
JOURNAL OF COMMUTATIVE ALGEBRA
Volume 5, Number 2, Summer 2013

EXTREMAL REES ALGEBRAS

JOOYOUN HONG, ARON SIMIS AND WOLMER V. VASCONCELOS

Dedicated to Jürgen Herzog for his numerous contributions to Commutative Algebra
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ABSTRACT. We study almost complete intersection ideals
whose Rees algebras are extremal in the sense that some of
their fundamental metrics depth or relation type have max-
imal or minimal values in the class. The focus is on those
ideals that lead to almost Cohen-Macaulay algebras, and our
treatment is wholly concentrated on the nonlinear relations of
the algebras. Several classes of such algebras are presented,
some of a combinatorial origin. We offer a different prism to
look at these questions with accompanying techniques. The
main results are effective methods to calculate the invariants
of these algebras.

1. Introduction. Our goal is the study of the defining equations
of the Rees algebras R[It] of classes of almost complete intersection
ideals when one of its important metrics, especially depth or reduction
number, attains an extreme value in the class. We are going to
show that such algebras occur frequently and develop novel means to
identify them. As a consequence, interesting properties of such algebras
have been discovered. We argue that several questions, while often
placed in the general context of Rees algebra theory, may be viewed as
subproblems in this more narrowly defined environment.

LetR be a Cohen-Macaulay local ring of dimension d, or a polynomial
ring R = k[x1, . . . , xd] for k a field. By an almost complete intersection
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we mean an ideal I = (a1, . . . , ag, ag+1) of codimension g where the
subideal J = (a1, . . . , ag) is a complete intersection and ag+1 /∈ J . By
the equations of I, it is meant a free presentation of the Rees algebra
R[It] of I,

(1) 0 −→ L −→ B = R[T1, . . . ,Tg+1]
ψ−→ R[It] −→ 0, Ti �−→ fit.

More precisely, L is the defining ideal of the Rees algebra of I, but we
refer to it simply as the ideal of equations of I. We are particularly
interested in establishing the properties of L when R[It] is Cohen-
Macaulay or has almost maximal depth. This broader view requires a
change of focus from L to one of its quotients. We are going to study
some classes of ideals whose Rees algebras have these properties. They
tend to occur in classes where the reduction number redJ (I) attains an
extremal value.

We first set up the framework to deal with properties of L by a
standard decomposition. We keep the notation of above, I = (J, a).
The presentation ideal L of R[It] is a graded ideal L = L1 + L2 + · · · ,
where L1 are linear forms in the Ti defined by a matrix φ of the syzygies
of I, L1 = [T1, . . . ,Tg+1] · φ. Our basic prism is given by the exact
sequence

0 −→ L/(L1) −→ B/(L1) −→ R[It] −→ 0.

Here B/(L1) is a presentation of the symmetric algebra of I and
S = Sym (I) is a Cohen-Macaulay ring under very broad conditions,
including when I is an ideal of finite colength. The emphasis here
will be entirely on T = L/(L1), which we call the module of nonlinear
relations of I. The usefulness arises because of the fact exhibited in the
exact sequence

(2) 0 −→ T −→ S −→ R[It] −→ 0.

• (Proposition 2.5). T is a Cohen-Macaulay S-module if and only if
depthR[It] ≥ d.

In general, we say that a commutative Noetherian ring R is almost
Cohen-Macaulay (aCM for short) if grade (m) ≥ height (m)−1 for every
maximal ideal m of R. We note that L carries a very different kind
of information than T does. The advantage lies in the flexibility of
treating Cohen-Macaulay modules versus Cohen-Macaulay ideals: the
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means to test for Cohen-Macaulayness in modules are more plentiful
than in ideals. An elementary example lies in the proof of:

• (Theorem 2.10). Suppose that R is a Cohen-Macaulay local
ring and I is an m-primary almost complete intersection such that
S = Sym (I) is reduced. Then R[It] is almost Cohen-Macaulay.

We shall now discuss our more technical results. Throughout, (R,m)
is a Cohen-Macaulay local ring of dimension d (where we include rings
of polynomials and the ideals are homogeneous), and I is an almost
complete intersection I = (J, a) of finite colength.

One technique we bring in to the treatment of equations of Rees
algebras is the theory of the Sally module. It gives a very direct
relationship between Cohen-Macaulayness of T and of the Sally module
SJ(I) of I relative to J . SJ(I) also gives a quick connection between
the Castelnuovo regularity and the relation type of R[It] and those
of SJ(I). A criterion of Huckaba ([21]) (of which we give a quick
proof for completeness) gives a method to test the Cohen-Macaulayness
of T in terms of the values of the first Hilbert coefficient e1(I) of I
(Theorem 3.7). It is particularly well-suited for the case when I is
generated by homogeneous polynomials defining a birational mapping
for then the value of e1(I) is known.

Our approach to the estimation for ν(T ), the minimum number
of generators of T , passes through the determination of an effective
formula for degS, the multiplicity of S:

• (Theorem 3.20). If I is generated by forms of degree n, then

degS =

d−1∑
j=0

nj + λ(I/J).

The summation accounts for degR[It], according to [16], so degT =
λ(I/J). This is a number that will control the number of generators
of T , and therefore of L, whenever R[It] is almost Cohen-Macaulay. It
achieves the goal of finding estimates for the number of generators of
L and of its relation type, that is

reltype (I) = inf {n | L = (L1, L2, . . . , Ln)}.

Two other metrics of interest, widely studied for homogeneous ideals
but not limited to them, are the following. One seeks to bound the
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saturation exponent of L/(L1) (which was introduced in [19] and has a
simple ring-theoretic explanation as the index of nilpotency of S),

sdeg (I) = inf {s | msL ⊂ (L1)},

and the other is the degree of the special fiber F(I) of R[It], also called
the elimination degree of I,

edeg (I) = degF(I) = inf {s | Ls �⊂ mB}.

While retype (I) is the most critical of these numbers, the other two
are significant because they are often found linked to the syzygies of I.
Our notion of extremality will cover the supremum or infimum values
of these degrees in a given class of ideals but also their relationship to
the cohomology of R[It] as expressed by the depth of the algebra.

Two classes of almost Cohen-Macaulay algebras arise from certain
homogeneous ideals. First, we show that binary ideals with one linear
syzygy have this property. This has been proved by several authors.
We offer a very short proof using the technology of the Sally module
(Proposition 4.6). It runs for a few lines and gives no details of the
projective resolution of that algebra besides the fact that it has the
appropriate length. We include it because we have found no similar
technique in the literature. The proof structure, a simple combinatorial
obstruction to the aCM property, is used repeatedly to examine the
occurrence of the property amongst ideals generated by quadrics in
4-space.

A different class of algebras is that associated to monomials. These
ideals have the form I = (xα, yβ , zγ , xaybzc). We showed that

• (Proposition 4.12). The ideals (xn, yn, zn, xyz), n ≥ 3, and
(xn, yn, zn, wn, xyzw), n ≥ 4, have almost Cohen-Macaulay Rees al-
gebras.

We expect these statements are still valid in higher dimensions. Our
proofs were computer-assisted as we used Macaulay 2 ([11]) to derive
deeper heuristics.

2. Approximation complexes and almost complete intersec-
tions. A main source of extremal Rees algebras lie in the construction
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of approximation complexes. We quickly recall them and some of their
main properties.

2.1. The Z-complex. These are complexes derived from Koszul
complexes and arise as follows (for details, see [13, 14], [29, Chapter
4]). Let R be a commutative ring, F a free R-module of rank n with
a basis {e1, . . . , en}, and ϕ : F → R a homomorphism. The exterior
algebra

∧
F of F can be endowed with a differential

∂ϕ :

r∧
F −→

r−1∧
F,

∂ϕ(v1 ∧ v2 ∧ · · · ∧ vr) =

r∑
i=1

(−1)iϕ(vi)(v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vr).

The complex K(ϕ) = {
∧
F, ∂ϕ} is called the Koszul complex of ϕ.

Another notation for it is: If x = {ϕ(e1), . . . , ϕ(en)}, denote the Koszul
complex by K(x).

Let S = S(F ) = Sym (F ) = R[T1, . . . ,Tn], and consider the exterior
algebra of F ⊗R S(F ). It can be viewed as a Koszul complex obtained
from {

∧
F, ∂ϕ} by change of scalars R → S, and another complex

defined by the S-homomorphism

ψ : F ⊗R S(F ) −→ S(F ), ψ(ei) = Ti.

