≤ 1, so the lattice L(R) is relatively complemented
by Theorem 6. One can compute the relative complements directly by
repeatedly taking gcd’s and eliminating duplicate factors.

In reference to the equivalence of 1 and 3 of Theorem 6, Joyal showed
that dimR can be read from the Zariski lattice of R, which in this case
is essentially L(R), see [6].

For convenience, we will call a commutative ring R suitable if it has
a detachable nilradical and a primary zero-ideal, and dimR ≤ 1.

Theorem 7. Let L be a relatively complemented distributive lattice.
If x1, . . . , xm are elements of L, then there exist disjoint elements
a1, . . . , an of L such that each x is the join of some of the a’s. If m = 2,
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then we can take n = 3 and write x1 = a1 ∨ a2, and x2 = a2 ∨ a3 where
a2 = x1 ∧ x2.

Proof. Induction on m. If m = 1, take n = 1 and a1 = m1. Suppose
m > 1 and a1, . . . , an works for x1, . . . , xm−1. Replace the a’s by
xm ∧ ai and ai \ xm, for i = 1, . . . , n, and throw in xm \ ∨n

j=1 aj .
These are clearly disjoint, and since ai = (xm ∧ ai) ∨ (ai \ xm), and
xm = (xm \∨n

j=1 aj)∨
∨n

j=1 aj∧xm, each x is the join of some of them.
Note that for m = 2, we replace x1 by x2 ∧ x1 and x1 \ x2, and throw
in x2 \ x1, which gives us the last claim.

Take L to be L(R) and look at the idempotents fa1 , . . . , fam in some
minimal zero-dimensional extension. It follows from the theorem that
we can construct finitely generated regular ideals b1, . . . , bn that are
pairwise comaximal so that each fai is a sum of some of the fbi.

Corollary 8. If R is a suitable ring, then for any finitely generated
regular ideals s and t of R, there exist pairwise comaximal finitely
generated regular ideals a, b, and c, such that s ∼ ab and t ∼ bc.

Corollary 9. If R is a suitable ring, then, for a fixed positive integer
n, the family Ia = (rad a)n is admissible.

Proof. The only problem is showing that (rad st)n = (rad s)n ∩
(rad t)n. This is always true for n = 1. If s and t are comaximal, then
(rad st)n = (rad s · rad t)n = (rad s)n(rad t)n = (rad s)n ∩ (rad t)n. For
the general case, write s ∼ ab and t ∼ bc as in the previous corollary.
Then (rad s)n = (rad a)n ∩ (rad b)n and (rad t)n = (rad b)n ∩ (rad c)n,
while rad st = rad a ∩ rad b ∩ rad c = rada · rad b · rad c, so

(rad st)
n
= (rad a)

n
(rad b)

n
(rad c)

n

= (rad a)
n ∩ (rad b)

n ∩ (rad c)
n

= ((rad a)
n ∩ (rad b)

n
) ∩ ((rad b)

n ∩ (rad c)
n
)

= (rad s)
n ∩ (rad t)

n
.

Suppose R is the ring Z of integers in Corollary 9. The minimal zero-
dimensional extension of Z corresponding to this family can be thought
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of as follows. It is the subring of the product of Z/pnZ over all primes
p consisting of those sequences that are eventually constant as rational
numbers. The idempotent fp is the binary sequence whose unique 1 is
at p.

5. Extending admissible families. We will refer to the following
extension theorem in two different contexts.

Theorem 10. Let R be a suitable ring. Let V be a join subsemilattice
of L(R) such that for all a ∈ L(R) there exists u ∈ V such that a ≤ u.
Let (Iu)u∈V be an admissible family on V such that if v, v′ ∈ V , and
v′ = v ∨ c and v ∧ c = 0, then

Iv = {r ∈ R : rcn ⊂ Iv′ for some n} .

Then (Iu)u∈V can be extended uniquely to an admissible family on
L(R).

Proof. For a ∈ L(R), choose v ∈ V such that a ≤ v. As L(R) is
relatively complemented, there exists b ∈ L(R) such that v = a ∨ b,
and a ∧ b = 0. Set

Ia = {r ∈ R : rbn ⊂ Iv for some positive integer n} .

From Lemma 2 there is no other way to define Ia, so it’s unique. It
remains to show that this is a well-defined admissible family. Note that
the definition of Ia depends only on the equivalence class of b in L(R).