The two differentials ∂ϕ and ∂ψ satisfy

∂ϕ∂ψ + ∂ψ∂ϕ = 0,

which leads directly to the construction of several complexes.

Definition 2.1. Let Z, B and H be the modules of cycles, bound-
aries and the homology of K(ϕ).

• The Z-complex of ϕ is Z = {Z⊗R S, ∂}

0 −→ Zn ⊗ S[−n] −→ · · · −→ Z1 ⊗ S[−1] −→ S −→ 0,

where ∂ is the differential induced by ∂φ.
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• The B-complex of ϕ is the subcomplex of Z

0 −→ Bn ⊗ S[−n] −→ · · · −→ B1 ⊗ S[−1] −→ S −→ 0.

• The M-complex of ϕ is M = {H⊗R S, ∂}

0 −→ Hn ⊗ S[−n] −→ · · · −→ H1 ⊗ S[−1] −→ H0 ⊗ S −→ 0,

where ∂ is the differential induced by ∂ψ.

These are complexes of graded modules over the polynomial ring
S = R[T1, . . . ,Tn].

Proposition 2.2. Let I = ϕ(F ). Then:

(i) The homology of Z and of M depend only on I;

(ii) H0(Z) = Sym (I).

Acyclicity. The homology of the Koszul complex K(ϕ) is not fully
independent of I; for instance, it depends on the number of generators.
An interest here is the ideals whose Z complexes are acyclic.

We recall a broad setting that gives rise to almost complete inter-
sections with Cohen-Macaulay symmetric algebras. For a systematic
examination of the notions here we refer to [14]. It is centered on one
approximation complex associated to an ideal, the so-called Z-complex.
A significant interest for us is the following.

Theorem 2.3 [14, Theorem 10.1]. Let R be a Cohen-Macaulay local
ring, and let I be an ideal of positive height. Assume:

(a) ν(Ip) ≤ height p+ 1 for every p ⊃ I;

(b) depth (Hi)p ≥ height p − ν(Ip) + 1 for every p ⊃ I and every
0 ≤ i ≤ ν(Ip)− height Ip.

Then

(i) The complex Z is acyclic.

(ii) Sym (I) is a Cohen-Macaulay ring.
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Corollary 2.4. Let R be a Cohen-Macaulay local ring of dimension
d ≥ 1, and let I be an almost complete intersection. The complex Z
is acyclic and Sym (I) is a Cohen-Macaulay algebra in the following
cases:

(i) (See also [26].) I is m-primary. In this case Sym (I) has Cohen-
Macaulay type d− 1.

(ii) height I = d − 1. Furthermore, if I is generically a complete
intersection then I is of linear type.

(iii) height I = d − 2 and depthR/I ≥ 1. Furthermore, if ν(Ip) ≤
height p for I ⊂ p, then I is of linear type.

A different class of ideals with Cohen-Macaulay symmetric algebras
is treated in [22].

2.2. The canonical presentation. Let R be a Cohen-Macaulay
local domain of dimension d ≥ 1, and let I be an almost complete
intersection as in Corollary 2.4. The ideal of equations L can be studied
in two stages: (L1) and L/(L1) = T :

(3) 0 −→ T −→ S = B/(L1) = Sym (I) −→ R[It] −→ 0.

We will argue that this exact sequence is very useful. Note that Sym (I)
and R[It] have dimension d+1, and that T is the R-torsion submodule
of S. Let us give some of its properties.

Proposition 2.5. Let I be an ideal as above.

(i) (L1) is a Cohen-Macaulay ideal of B.

(ii) T is a Cohen-Macaulay S-module if and only if depthR[It] ≥ d.

(iii) If I is m-primary, then N = T ∩ mS is the nil radical of S and
N s = 0 if and only if msT = 0. This is equivalent to saying that
sdeg (I) is the index of nilpotency of Sym (I).

(iv) T = N + F , where F is a lift in S of the relations in S/mS of
the special fiber ring F(I) = R[It] ⊗ R/m. In particular if F(I) is a
hypersurface ring, T = (f,N ).

Proof. (i) comes from Corollary 2.4.
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(ii) In the defining sequence of T ,

0 −→ (L1) −→ L −→ T −→ 0,

since (L1) is a Cohen-Macaulay ideal of codimension g, as a B-module,
we have depth (L1) = d+2, while depthL = 1+depthR[It]. It follows
that depthT = min{d + 1, 1 + depthR[It]}. Since T is a module of
Krull dimension d + 1, it is a Cohen-Macaulay module if and only if
depthR[It] ≥ d.

(iii) mS and T are both minimal primes and, for large n, mnT = 0.
Thus, T and mS are the only minimal primes of S, N = mS ∩ T . To
argue the equality of the two indices of nilpotency, let n be such that
mnT = 0. The ideal mnS + T has positive codimension, so it contains
regular elements since S is Cohen-Macaulay. Therefore, to show

msT = 0 ⇐⇒ N s = 0,

it is enough to multiply both expressions by mnS+T . The verification
is immediate.

(iv) Tensoring the sequence (3) by R/m gives the exact sequence

0 −→ mS ∩ T/mT = N/mT −→ T/mT −→ S/mS −→ F(I) −→ 0.

By Nakayama’s lemma, we may ignore mT and recover T as asserted.

The main intuition derived from Proposition 2.5 is that, whatever
methods are developed to study the equations of R[It] when this
algebra is Cohen-Macaulay, should apply in case they are almost
Cohen-Macaulay.

Remark 2.6. If I is not m-primary but still satisfies one of the other
conditions of Corollary 2.4, the nilradical N of S is given by T ∩N0S,
where N0 is the intersection of the minimal primes p for which Ip is
not of linear type.

2.3. Reduced symmetric algebras.

Proposition 2.7. Let R be a Gorenstein local domain of dimen-
sion d, and let J be a parameter ideal. If J contains two minimal
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generators in m2, then the Rees algebra of I = J :m is Cohen-Macaulay
and L = (L1, f) for some quadratic form f .

Proof. The equality I2 = JI comes from [4]. The Cohen-Macaulayess
of R[It] is a general argument (in [4] and probably elsewhere). Let f
denote the quadratic form

f = T2
d+1 + lower terms.

Let us show that mT = 0. Reduction modulo f can be used to present
any element in L as

F = Td+1 · A+B ∈ L,

where A and B are forms in T1, . . . ,Td. Since I = J : m, any
element in mTd+1 is equivalent, modulo L1, to a linear form in the
other variables. Consequently,

mF ⊂ (L1,R[T1, . . . ,Td]) ∩ L ⊂ (L1),

as desired.

By Proposition 2.5, we have the exact sequence

0 −→ T −→ S/mS −→ F(I) −→ 0.

But T is a maximal Cohen-Macaulay S-module, and so it is also a
maximal Cohen-Macaulay S/mS-module as well. It follows that T is
generated by a monic polynomial that divides the image of f in S/mS.
It is now clear that T = (f)S.

Corollary 2.8. For the ideals above Sym (I) is reduced.

We now discuss a generalization, but since we are still developing the
examples, we are somewhat informal.

Corollary 2.9. Suppose the syzygies of I are contained in msB and
that msL ⊂ (L1). We have the exact sequence

(4) 0 −→ T −→ S/msS −→ R[It]⊗R/ms = Fs(I) −→ 0.
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If R[It] is almost Cohen-Macaulay, T is a Cohen-Macaulay module
that is an ideal of the polynomial ring C = R/(ms)[T1, . . . ,Td+1], a
ring of multiplicity

(
s+d−1

d

)
. Therefore, we have that ν(T ) ≤

(
s+d−1

d

)
.

Note that also here Fs(I) is Cohen-Macaulay. We wonder whether
F(I) is Cohen-Macaulay.

Let (R,m) be a Cohen-Macaulay local ring and I an almost complete
intersection as in Corollary 2.4. We examine the following surprising
fact.

Theorem 2.10. Suppose that R is a Cohen-Macaulay local ring and
I is an m-primary almost complete intersection such that S = Sym (I)
is reduced. Then R[It] is an almost Cohen-Macaulay algebra.

Proof. Since 0 = N = T ∩mS, on one hand from (3) we have that T
satisfies the S2 condition of Serre, that is,

depthTP ≥ inf {2, dimTP}

for every prime ideal P of S. On the other hand, from (4), T is an
ideal of the polynomial ring S/mS. It follows that T = (f)S, and
consequently, depthR[It] ≥ d.