To show that Ia well defined, we need to show we get the same result
for Ia if we take v′ ≥ a. Since V is a join subsemilattice, we may assume
v′ ≥ v. Write v′ = v ∨ c with v ∧ c = 0. Then v′ = a ∨ b ∨ c and the
definition of Ia using v′ is

I ′a = {r ∈ R : rbncn ⊂ Iv′ for some positive integer n} .

To see that I ′a ⊂ Ia, note that if rbncn ⊂ Iv′ , then rbn ⊂ Iv because
Iv′ ⊂ Iv, so rbncn ⊂ Iv and cn+ Iv = R. To show that Ia ⊂ I ′a we need
to use the displayed hypothesis of the theorem. Suppose r ∈ Iv so

rbn ⊂ Iv = {r ∈ R : rcm ⊂ Iv′ for some m} .
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Thus rbncm ⊂ Iv′ . We may assume m = n, whence r ∈ I ′a.

Finally, we must show that this defines an admissible family. Suppose
we are given s, t ∈ L(R). Choose v ∈ V such that s ∨ t ≤ v. Write
v = s∨a = t∨b where s∧a = t∧b = 0. It follows that v = s∨ t∨(a∧b)
and (s ∨ t) ∧ (a ∧ b) = 0. So

Ist = {r ∈ R : r (a+ b)
n ⊂ Iv for some positive integer n}

Is = {r ∈ R : ran ⊂ Iv for some positive integer n}
It = {r ∈ R : rbn ⊂ Iv for some positive integer n} .

Clearly Ist = Is ∩ It (we might have to take the n bigger in Ist).

Note that if there is an extension of (Iu)u∈V from V to L(R), then the
displayed hypothesis of the theorem must hold because of Lemma 2.

6. Algebraic extensions of factorial fields. Lemma 2 enables us
to give a pleasing description of the admissible families when R = F [X ]
for F a field of algebraic numbers. In fact, we can do this for any field
that is algebraic over a factorial field. By a factorial field, we mean
a field over which every polynomial of degree greater than zero is a
product of irreducible polynomials (see [7, VII.1]). Kronecker showed
that Q is a factorial field although Knuth says that Schubert did it a
hundred years earlier.

Lemma 11. Let k be a commutative ring, F an integral extension
of k, and h a monic polynomial in F [X ]. Then h divides a monic
polynomial in k[X ].

Proof. For an indeterminate Y , consider the ring R = F [Y ]/(h(Y ))
which is an integral extension of F which, in turn, is an integral
extension of k. So R is an integral extension of k [7, VI Corollary
1.5]. Thus the image of Y in R satisfies a monic polynomial over k. By
the construction of R, this polynomial must be divisible by h.

Theorem 12. Let k be a discrete field and F an algebraic extension
of k. Suppose for each nonzero polynomial q ∈ k[X ] we are given an
ideal Iq of F [X ] so that the family (Iq)q∈k[X]\{0} is admissible. Then
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this family can be extended uniquely to a family (Ip)p∈F [X]\{0} that is
admissible.

Proof. We prove this by appealing to Theorem 10. First we need to
show that every monic polynomial in F [X ] divides a monic polynomial
in k[X ], but this follows from Lemma 11. Next suppose x and y are
in k[X ] and c is monic in F [X ]. If y = x ∨ c and x ∧ c = 0, we
will show that c is equivalent in L(F [X ]) to an element of k[X ]. The
discussion following Theorem 6 shows that both L(k[X ]) and L(F [X ])
are relatively complemented, so x has a complement c′ in y that lies in
L(k[X ]). By uniqueness of the relative complement, c′ is equivalent to
c in L(F [X ]). Lemma 2 now says that the hypothesis of Theorem 10
is satisfied.

The point here is that admissible families of ideals in F [X ], indexed
by the ring k[X ], are specified by giving an ideal Ip in F [X ], containing
some power of p, for each monic irreducible polynomial p ∈ k[X ]. So
it is fairly transparent what the admissible families (Ip)p∈F [X]\{0} of
ideals in F [X ] are.

A related question concerns whether for an arbitrary suitable ring, it
suffices to look at admissible families indexed by the principal regular
ideals. The question is whether these admissible families can be
extended, and the answer to that question depends on whether such
families automatically satisfy the hypothesis of Theorem 10. Note that
this is a question with nontrivial classical content. I would guess that
the answer is “no,” but I don’t have a counterexample.

7. Arapović’s theorem. By the total quotient ring of R[E] within
S we mean the set of elements of the form t/s ∈ S where s, t ∈ R[E]
and s is invertible in S. The following is [3, Theorem 4]:

Theorem 13. Let S be an R-algebra such that ex is defined in S for
every x ∈ R. Let E = {ex ∈ S : x ∈ R}. Then ex is defined in S, and
is in R[E], for every x ∈ R[E], and every regular element of R[E] is
invertible in S. It follows that the total quotient ring of R[E] within S
is the same as the total quotient ring T (R[E]) of R[E].
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Proof. I’ll sketch the proof from [3], which is constructive as it
stands, but not completely straightforward. Each element of R[E] can
be written as x =

∑
rigi where ri ∈ R and the gi are orthogonal

idempotents in the Boolean algebra generated by E (which is contained
in R[E]). Note that from a constructive point of view we may not be
able to tell whether or not a given gi is zero, and several of them might
be. Then we form e =

∑
erigi ∈ R[E] and show that it satisfies the

defining conditions for ex. The key observation is that

x (1− e) =
∑

ri (1− eri) gi

is nilpotent because ri(1 − eri) is nilpotent and the gi are orthogonal,
and that erigi ∈ Srigi so e ∈ Sx. If x is regular in R[E], then, because
x(1 − e) is nilpotent, we get e = 1 so 1 ∈ Sx, that is, x is invertible in
S.

Arapović’s theorem [1, Theorem 7], characterizing minimal zero-
dimensional R-algebras, as stated in [3, Theorem 6], is:

Theorem 14 (Arapović). Let R be a ring and S an R-algebra such
that ex is defined in S for each x ∈ R. Let E = {ex ∈ S : x ∈ R}.
Then the total quotient ring T ′ of R[E] within S is the minimal zero-
dimensional R-algebra within S.

Proof. The proof of Arapović’s theorem in [3, Theorem 6] goes
as follows. Theorem 13 says that the regular elements of R[E] are
invertible in S. Then we observe that T ′ is contained in any zero-
dimensional R-subalgebra of S because such a ring must be a total
quotient ring and must contain R[E] because of the uniqueness of the
idempotents ex. If x ∈ T ′, then x = a/b where a, b ∈ R[E] and b
is regular in R[E]. Theorem 13 says that ea is defined in S and is
in R[E] ⊂ T ′. To see that ea is defined in T ′, we note that since
ea is defined in S, Lemma 1 says that a(1 − ea) is nilpotent and
a + 1 − ea ∈ R[E] is invertible in S, hence in T ′. Since b is regular
in R[E], it is invertible in T ′, so eb = 1. Thus ex = ea/b = ea is defined
in T ′ for every x ∈ T ′, so T ′ is zero dimensional.

8. The main theorem for suitable rings. Let L be a relatively
complemented lattice. Consider the setD of finitely enumerable subsets
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of L consisting of pairwise disjoint elements. If α and β are such subsets,
set α ≤ β if each element of α is a join of some elements of β. This
gives a partial preorder on D that is directed upwards. Note that if
{a1, . . . , an} ∈ D, and

∨
i∈I ai =

∨
j∈J aj for some finite subsets I and

J of {1, . . . , n}, then ak = 0 for each k ∈ (I \ J) ∪ (J \ I). It follows
that if α ≤ β and β ≤ α, then α = β.

Following Jacobson, by an rng we mean a ring that doesn’t necessarily
have an identity element. Note that a rng-homomorphism of rings need
not take the identity to the identity. A key element of the construction
of a minimal zero-dimensional extension of R is the formation of the
ring U∗ from a rng U by adjoining an identity. Actually, the rng U will
have a compatible R-module structure, and the ring U∗ is formed from
the R-module R⊕ U by setting (r, u)(r′, u′) = (rr′, ru′ + r′u+ uu′).

If U is a ring, that is, if U has an identity, then U∗ is naturally
isomorphic to R×U under the map taking (r, u) ∈ U∗ to (r, u+ r ·1) ∈
R × U . So if U is a ring of dimension zero, then (r, u) ∈ U∗ is regular
if and only if r is regular and u + r · 1 is invertible in U . Let U and
V be rings with dimU = 0. Then any rng map U → V induces a ring
map U∗ → V ∗ that takes regular elements to regular elements, thus
inducing a map T (U∗) → T (V ∗).