Example 2.11. If R = Q[x, y]/(y4 − x3), J = (x) and I = J :
(x, y) = (x, y3), depthR[It] = 1.

There are a number of immediate observations.

Corollary 2.12. If I is an ideal as in Theorem 2.10, then the special
fiber ring F(I) is Cohen-Macaulay.

Remark 2.13. If I is an almost complete intersection as in (2.4) and
its radical is a regular prime ideal P , that is R/P is regular local ring,
the same assertions will apply if Sym (I) is reduced.

3. Almost Cohen-Macaulay algebras. We begin our treatment
of the properties of an ideal when its Rees algebra A = R[It] is almost
Cohen-Macaulay. We first describe a large class of examples.
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3.1. Direct links of Gorenstein ideals. We briefly outline a
broad class of extremal Rees algebras. Let (R,m) be a Gorenstein
local ring of dimension d ≥ 1. A natural source of almost complete
intersections in R are direct links of Gorenstein ideals. That is, let
K be a Gorenstein ideal of R of codimension s, that is, R/K is a
Gorenstein ring of dimension d − s. If J = (a1, . . . , as) ⊂ K is a
complete intersection of codimension s, J �= K, I = J : K is an almost
complete intersection, I = (J, a). Depending on K, sometimes these
ideals come endowed with very good properties. Let us recall one of
them.

Proposition 3.1. Let (R,m) be a Noetherian local ring of dimen-
sion d.

(i) [4, Theorem 2.1]. Suppose R is a Cohen-Macaulay local ring, let
p be a prime ideal of codimension s such that Rp is a Gorenstein ring
and let J be a complete intersection of codimension s contained in p.
Then, for I = J : p, we have I2 = JI in the following two cases:

(a) Rp is not a regular local ring;

(b) if Rp is a regular local ring two of the elements ai belong to p(2).

(ii) [3, Theorem 3.7]. Suppose J is an irreducible m-primary ideal.
Then

(a) either there exists a minimal set of generators {x1, . . . , xd} of m
such that J = (x1, . . . , xd−1, xd

r), or

(b) I2 = JI for I = J : m.

The following criterion is a global version of Corollary 3.13.

Proposition 3.2. Let R be a Gorenstein local ring and I = (J, a)
an almost complete intersection (when we write I = (J, a) we always
mean that J is a reduction). If I is an unmixed ideal (height unmixed)
then redJ(I) ≤ 1 if and only if J : a = I1(φ).

Proof. Since the ideal JI is also unmixed, to check the equality
J : a = I1(φ) we only need to check at the minimal primes of I (or, of
J , as they are the same). Now Corollary 3.13 applies.
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If, in Proposition 3.1, R is a Gorenstein local ring and I is a Cohen-
Macaulay ideal, their associated graded rings are Cohen-Macaulay,
while the Rees algebras are also Cohen-Macaulay if dimR ≥ 2.

Theorem 3.3. Let R be a Gorenstein local ring and I a Cohen-
Macaulay ideal that is an almost complete intersection. If redJ (I) ≤ 1,
then in the canonical representation

0 −→ T −→ S −→ R[It] −→ 0,

(i) If dimR ≥ 2 R[It] is Cohen-Macaulay.

(ii) T is a Cohen-Macaulay module over S/(I1(φ))S, in particular

ν(T ) ≤ degR/I1(φ).

Example 3.4. Let R = k[x1, . . . , xd], k an algebraically closed field,
and let p be a homogeneous prime ideal of codimension d− 1. Suppose
J = (a1, . . . , ad−1) is a complete intersection of codimension d − 1
with at least two generators in p2. Since R/p is regular, I = J : p is
an almost complete intersection and I2 = JI. Since p is a complete
intersection, say p = (x1 − c1xd, x2 − c2xd, . . . , xd−1 − cd−1xd), ci ∈ k,
we write the matrix equation J = A · p, where A is a square matrix
of size d− 1. This is the setting where the Northcott ideals occur, and
therefore I = (J, detA).

By Theorem 3.3 (ii), ν(T ) ≤ deg (R/p) = 1. Thus, L is generated by
the syzygies of I (which are well-understood) plus a quadratic equation.

3.2. Metrics of aCM Rees algebras. Let (R,m) be a Cohen-
Macaulay local ring of dimension d, and let I be an almost complete
intersection of finite colength. We assume that I = (J, a), where J is a
minimal reduction of I. These assumptions will hold for the remainder
of the section. We emphasize that they apply to the case when R is a
polynomial ring over a field and I is a homogeneous ideal.

In the next statement we highlight information about the equations
of I that are a direct consequence of the aCM hypothesis. In the next



EXTREMAL REES ALGEBRAS 243

segments we begin to obtain the required data in an explicit form. As
for notation, B = R[T1, . . . ,Td+1] and, for a graded B-module A,
deg (A) denotes the multiplicity relative to the maximal homogeneous
ideal M of B, deg (A) = deg (grM(A)). In actual computations M can
be replaced by a reduction. For instance, if E is a graded R-module
and A = E ⊗R B, picking a reduction J for m gives the reduction
N = (J,T1, . . . ,Td+1) of M. It will follow that deg (A) = deg (E).

Theorem 3.5. If the algebra R[It] is almost Cohen-Macaulay, in
the canonical sequence

0 −→ T −→ S −→ R[It] −→ 0,

(i) reg (R[It]) = redJ(I) + 1.

(ii) ν(T ) ≤ deg (S)− deg (R[It]).

Proof. (i) follows from Corollary 3.9. As for (ii), since T is a Cohen-
Macaulay module, ν(T ) ≤ deg (T ).

The goal is to find deg (T ), deg (R[It]) and deg (S) in terms of more
direct metrics of I. This will be answered in Theorem 3.17.

Cohen-Macaulayness of the Sally module. Fortunately there is
a simple criterion to test whether R[It] is an aCM algebra: It is so if
and only if it satisfies the Huckaba test:

e1(I) =
∑
j≥1

λ(Ij/JIj−1).

Needless to say, this is exceedingly effective if you already know e1(I),
in particular there is no need to determine the equations of R[It] for
the purpose.

Let R be a Noetherian ring, I an ideal and J a reduction of I. The
Sally module of I relative to J , SJ(I), is defined by the exact sequence
of R[Jt]-modules

0 −→ IR[Jt] −→ IR[It] −→ SJ(I) =
⊕
j≥2

Ij/IJj−1 −→ 0.
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The definition applies more broadly to other filtrations. We refer the
reader to [30, page 101] for a discussion. Of course, this module
depends on the chosen reduction J , but its Hilbert function and its
depth are independent of J . There are extensions of this construction
to more general reductions-and we employ one below.

If R is a Cohen-Macaulay local ring and I is m-primary with a
minimal reduction, SJ(I) plays a role in mediating among properties
of R[It].

Proposition 3.6. Suppose R is a Cohen-Macaulay local ring of
dimension d. Then:

(i) If SJ (I) = 0 then grI(R) is Cohen-Macaulay.

(ii) If SJ(I) �= 0, then dimSJ(I) = d.

Some of the key properties of the Sally module are in display in
the next result ([21, Theorem 3.1]). It converts the property of R[It]
being almost Cohen-Macaulay into the property of SJ (I) being Cohen-
Macaulay.

Theorem 3.7 (Huckaba theorem). Let (R,m) be a Cohen-Macaulay
local ring of dimension d ≥ 1 and J a parameter ideal. Let A =
{In, n ≥ 0} be a filtration of m-primary ideals such that J ⊂ I1 and
B = R[Int

n, n ≥ 0] is A = R[Jt]-finite. Define the Sally module SB/A

of B relative to A by the exact sequence

0 −→ I1A −→ I1B −→ SB/A −→ 0.

Suppose SB/A �= 0. Then:

(i) e0(SB/A) = e1(B)− λ(I1/J) ≤
∑

j≥2 λ(Ij/JIj−1).

(ii) The following conditions are equivalent:

(a) SB/A is Cohen-Macaulay;

(b) depth grA(R) ≥ d− 1;

(c) e1(B) =
∑

j≥1 λ(Ij/JIj−1);

(d) If IN = In, R[It] is almost Cohen-Macaulay.
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Proof. If J = (x) = (x1, . . . , xd), SB/A is a finite module over the
ring R[T1, . . . ,Td], Ti → xit. Note that

λ(SB/A/xSB/A) =
∑
j≥2

λ(Ij/JIj−1),

which shows the first assertion.