We have set the stage for the main construction. Given a suitable
ring R and an admissible family (Ia)a∈L(R) of ideals of R, we will
construct a ring S = F((Ia)a∈L(R)). Let D be the set of finitely
enumerable subsets of L(R) consisting of pairwise disjoint elements.
For α = (a1, . . . , am) ∈ D, let Uα be the ring

⊕m
i=1 R/Iai . If

α ≤ β = (b1, . . . , bn), then each ai is a join of elements of β, so
ai ∼

∏
j∈Ki

bj whence Iai =
⋂

j∈Ki
Ibj so R/Iai is naturally isomorphic

to
⊕

j∈Ki
R/Ibi . If j ∈ Ki ∩Ki′ , and i �= i′, then Ibj = R, so we may

assume that the sets Ki are disjoint. We define a map from Uα to Uβ

by taking R/Iai to
⊕

j∈Ki
R/Ibj via the natural isomorphism. Because

the Ki are disjoint, this map is one-to-one. We then set U equal to the
direct limit of (Uα)α∈D, and set S = T (U∗). Note that U∗ is the direct
limit of (U∗

α)a∈D and S is the direct limit of (T (U∗
α))α∈D.

We can think of U as the free R-module on the symbols 1a, for
a ∈ L(R), modulo the conditions

• annR1a = Ia

• 1a1b = 1a∧b
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• 1a = 1b + 1c if a = b ∨ c and b ∧ c = 0.

Recall that 0 ∈ L(R) is represented by the ideal R, and that IR = R,
so 10 = 0. The third condition gives a test for equality in U (which
doesn’t mean that U is discrete). Together with Theorem 7 it says
that we can write any two elements u and v of U as u =

∑
ri1ai and

v =
∑

si1ai where the ai is pairwise disjoint, so u = v exactly when
ri − si ∈ Iai for each i. Of course we have to check that this test (or
definition of equality, if you will) does not depend on the choice of the
ai.

Theorem 15. If R is a suitable ring, and (Ia)a∈L(R) is an admissible
system of ideals of R, then S = F((Ia)a∈L(R)) is a minimal zero-
dimensional extension of R such that Ia = annRfa for each a ∈ L(R).

Proof. Because S is a direct limit of zero-dimensional rings T (U∗
α),

it is zero dimensional. We will show that the idempotent fa of S is
equal to 1a, the identity in R/Ia, so annRfa = Ia. Clearly a1a is nil.
We must show that 1 − 1a ∈ aS = aT (U∗). It suffices to show that
1 − 1a ∈ aT (U∗

{a}). But T (U∗
{a}) = T (R) × U{a} and aT (R) = T (R)

because a is regular, so an(T (R) × U{a}) = T (R) for some n. But
1− 1a ∈ T (R).

Finally, we need to show that S is a minimal zero dimensional
extension of R. Let E = {ex ∈ S : x ∈ R}. Arapović’s theorem
says that the total quotient ring of R[E] within S is a minimal zero-
dimensional extension of R. But ex = 1 − 1x, if x is regular, so
U∗ = R[E]. Thus S itself is a minimal zero-dimensional extension
of R.

That’s the existence theorem. The uniqueness theorem is the follow-
ing.

Theorem 16. If S and S′ are minimal zero-dimensional extensions
of a suitable ring R, and annRfa = annRf

′
a for all a ∈ L(R), then S is

isomorphic to S′.

Proof. Let D be the set of finitely enumerable subsets of L(R)
consisting of pairwise disjoint elements. For α ∈ D we let fα = {fa ∈
S : a ∈ α}. Three observations: First, we cannot necessarily say, for
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a ∈ α, that fa = 0 or fa �= 0. Second, the elements of fα are mutually
orthogonal idempotents. Third, if α ≤ β, then every element of fα is a
sum of elements of fβ (with distinct indices).

Let E = {ex ∈ S : x ∈ R} as in Arapović’s theorem. For each
a ∈ L(R) we have fa ∈ R[E]. So the union U over α ∈ D of R[fα]
is contained in R[E]. There is a natural isomorphism ϕα of the rings
R[fα] and R[f ′

α] that takes fa to f ′
a because annRfa = annRf

′
a for all

a ∈ L(R). Moreover, if α ≤ β, then the restriction of ϕβ to R[fα] is
ϕβ . Thus we get a rng-isomorphism ϕ : U → U ′. It follows that U∗

and U ′∗ are isomorphic rings.

We want to show that R[E] = U∗, that is, that each element of
R[E] can be written uniquely as r + u where r ∈ R and u ∈ U . To
show existence, note that x ∈ R is either nilpotent or regular, so either
ex = 0 or Rx ∈ L(R) whence ex = 1 − fx. For uniqueness, it suffices
to show that if r+u = 0, then r = 0. There is a regular element x ∈ R
such that xu = 0. So xr = 0, which implies r = 0. Thus R[E] and
R[E′] are isomorphic rings. As S and S′ are minimal zero-dimensional
extensions, S = T (R[E]) and S′ = T (R[E′]) by Arapović’s theorem, so
S and S′ are isomorphic.

9. Noetherian spectrum. It is a classical result [8, Proposition
2.1] that a commutative ring has Noetherian spectrum exactly when ev-
ery prime ideal is the radical of a finitely generated ideal. It’s also true
that a finite-dimensional ring has Noetherian spectrum exactly when
the radical of any finitely generated ideal is the intersection of finitely
many prime ideals. That’s because another classical characterization
of Noetherian spectrum [8, Proposition 2.1] is that the ring has the
ascending chain condition on prime ideals and every finitely generated
ideal has only finitely many minimal prime ideals.

We will put those two conditions together and define a ring of
dimension at most one (the only case we are interested in) to have
Noetherian spectrum if the radical of any finitely generated ideal is the
intersection of finitely many prime ideals, each of which is the radical
of a finitely generated ideal. Notice that this condition allows us to get
our hands on prime ideals.

Under this definition, a Noetherian ring need not have Noetherian
spectrum from a constructive point of view. Indeed, whatever your
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definition of “Noetherian,” the ring F [X ], where F is a (discrete) field,
better satisfy it. However, for F [X ] to have Noetherian spectrum, you
have to be able to write each nonconstant polynomial in F [X ] that is
relatively prime to its derivative, and thus generates a radical ideal,
as a product of a finite number of irreducible polynomials, which you
can’t do even when Q ⊂ F ⊂ Q[i] (consider the polynomial X2 + 1).

We need to clarify what we will mean by a prime ideal. Of course,
this is pretty much the same question as what an integral domain is.
I’m going to assume that an integral domain is a discrete commutative
ring such that if rs = 0, then r = 0 or s = 0. You might also want
0 �= 1 because this is normally required of a field, but that seems
counterproductive here. So we will say that an ideal P is a prime ideal
if it is detachable and if rs ∈ P , then r ∈ P or s ∈ P . Actually, this,
minus the detachability condition, is the definition of “prime ideal”
given in [7], although the definition of “integral domain” there requires
0 �= 1.

We could, with considerably less justification, say that an arbitrary
ring (not necessarily finite dimensional) has Noetherian spectrum if it
satisfies the conditions above. Possibly this is an interesting class of
rings, but I wouldn’t bet on it.

Note that the nilradical of a ring with Noetherian spectrum is de-
tachable because it is the radical of the zero ideal so is an intersection
of finitely many detachable ideals. In fact the radical of any finitely
generated ideal is detachable for the same reason. Note also that a
finitely generated ideal is either proper or equal to R because an ideal
is equal to R if and only if 1 is in its radical.

Theorem 17. Let R be a commutative ring. If P and Q are prime
ideals of R, and P is the radical of a finitely generated ideal, then either
P is contained in Q or there is an element of P that is not in Q. In
particular, the set of prime ideals that are radicals of finitely generated
ideals is discrete. If R has Noetherian spectrum, then the radical of any
finitely generated ideal is uniquely a finite intersection of incomparable
prime ideals that are radicals of finitely generated ideals.

Proof. Suppose P is the radical of the finitely generated ideal I. If
P ⊂ Q, then clearly I ⊂ Q. Conversely, if I ⊂ Q, and r ∈ P , then
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rn ∈ I ⊂ Q for some n, so r ∈ Q because Q is prime. Because Q is
detachable, and I is finitely generated, either I ⊂ Q or there exists
r ∈ I such that r /∈ Q.