For the equivalencies, first note that equality means that the first
Euler characteristic χ1(x;SB/A) vanishes which, by Serre’s theorem
([1, Theorem 4.7.10]), says that SB/A is Cohen-Macaulay. The final
assertion comes from the formula for the multiplicity of SB/A in terms
of e1(B) ([30, Theorem 2.5]).

Castelnuovo regularity. The Sally module also encodes informa-
tion about the Castelnuovo regularity reg (R[It]) of the Rees algebra.
The following proposition and its corollary are extracted from the lit-
erature [20, 28] or proved directly by adding the exact sequence that
defines SJ (I) (note that IR[Jt] is a maximal Cohen-Macaulay module)
to the canonical sequences relating R[It]) to grI(R) and R via IR[It]
(see [28, Section 3]).

Proposition 3.8. Let R be a Cohen-Macaulay local ring, I an m-
primary ideal and J a minimal reduction. Then:

reg (R[It]) = reg (SJ(I)).

In particular,
reltype (I) ≤ reg (SJ (I)).

Corollary 3.9. If I is an almost complete intersection and R[It] is
almost Cohen-Macaulay, then

reltype (I) = redJ(I) + 1.

The Sally fiber of an ideal. To help analyze the problem, we
single out an extra structure. Let (R,m) be a Cohen-Macaulay local
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ring of dimension d > 0, I an m-primary ideal and J one of its minimal
reductions.

Definition 3.10 (Sally fiber). The Sally fiber of I is the graded
module

F (I) =
⊕
j≥1

Ij/JIj−1.

F (I) is an Artinian R[Jt]-module whose last non-vanishing compo-
nent is Ir/JIr, r = redJ (I). The equality e1(I) = λ(F (I)) is the
condition for the almost Cohen-Macaulayness of R[It]. We note that
F (I) is the fiber of SJ (I) extended by the term I/J . To obtain ad-
ditional control over F (I), we are going to endow it with additional
structures in cases of interest.

Suppose R is a Gorenstein local ring, I = (J, a). The modules
Fj = Ij/JIj−1 are cyclic modules over the Artinian Gorenstein ring
A = R/J : a. We turn F (I) into a graded module over the polynomial
ring A[s] by defining

aj ∈ Fj �−→ s · aj = aj+1 ∈ Fj+1.

This is clearly well defined and has sr · F (I) = 0. Several of the
properties of the Fn’s arise from this representation; for instance, the
length of Fj is non-increasing. Thus, F (I) is a graded module over the
Artinian Gorenstein ring B = A[s, sr = 0].

Remark 3.11. The variation of the values of Fj is connected to the
degrees of the generators of L. For convenience, we set I = (J, a) and
B = R[u,T1, . . . ,Td], with u corresponding to a. For example:

(i) Suppose that, for some s, fs = λ(Fs) = 1. This means that we
have d equations of the form

hi = xiu
s + gi ∈ Ls,

where gi ∈ (T1, . . . ,Td)Bs−1. Eliminating the xi, we derive a nonva-
nishing monic equation in L of degree d · s. Thus, redJ(I) ≤ ds− 1.
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(ii) A more delicate observation is that, whenever fs > fs+1, then
there are fresh equations in Ls+1. Let us explain why this happens:
fs = λ(JIs−1 : Is), that is, the ideal Ls contains elements of the form

c · us + g, c ∈ JIs−1 : Is, g ∈ (T1, . . . ,Td)Bs−1.

Since fs+1 < fs, JI
s : Is+1 properly contains JIs−1 : Is, which means

that we must have elements in Ls+1

d · us+1 + g,

with d /∈ JIs−1 : Is and g ∈ (T1, . . . ,Td)Bs. Such elements cannot
belong to Ls ·B1, so they are fresh generators.

The converse also holds.

A toolbox. We first give a simplified version of [4, Proposition 2.2].
Suppose R is a Gorenstein local ring of dimension d. Consider the two
exact sequences:

0 −→ J/JI = (R/I)d −→ R/JI −→ R/J −→ 0

and the syzygetic sequence

0 −→ δ(I) −→ H1(I) −→ (R/I)d+1 −→ I/I2 −→ 0.

The first gives

λ(R/JI) = d · λ(R/I) + λ(R/J),

the other

λ(R/I2) = (d+ 2)λ(R/I)− λ(H1(I)) + λ(δ(I)).

Thus,

λ(I2/JI) = λ(I/J)− λ(δ(I)),

since H1(I) is the canonical module of R/I. Taking into account the
syzygetic formula in [19], we finally have:
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Proposition 3.12. Let (R,m) be a Gorenstein local ring of dimen-
sion d > 0, J = (a1, . . . , ad) a parameter ideal and I = (J, a) and
a ∈ m. Then:

λ(I2/JI) = λ(I/J)− λ(R/I1(φ))

= λ(R/J : a)− λ(R/I1(φ))

= λ(R/J : a)− λ(Hom (R/I1(φ),R/J : a)

= λ(R/J : a)− λ((J : a) : I1(φ))/J : a)

= λ(R/(J : a) : I1(φ)).

Note that, in dualizing R/I1(φ), we made use of the fact that R/J : a
is a Gorenstein ring.

Corollary 3.13. I2 = JI if and only if J : a = I1(φ). In this case,
if d > 1 the algebra R[It] is Cohen-Macaulay.

Corollary 3.14. If R[It] is an aCM algebra and redJ(I) = 2, then
e1(I) = 2 · λ(I/J)− λ(R/I1(φ)).

Remark 3.15. We could enhance these observations considerably if
formulas for λ(JI2 : I3) were to be developed. More precisely, how do
the syzygies of I affect JI2 : I3?

3.3. Multiplicities and number of relations. To benefit
from Theorem 3.5, we need to have effective formulas for deg (S) and
deg (R[It]). We are going to develop them now.

Proposition 3.16. Let R = k[x1, . . . , xd] and I be an almost
complete intersection as above, I = (f1, . . . , fd, fd+1) = (J, fd+1)

generated by forms of degree n. Then deg (R[It]) =
∑d−1

j=0 n
j .

Proof. After an elementary observation, we make use of one of the
beautiful multiplicity formulas of [16]. Set A = R[It], A0 = R[Jt],
M = (m, It)A and M0 = (m, Jt)A0. Then

deg (grM0(A0)) = deg (grM0(A)) = deg (grM(A)),
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the first equality is because A0 → A is a finite rational extension, and
the second is because (m, Jt)A is a reduction of (m, It)A. Now we use
[16, Corollary 1.5] that gives deg (A0).

The multiplicity of the symmetric algebra. We shall now prove
one of our main results, a formula for degS(I) for ideals generated
by forms of the same degree. Let R = k[x1, . . . , xd], I = (f) =
(f1, . . . , fd, fd+1) be an almost complete intersection generated by
forms of degree n. At some point we assume, harmlessly, that J =
(f1, . . . , fd) is a complete intersection. There will be a slight change of
notation in the rest of this section. We set B = R[T1, . . . ,Td+1] and
S = Sym (I).

Theorem 3.17 (Degree formula). degS =
∑d

j=0 n
j − λ(R/I).

Proof. Let K(f) =
∧
Rd+1(−n) be the Koszul complex associated to

f ,

0 −→ Kd+1 −→ Kd −→ · · · −→ K2 −→ K1 −→ K0 −→ 0,

and consider the associated Z-complex

0 −→ Zd ⊗B(−d) −→ Zd−1 ⊗B(−d+ 1) −→ · · ·

−→ Z2 ⊗B(−2) −→ Z1 ⊗B(−1)
ψ−→ B −→ 0.

This complex is acyclic with H0(Z) = S = Sym (I). Now we
introduce another complex obtained by replacing Z1 ⊗B(−1) by B1 ⊗
B(−1), where B1 is the module of 1-boundaries of K(f), followed by
the restriction of ψ to B1 ⊗B(−1).