Now suppose I is finitely generated and rad I = P1 ∩ · · · ∩ Pm where
the Pi are prime ideals that are radicals of finitely generated ideals.
Since we can compare the prime ideals Pi, we may throw out the ones
that are not minimal, and we are left with incomparable prime ideals.
Suppose now that rad I = Q1∩· · ·∩Qn where the Qi are incomparable
prime ideals that are radicals of finitely generated ideals. For each i and
j, either Pi ⊂ Qj or there is an element of Pi that is not in Qj . As Qj is
prime and contains P1 · · ·Pm, it must contain some Pi. Similarly each
Pi must contain some Qj. Because of the incomparability conditions,
each Pi must equal some Qj and vice versa.

So if R has Noetherian spectrum, then L(R) is discrete, and each
element is a finite join of atoms (the prime ideals). It follows that if
R is a suitable ring with Noetherian spectrum, then the minimal zero-
dimensional extensions of R are determined by specifying, for each
prime ideal a ∈ L(R), an ideal Ia in R that contains a power of a. This
is essentially the main result of [3].

Examples of one-dimensional integral domains with Noetherian spec-
trum are finitely generated subrings R of the ring of algebraic integers
in a finite-dimensional extension K of Q. For example, Z[2i]. We
know that dimR ≤ 1 from [4, Corollary 2.4]. Now the ring of integers
in K is a finite-rank free abelian group, so any finitely generated sub-
ring R is also a finite-rank free abelian group. Here finitely generated
can be taken to mean as a ring because each element of R satisfies
a monic polynomial with coefficients in Z, so Z[x1, . . . , xn] is finitely
generated as an abelian group for x1, . . . , xn ∈ R. Multiplication by
nonzero r ∈ R is one-to-one on R, so R/Rr is finite. So every nonzero
finitely generated ideal I of R is detachable and, if proper, is contained
in a finitely generated maximal ideal of R. Moreover rad I is finitely
generated.

10. A one-dimensional Bezout domain. The ring k[X ], where k
is an arbitrary discrete field, is a one-dimensional Bezout domain which
need not have Noetherian spectrum in the constructive sense that we
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defined the term. Nonetheless, it does have Noetherian spectrum in the
classical sense. However, there are one-dimensional Bezout domains
that do not have Noetherian spectrum in any sense, and the main
theorem in this paper applies to them even though the theorem in [3]
does not. I will leave it to the reader to evaluate how perspicuous the
theorem is in this case.

Let R be the ring of polynomials with rational coefficients and
nonnegative rational exponents. This ring is the direct limit of the
principal ideal domains Q[X ] where the connecting maps gn : Q[X ] →
Q[X ] take X to Xn. It has dimension one because it is a direct limit
of rings of dimension one. It does not have Noetherian spectrum: The
ideals generated by X − 1, X1/2 − 1, X1/4 − 1, X1/8 − 1, . . . are each
radical because Xm − 1 is square free in Q[X ]. They are properly
increasing because the only units are nonzero rational numbers. The
polynomials Xq − 1 where q ranges over all rational numbers generate
a proper ideal because Xs/n−1 and Xt/n−1 are divisible by X1/n−1.
This ideal is the kernel of the evaluation map into Q that takes X to 1.
So it’s the augmentation ideal. Every Xq − 1 generates a radical ideal
because it is square free.

Note that if p(X) is an Eisenstein polynomial, then so is p(Xn), so
these polynomials are prime in the limit ring.

What’s an interesting example of a minimal zero-dimensional exten-
sion of this ring? There are the rings K ×R/I where I is any nonzero
ideal of R and K is the quotient field of R. More interesting are the
universal examples, see Corollary 9, achieved by setting Ia = (rad a)n

for a fixed positive integer n. Is there an example more tailored to this
specific ring?
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de Dedekind, J. Alg. 281 (2004), 604 650.

7. Ray Mines, Fred Richman and Wim Ruitenburg, A course in constructive
algebra, Springer, New York, 1988.

8. Jack Ohm and Robert Pendleton, Rings with Noetherian spectrum, Duke Math.
J. 35 (1968), 631 640.

Florida Atlantic University, Department of Mathematics, Boca Raton,
FL 33431
Email address: fred@math.fau.edu



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [432.000 648.000]
>> setpagedevice