This defines another acyclic complex, Z∗, actually the B-complex of
f , and we set H0(Z∗) = S∗. The relationship between S and S∗ is
given in the following observation:

Lemma 3.18. degS∗ = degS+ λ(R/I).
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Proof. Consider the natural mapping between Z and Z∗:

0 � Zd ⊗B(−d) �

�

φd

· · · � Z2 ⊗B(−2) �

�

φ2

B1 ⊗B(−1) �

�

B �

�

S∗
�

�

0

0 � Zd ⊗B(−d) � · · · � Z2 ⊗B(−2) � Z1 ⊗B(−1) � B � S � 0.

The maps φ2, . . . , φd are isomorphisms while the other maps are defined
above. They induce the short exact sequence of modules of dimension
d+ 1,

0 −→ (Z1/B1)⊗B(−1) −→ S∗ −→ S −→ 0.

Note that Z1/B1 = H1(K(f)) is the canonical module of R/I, and
therefore has the same length asR/I. Finally, by the additivity formula
for the multiplicities ([8, Lemma 13.2]),

deg S∗ = degS+ λ(Z1/B1),

as desired.

We now give our main calculation of multiplicities.

Lemma 3.19. degS∗ =
∑d

j=0 n
j .

Proof. We note that the Z∗-complex is homogeneous for the total
degree [as required for the computation of multiplicities] provided the
Zi’s and B1 have the same degree. We can conveniently write Bi for
Zi, i ≥ 2. This is clearly the case since they are generated in degree n.
This is not the case for Z1. However, when f is a regular sequence, all
the Zi are equigenerated, an observation we shall make use of below.

Since the modules of Z∗ are homogeneous, we have that the Hilbert
series of S∗ is given as

HS∗(t) =

∑d
i=0(−1)ihBi(t)t

i

(1− t)2d+1
=

h(t)

(1− t)2d+1
,

where hBi(t) are the h-polynomials of the Bi. More precisely, each
of the terms of Z∗ is a B-module of the form A ⊗ B(−r) where A
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is generated in a same degree. Such modules are isomorphic to their
associated graded modules.

The multiplicity of S∗ is given by the standard formula

degS∗ = (−1)d
h(d)(1)

d!
.

We now indicate how the hBi(t) are assembled. Let us illustrate the
case when d = 4 and i = 1. B1 has a free resolution of the strand of
the Koszul complex

0 −→ R(−3n) −→ R5(−2n) −→ R10(−n) −→ R10 −→ B1 −→ 0,

so that
hB1(t) = 10− 10tn + 5t2n − t3n,

and similarly for all Bi.

We are now ready to make our key observation. Consider a complete
intersection P generated by d + 1 forms of degree n in a polynomial
ring of dimension d + 1, and set S∗∗ = Sym (P ). The corresponding
approximation complex now has B1 = Z1. The approach above would,
for the new Zi, give the same h-polynomials of the Bi in the case of
an almost complete intersection (but in dimension d). This means that
the Hilbert series of S∗∗ is given by

HS∗∗(t) =
h(t)

(1 − t)2d+2
.

It follows that degS∗ can be computed as the degree of the symmetric
algebra generated by a regular sequence of d + 1 forms of degree n, a
result that is given in [16]. Thus,

degS∗ = degS∗∗ =

d∑
j=0

nj ,

and the calculation of degS is complete.

We will now write Theorem 3.17 in a more convenient formulation
for applications.
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Theorem 3.20. Let R = k[x1, . . . , xd] and I = (f1, . . . , fd, fd+1)
be an ideal of forms of degree n. If J = (f1, . . . , fd) is a complete
intersection, then

degS =

d−1∑
j=0

nj + λ(R/J : I).

Proof. The degree formula gives

degS =

d−1∑
j=0

nj + [nd − λ(R/I)] =

d−1∑
j=0

nj + [λ(R/J)− λ(R/I)]

=

d−1∑
j=0

nj + λ(I/J) =

d−1∑
j=0

nj + λ(R/J : I).

Corollary 3.21. Let I = (J, a) be an ideal of finite colength as above.
Then the module of nonlinear relations satisfies deg (T ) = λ(I/J). In
particular, if R[It] is almost Cohen-Macaulay, T can be generated by
λ(I/J) elements.

Proof. From the sequence of modules of the same dimension

0 −→ T −→ S −→ R[It] −→ 0,

we have
deg (T ) = degS− degR[It] = λ(I/J).

The last assertion of this corollary can also be obtained from [24,
Theorem 4.1].

The Cohen-Macaulay type of the module of nonlinear rela-
tions. We recall the terminology of Cohen-Macaulay type of a mod-
ule. Set B = R[T1, . . . ,Td+1]. If E is a finitely generated B-module
of codimension r, we say that ExtrB(E,B) is its canonical module. It
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is the first non vanishing ExtiB(E,B) module, denoted by ωE . The
minimal number of the generators of ωE is called the Cohen-Macaulay
type of E and is denoted by type (E). When E is graded and Cohen-
Macaulay, it gives the last Betti number of a projective resolution of
E. It can be expressed in different ways, for example, for the module
of nonlinear relations ωT = ExtdB(T,B) = HomS(T, ωS).

Proposition 3.22. Let R be a Gorenstein local ring of dimension
d ≥ 2 and I = (J, a) be an ideal of finite colength as above. If R[It]
is an aCM algebra and ωR[It] is Cohen-Macaulay, then the type of the
module T of nonlinear relations satisfies

type (T ) ≤ type (SJ(I)) + d− 1,

where SJ (I) is the Sally module.

Proof. We set R = R[It] and R0 = R[Jt]. First apply HomB(·,B)
to the basic presentation

0 −→ T −→ S −→ R −→ 0,

to obtain the cohomology sequence

(5) 0 −→ ωR −→ ωS −→ ωT −→ Extd+1
B (R,B) −→ 0.

Now apply the same functor to the exact sequence of B-modules

0 −→ I · R[−1] −→ R −→ R −→ 0

to obtain the exact sequence

0 −→ ωR
θ−→ ωIR[−1] −→ Extd+1

B (R,B)

= R −→ Extd+1
B (R,B) −→ Extd+1

B (IR[−1],B) −→ 0.

Since ωR is Cohen-Macaulay and dimR ≥ 2, the cokernel of θ is either
R or an m-primary ideal that satisfies the condition S2 of Serre. The
only choice is coker (θ) = R. Therefore,

Extd+1
B (R,B) � Extd+1

B (IR[−1],B).
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Now we approach the module Extd+1
B (IR,B) from a different direc-

tion. We note that R, but not S and T , is also a finitely generated
B0 = R[T1, . . . ,Td]-module as it is annihilated by a monic polyno-
mial f in Td+1 with coefficients in B0. By Rees’s theorem, we have
that, for all i, ExtiB(R,B) = Exti−1

B/(f)(R,B/(f)), and a similar obser-

vation applies to I · R.

Next consider the finite, flat morphism B0 → B/(f). For any B/(f)-
module E with a projective resolution P, we have that P is a projective
B0-resolution of E. This means that the isomorphism of complexes

HomB0(P,B0) � HomB/(f)(P,HomB0(B/(f),B0))

= HomB/(f)(P,B/(f))

gives isomorphisms for all i

ExtiB0
(E,B0) � ExtiB/(f)(E,B/(f)).

Thus,
ExtiB(R,B) � Exti−1

B0
(R,B0).

In particular, ωR = Extd−1
B0

(R,B0).

Finally, apply HomB0(·,B0) to the exact sequence of B0-modules and
examine its cohomology sequence.

0 −→ I · R0 −→ I · R −→ SJ (I) −→ 0

is then

0 −→ ωIR −→ ωIR0 −→ ωSJ (I) −→ ExtdB0
(R,B0)

= Extd+1
B (R,B) −→ 0.

Taking this into (5) and the type (S) = d − 1 gives the desired
estimate.

Remark 3.23. A class of ideals with ωR Cohen-Macaulay is discussed
in Corollary 4.2 (b).

4. Distinguished aCM algebras. This section treats several
classes of Rees algebras which are almost Cohen-Macaulay.
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4.1. Equi-homogeneous acis. We shall now treat an important
class of extremal Rees algebras. Let R = k[x1, . . . , xd], and let
I = (a1, . . . , ad, ad+1) be an ideal of finite colength, that is, m-
primary. We further assume that the first d generators form a regular
sequence and ad+1 /∈ (a1, . . . , ad). If deg ai = n, the integral closure of
J = (a1, . . . , ad) is the ideal m

n, in particular, J is a minimal reduction
of I. The integer edeg (I) = redJ(I)+1 is called the elimination degree
of I. The study of the equations of I, that is, of R[It], depends on a
comparison between the metrics of R[It] to those of R[mnt], which are
well known.

Proposition 4.1 [19, Condition (B)]. The following conditions are
equivalent:

(i) Φ is a birational mapping, that is, the natural embedding F(I) ↪→
F(mn) induces an isomorphism of quotient fields;

(ii) redJ(I) = nd−1 − 1;

(iii) e1(I) = ((d− 1)/2)(nd − nd−1);

(iv) R[It] satisfies the R1 condition of Serre.

Condition (B). As a convenience of exposition, we refer to the
equivalence conditions in Proposition 4.1 simply as Condition (B).

Corollary 4.2. For an ideal I that satisfies Condition (B), the
following hold:

(i) The algebra R[It] is not Cohen-Macaulay except when I =
(x1, x2)

2.

(ii) The canonical module of R[It] is Cohen-Macaulay.

Proof. (i) follows from the condition of Goto-Shimoda [10] that the
reduction number of a Cohen-Macaulay Rees algebraR[It] must satisfy
redJ(I) ≤ dimR− 1, which in the case nd−1 − 1 ≤ d− 1 is only met if
d = n = 2.

(ii) The embedding R[It] ↪→ R[mnt] being an isomorphism in
codimension one, the corresponding canonical modules are isomorphic.
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The canonical module of a Veronese subring such as R[mnt] is well
known (see [15], [17, page 187]; see also [2, Proposition 2.2]).

Binary ideals. These are the ideals of R = k[x, y] generated by
3 forms of degree n. Many of their Rees algebras are almost Cohen-
Macaulay. We will showcase the technology of the Sally module in
treating a much-studied class of ideals. First we discuss a simple case
(see also [18]).

Proposition 4.3. Let φ be a 3× 2-matrix of quadratic forms in R,
and let I be the ideal given by its 2 × 2 minors. Then R[It] is almost
Cohen-Macaulay.

Proof. These ideals have reduction number 1 or 3. In the first case,
all of its Sally modules vanish and R[It] is Cohen-Macaulay.

In the other case, I satisfies Condition (B) and e1(I) =
(
4
2

)
= 6. A

simple calculation shows that λ(R/I) = 12, so that λ(I/J) = 16−12 =
4. To apply Theorem 3.7, we need to verify the equation

(6) f1 + f2 + f3 = 6.

We already have f1 = 4. To calculate f2, we need to take λ(R/I1(φ))
in Corollary 3.12. I1(φ) is an ideal generated by 2 generators or
I1(φ) = (x, y)2. But, in the first case, the Sylvester resultant of
the linear equations of R[It] would be a quadratic polynomial, that
is, I would have reduction number 1, which would contradict the
assumption. Thus, by Corollary 3.12, f2 = 4− λ(R/I1(φ)) = 1. Since
f2 ≥ f3 > 0, we have f3 = 1, and equation (6) is satisfied.

We have examined higher degree examples of ideals of this type which
are/are not almost Cohen-Macaulay. Quite a lot is known about the
following ideals. R = k[x, y] and I is a codimension 2 ideal given by
that 2×2 minors of a 3×2 matrix with homogeneous entries of degrees
1 and n− 1.

Theorem 4.4. If I1(φ) = (x, y) then:

(i) degF(I) = n, that is, I satisfies Condition (B).
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(ii) R[It] is almost Cohen-Macaulay.

(iii) The equations of L are given by a straightforward algorithm.

Proof. The proof of (i) is in [6] and in other sources ([5, 23]; see also
[7, Theorem 2.2] for a broader statement in any characteristic and [27,
Theorem 4.1] in characteristic zero), and of (ii) in [23, Theorem 4.4],
while (iii) was conjecturally given in [18, Conjecture 4.8] and proved
in [6]. We give a combinatorial proof of (ii) in Proposition 4.6.

We note that deg (S) = 2n, since S is a complete intersection defined
by two forms of (total) degrees 2 and n, while R[Jt] is defined by one
equation of degree n+ 1. Thus, ν(T ) ≤ 2n− (n+ 1) = n− 1, which is
the number of generators given in the algorithm.

We point out a property of module T . We recall that an A-module
is an Ulrich module if it is a maximal Cohen-Macaulay module with
degM = ν(M) [12].

Corollary 4.5. T is an Ulrich S-module.

Considerable numerical information in Theorem 4.4 will follow from:

Proposition 4.6. If degα = 1 and degβ = n−1, then λ(Fj) = n−j.
In particular, R[It] is almost Cohen-Macaulay.

Proof. Note that, since the ideal satisfies Condition (B), Fn−1 �= 0.
On the other hand, L contains fresh generators in all degrees j ≤ n.
This means that, for fj = λ(Fj),

fj > fj+1 > 0, j < n.

Since f1 = n− 1, the decreasing sequence of integers

n− 1 = f1 > f2 > · · · > fn−2 > fn−1 > 0

implies that fj = n − j. Finally, applying Theorem 3.7, we have that
R[It] is an aCM algebra since

∑
j fj = e1(I) =

(
n
2

)
.
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Quadrics. Here we explore sporadic classes of aCM algebras defined
by quadrics in k[x1, x2, x3, x4].

First, we use Proposition 3.12 to look at other cases of quadrics. For
d = 3, n = 2, edeg (I) = 2 or 4. In the first case, J : a = I1(φ). In
addition, J : a �= m since the socle degree of R/J is 3. Then R[It]
is Cohen-Macaulay. If edeg (I) = 4 we must have (and conversely)
λ(R/J : a) = 2 and I1(φ) = m. Then R[It] is almost Cohen-Macaulay.

Next we treat almost complete intersections of finite colength gen-
erated by quadrics of R = k[x1, x2, x3, x4]. Sometimes we denote the
variables by x, y, . . . , or use these symbols to denote (independent)
linear forms. For notation, we use J = (a1, a2, a3, a4) and I = (J, a).

Our goal is to address the following:

Question 4.7. Let I be an almost complete intersection generated
by 5 quadrics of x1, x2, x3, x4. If I satisfies Condition (B), in which
cases is R[It] an almost Cohen-Macaulay algebra? In this case, what
are the generators of its module of nonlinear relations?

In order to make use of Theorem 3.7, our main tools are Corollary 3.12
and [19, Theorem 2.2]. They make extensive use of the syzygies of I.
The question forks into three cases, but our analysis is complete in only
one of them.

The Hilbert functions of quaternary quadrics. We make a
quick classification of the Hilbert functions of the ideals I = (J, a).
Since I/J � R/J : a and J is a complete intersection, the problem
is equivalent to determining the Hilbert functions of R/J : a, with
J : a a Gorenstein ideal. The Hilbert function H(R/I) of R/I
is H(R/J) − H(R/J : a). We will need the Hilbert function of
the corresponding canonical module in order to make use of [19,
Proposition 3.7], giving information about L2/B1L1.

We shall refer to the sequences (f1, f2, f3, . . . , ), fi = λ(Ii/JIi−1), as
the f -sequence of (I, J). We recall that these sequences are monotonic
and that, if I satisfies Condition (B),

∑
i≥1 fi = e1(I) = 12.
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Proposition 4.8. Let R = k[x1, x2, x3, x4] and I = (J, a) be an
almost complete intersection generated by 5 quadrics, where J is a
complete intersection. Then L = λ(R/J : a) ≤ 6, and the possible
Hilbert functions of (R/J : a) are:

L = 6 : (1, 4, 1), (1, 2, 2, 1)∗, (1, 1, 1, 1, 1, 1)∗

L = 5 : (1, 3, 1), (1, 1, 1, 1, 1)∗

L = 4 : (1, 2, 1), (1, 1, 1, 1)∗

L = 3 : (1, 1, 1)∗

L = 2 : (1, 1)∗∗

L = 1 : (1)∗∗.

If I satisfies Condition (B), the corresponding Hilbert function is one
of the unmarked sequences above.

Proof. Since λ(m2/I) ≥ 5 and λ(m2/J) = 11, L = λ(R/J : a) ≤ 6.
Because the Hilbert function of R/(J : a) is symmetric and L ≤ 6, the
list includes all viable Hilbert functions.

Let us first rule out those marked with a∗, while those marked with
a∗∗ cannot satisfy Condition (B). In each of these, J : a contains at least
2 linearly independent linear forms, which we denote by x, y, so that
J : a/(x, y) is a Gorenstein ideal of the regular ring R/(x, y). It follows
that (J : a)/(x, y) is a complete intersection. In the case of (1, 2, 2, 1),
J : a = (x, y, α, β), where α is a form of degree 2 and β a form of
degree 3, since λ(R/J : a) = 6. Since J ⊂ J : a, all the generators
of J must be contained in (x, y, α), which is impossible by the Krull
theorem. Those strings with at least three 1’s are also excluded since
J : a would have the form (x, y, z, ws), s ≥ 3, and the argument above
applies. The case (1, 1), J : a = (x, y, z, w2) means that I1(φ) = J : a,
or J : a = m. In the first case, by Corollary 3.13, I2 = JI. In the
second case, I1(φ) = m. This will imply that λ(I2/JI) = 2 − 1 = 1,
and therefore I will not satisfy Condition (B) (we need the summation
to total 12).

Hilbert function (1, 4, 1). If R/J : a has Hilbert function (1, 4, 1),
J : a ⊂ m2, but we cannot have equality since m2 is not a Gorenstein
ideal. We also have I1(φ) ⊂ m2. If they are not equal, I1(φ) = J : a,
which by Corollary 3.13 would mean that redJ (I) = 1.
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Theorem 4.9. Suppose I satisfies Condition (B) and I1(φ) ⊂ m2.
Then R[It] is almost Cohen-Macaulay.

Proof. The assumption I1(φ) ⊂ m2 means that the Hilbert function
of J : a is (1, 4, 1) and vice-versa. Note also that, by assumption,
λ(I7/JI6) �= 0. Since λ(I/J) = λ(R/J : a) = 6, it suffices to
show that λ(I2/JI) = 1. From λ(m2/I) = 5, the module m2/I is
of length 5 minimally generated by 5 elements. Therefore, m3 ⊂ I,
actually m3 = mI.

There is an isomorphism h : R/J : a � I/J , r �→ ra. It moves the
socle of R/J : a into the socle of I/J . If a /∈ J : a, then m2 = (J : a, a)
and a gives the socle of R/J : a; thus, it is mapped by h into the
socle of I/J , that is, m · a2 ∈ J . Thus, m · a2 ∈ m3J ⊂ JI. On the
other hand, if a ∈ J : a, then, since a2 ∈ J , we have a2 ∈ m2J and
m · a2 ∈ m3J ⊂ JI.

An example is J = (x2, y2, z2, w2), a = xy + xz + xw + yz.

Hilbert function (1, 3, 1). Our discussion about this case is very
sparse.

• For these Hilbert functions, J : a = (x, P ), where P is a Gorenstein
ideal in a regular local ring of dimension 3, and therefore is given by the
Pfaffians of a skew-symmetric matrix, necessarily 5×5. Since J ⊂ J : a,
Lmust contain forms of degree 2. In addition, P is given by five 2-forms
(and (x,m2)/(x, P ) is the socle of R/J : a).

• If I satisfies Condition (B), R[It] is almost Cohen-Macaulay if
and only if λ(I2/JI) = 2 and λ(I3/JI2) = 1. The first equality,
by Proposition 3.12, requires λ(R/I1(φ)) = 3 which gives that I1(φ)
contains the socle of J : a and another independent linear form. In all,
it means that I1(φ) = (x, y, (z, w)2). On the other hand, λ(I2/JI) = 2
means that JI : I2 = (x, y, z, w2) (after more label changes).

• An example is J = (x2, y2, z2, w2) with a = xy+yz+zw+wx+yw.
The ideal I = (J, a) satisfies Condition (B).

Hilbert function (1, 2, 1). We do not have the full analysis of this
case either.

• An example is J = (x2, y2, z2, w2), and a = xy + yz + xw + zw.
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The ideal I = (J, a) satisfies Condition (B). The expected f -sequence
of such ideals is (4, 3, 1, 1, 1, 1, 1).

• If I satisfies Condition (B), then I1(φ) = m. We know that
I1(φ) �= J : a, so I1(φ) ⊃ m2, that is, I1(φ) = (x, y,m2), (x, y, z,m2) or
m. Let us exclude the first two cases.

(x, y,m2). This leads to two equations

xa = xb + yc

ya = xd+ ye,

with b, c, d, e ∈ J . But this gives the equation (a− b)(a− e)− dc = 0,
and redJ(I) ≤ 1.

(x, y, z,m2). Then the Hilbert function of R/I1(φ) is (1, 1). Accord-
ing to [19, Proposition 3.7], L2 has a form of bidegree (1, 2), with
coefficients in I1(φ), that is, in (x, y, z). This gives three forms with
coefficients in this ideal, two in degree 1, so by elimination we get a
monic equation of degree 4.

We summarize the main points of these observations into a normal
form assertion.

Proposition 4.1. Let I be an ideal that satisfies Condition (B),
and the Hilbert function of R/J : a is (1, 2, 1). Then, up to a change
of variables to {x, y, z, w}, I is a Northcott ideal, that is, there is a
4× 4-matrix A,

A =

[
B
C

]
,

where B is a 2 × 4-matrix whose entries are linear forms and C is a
matrix with scalar entries and V = [x, y, α, β], where α, β are quadratic
forms in z, w such that

I = (V ·A, detA).

Proof. There are two independent linear forms in J : a which we
denote by x, y. We observe that (J : a)/(x, y) is a Gorenstein ideal
in a polynomial ring of dimension 2, so it is a complete intersection:
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J : a = (x, y, α, β), with α and β forms of degree 2 (as λ(R/J : a) = 4),
from which we remove the terms in x, y, that is, we may assume
α, β ∈ (z, w)2.

Since J ⊂ J : a, we have a matrix A,

J = [x, y, α, β] ·A = V ·A.

By duality, I = J : (J : a), which by the Northcott theorem [25] gives

I = (J, detA).

Note that a gets, possibly, replaced by detA. The statement about the
degrees of the entries of A is clear.

Example 4.11. Let

A=

⎡
⎢⎣
x+ y z + w x− w z
z y + w x− z y
1 0 2 3
0 1 1 2

⎤
⎥⎦ , v=[x, y, z2 + zw + w2, z2 − w2 ] .

This ideal satisfies Condition (B), but R[It] is not aCM. This is unfor-
tunate but opens the question of when such ideals satisfy Condition (B).
The f -sequence here is (4, 3, 3, 1, 1, 1, 1).

The degrees of L. We examine how the Hilbert function of R/J : a
organizes the generators of L. We denote the presentations variables
by u,T1,T2,T3,T4, with u corresponding to a.

• (1, 4, 1). We know (Theorem 4.9) that JI : I2 = m. This means
that we have forms

h1 = xu2 + · · ·
h2 = yu2 + · · ·
h3 = zu2 + · · ·
h4 = wu2 + · · ·

with the (· · · ) in (T1,T2,T3,T4)B1. The corresponding resultant, of
degree 8, is nonzero.
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• (1, 2, 1). There are two forms of degree 1 in L,

f1 = xu + · · ·
f2 = yu+ · · · .

The forms in L2/B1L1 have coefficients in m2. This will follow from
I1(φ) = m. We need a way to generate two forms of degree 3. Since we
expect JI : I2 = m, this would mean the presence of two forms in L3,

h∗
1 = zu3 + · · ·

h∗
2 = wu3 + · · · ,

which, together with f1 and f2, would give the nonzero degree 8
resultant.

• (1, 3, 1). There is a form f1 = xu+ · · · ∈ L1 and two forms in L2

h1 = yu2 + · · ·
h2 = zu2 + · · · ,

predicted by [19, Proposition 3.7], if I1(φ) = (x, y, z, w2). (There are
indications that this is always the case.) We need a cubic equation
h∗
3 = wu3 + · · · to launch the nonzero resultant of degree 8.

For all quaternary quadrics with R[It] almost Cohen-Macaulay,
Corollary 3.21 says that ν(T ) ≤ λ(R/J : a). Let us compare to the
actual number of generators in the examples discussed above:

⎡
⎢⎣
ν(T ) λ(I/J)
5 (1, 4, 1) 6
4 (1, 3, 1) 5
4 (1, 2, 1) 4

⎤
⎥⎦ .

We note that, in the last case, T is an Ulrich module.

4.2. Monomial ideals. Monomial ideals of finite colength which
are almost complete intersections have a very simple description. We
examine a narrow class of them. Let R = k[x, y, z] be a polynomial
ring over an infinite field, and let J and I be R-ideals such that

J = (xa, yb, zc) ⊂ (J, xαyβzγ) = I.
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This is the general form of almost complete intersections ofR generated
by monomials. Perhaps the most interesting cases are those where

α

a
+

β

b
+

γ

c
< 1.

This inequality ensures that J is not a reduction of I. Let

Q = (xa − zc, yb − zc, xαyβzγ),

and suppose that a > 3α, b > 3β, c > 3γ. Note that I = (Q, zc). Then
Q is a minimal reduction of I and the reduction number redQ(I) ≤ 2.
We label these ideals I(a, b, c, α, β, γ).

We will examine in detail the cases a = b = c = n ≥ 3 and
α = β = γ = 1. We want to argue that R[It] is almost Cohen-
Macaulay. To benefit from the monomial generators in using Macaulay
2, we set I = (xyz, xn, yn, zn). Setting B = R[u,T1,T2,T3], we claim
that

L = (zn−1u− xyT3, y
n−1u− xzT2, x

n−1u− yzT1,

znT2 − ynT3, z
nT1 − xnT3, y

nT1 − xnT2,

yn−2zn−2u2 − x2T2T3, x
n−2zn−2u2 − y2T1T3,

xn−2yn−2u2 − z2T1T2, x
n−3yn−3zn−3u3 −T1T2T3).

We also want to show that these ideals define an almost Cohen-
Macaulay Rees algebra.

There is a natural specialization argument. Let X , Y and Z be new
indeterminates, and let B0 = B[X,Y, Z]. In this ring, define the ideal
L0 obtained by replacing in the list above of generators of L, xn−3 by
X and accordingly xn−2 by xX , and so on; carry out similar actions
on the other variables:

L0 = (z2Zu− xyT3, y
2Y u− xzT2, x

2Xu− yzT1,

z3ZT2 − y3YT3, z
3ZT1 − x3XT3, y

3YT1 − x3XT2,

yzY Zu2 − x2T2T3, xzXZu2 − y2T1T3,

xyXY u2 − z2T1T2, XY Zu3 −T1T2T3).

Invoking Macaulay 2 gives a (non-minimal) projective resolution

0 −→ B4
0

φ4−→ B17
0

φ3−→ B22
0

φ2−→ B10
0

φ1−→ B0 −→ B0/L0 −→ 0.
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We claim that the specialization X → xn−3, Y → yn−3, Z → zn−3

gives a projective resolution of L.

• Call L′ the result of the specialization in B. We argue that Lp = L.

• Inspection of the Fitting ideal F of φ4 shows that it contains
(x3, y3, z3, u3,T1T2T3). From standard theory, the radicals of the
Fitting ideals of φ2 and φ2 contain L0, and therefore the radicals of
the Fitting ideals of these mappings after specialization will contain
the ideal (L1) of B, as L1 ⊂ L′.

• Because (L1) has codimension 3, by the acyclicity theorem ([1,
1.4.13]), the complex gives a projective resolution of L′. Furthermore,
as proj. dimB/L′ ≤ 4, L′ has no associated primes of codimension ≥ 5.
Meanwhile, the Fitting ideal of φ4 having codimension ≥ 5 forbids the
existence of associated primes of codimension 4. Thus, L′ is unmixed.

• Finally, in (L1) ⊂ L′, as L′ is unmixed, its associated primes are
minimal primes of (L1), but by Proposition 2.5 (iii), there are just two
such, mB and L. Since L′ �⊂ mB, L is its unique associated prime.
Localizing at L gives the equality of L′ and L since L is a primary
component of (L1).

Let us sum up this discussion:

Proposition 4.12. The Rees algebra of I(n, n, n, 1, 1, 1), n ≥ 3, is
almost Cohen-Macaulay.

Corollary 4.13. e1(I(n, n, n, 1, 1, 1)) = 3(n+ 1).

Proof. This follows easily since e0(I) = 3n2, the colengths of the
monomial ideals I and I1(φ) directly calculated and redJ(I) = 2 so
that

e1(I) = λ(I/J) + λ(I2/JI)

= λ(I/J) + [λ(I/J)− λ(R/I1(φ))]

= (3n− 1) + 4.

Remark 4.14. We have also experimented with other cases beyond
those with xyz and in higher dimension as well.

• In dimR = 4, the ideal I = I(n, n, n, n, 1, 1, 1, 1) = (xn
1 , x

n
2 , x

n
3 , x

n
4 ,

x1x2x3x4), n ≥ 4, has a Rees algebra R[It] which is almost Cohen-
Macaulay.
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• The argument used was a copy of the previous case, but we needed
to make an adjustment in the last step to estimate the codimension of
the last Fitting ideal F of the corresponding mapping φ5. This is a
large matrix, so it would not be possible to find the codimension of F
by looking at all its maximal minors. Instead, one argues as follows.
Because I is m-primary, m ⊂

√
F , so we can drop the entries in φ5 in

m. Inspection will give u16 ∈ F , so dropping all u’s gives additional
minors in T1, . . . ,T4, for height (F ) ≥ 6. This suffices to show that
L = L′.

Conjecture 4.15. Let I be a monomial ideal of k[x1, . . . , xd]. If I
is an almost complete intersection of finite colength, its Rees algebra
R[It] is almost Cohen-Macaulay.
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12. J. Herzog and M. Kühl, Maximal Cohen-Macaulay modules over Gorenstein
rings and Bourbaki sequences, in Commutative algebra and combinatorics, Adv.
Stud. Pure Math. 11 (1987), 65 92.

13. J. Herzog, A. Simis and W.V. Vasconcelos, Approximation complexes of
blowing-up rings, J. Algebra 74 (1982), 466 493.



EXTREMAL REES ALGEBRAS 267

14. J. Herzog, A. Simis and W.V. Vasconcelos, Koszul homology and blowing-up
rings, in Commutative algebra, Lect. Notes Pure Appl. Math. 84, Marcel Dekker,
New York, 1983.

15. , On the canonical module of the Rees algebras and the associated
graded ring of an ideal, J. Algebra 105 (1987), 205 302.

16. J. Herzog, N.V. Trung and B. Ulrich, On the multiplicity of blow-up rings of
ideals generated by d-sequences, J. Pure Appl. Alg. 80 (1992), 273 297.

17. J. Herzog and W.V. Vasconcelos, On the divisor class group of Rees algebras,
J. Algebra 93 (1985), 182 188.

18. J. Hong, A. Simis and W.V. Vasconcelos, The homology of two-dimensional
elimination, J. Symbol. Comp. 43 (2008), 275 292.

19. , On the equations of almost complete intersections, Bull. Braz. Math.
Soc. 43 (2012), 171 199.

20. S. Huckaba, Reduction number for ideals of higher analytic spread, Math.
Proc. Camb. Philos. Soc. 102 (1987), 49 57.

21. , A d-dimensional extension of a lemma of Huneke’s and formulas for
the Hilbert coefficients, Proc. Amer. Math. Soc. 124 (1996), 1393 1401.

22. M. Johnson, Depth of symmetric algebras of certain ideals, Proc. Amer. Math.
Soc. 129 (2001), 1581 1585.

23. A. Kustin, C. Polini and B. Ulrich, Rational normal scrolls and the defining
equations of Rees algebras, J. reine angew. Math. 650 (2011), 23 65.

24. F. Muiños and F. Planas-Vilanova, The equations of Rees algebras of equi-
multiple ideals of deviation one, Proc. Amer. Math. Soc., to appear.

25. D.G. Northcott, A homological investigation of a certain residual ideal, Math.
Annal. 150 (1963), 99 110.

26. M.E. Rossi, A note on symmetric algebras which are Gorenstein, Comm. Alg.
11 (1983), 2575 2591.

27. A. Simis, Cremona transformations and some related algebras, J. Algebra
280 (2004), 162 179.

28. N.V. Trung, The Castelnuovo regularity of the Rees algebra and associated
graded ring, Trans. Amer. Math. Soc. 350 (1998), 2813 2832.

29. W.V. Vasconcelos, Arithmetic of blowup algebras, Lond. Math. Soc. 195,
Cambridge University Press, Cambridge, 1994.

30. , Integral closure, Springer Mono. Math., New York, 2005.

Department of Mathematics, Southern Connecticut State University,

501 Crescent Street, New Haven, CT 06515

Email address: hongj2@southernct.edu
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