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ABSTRACT. Radical binomial ideals associated with finite
lattices are studied. Gröbner basis theory turns out to be an
efficient tool in this investigation.

1. Introduction. Let L be a finite lattice and K[L] the polynomial
ring over a field K whose variables are the elements of L. Let IL be
the join-meet ideal of L, that is, the ideal of K[L] which is generated
by all the binomials of the form f = ab− (a ∧ b)(a ∨ b), where a, b ∈ L
are incomparable elements. Of course one may ask whether algebraic
properties of IL are related to the combinatorial properties of L. IL
is a prime ideal if and only if L is distributive as was shown in [9],
and if L is distributive the Gröbner bases of IL with respect to various
monomial orders have been studied; see, for instance, [1, 8, 9, 13]. In
the same hypothesis on L, the toric ring K[L]/IL is well understood;
see [6, 9 11].

Almost nothing is known about the join-meet ideal IL when L is not
distributive. In the present paper we focus on the join-meet ideals of
modular and non-distributive lattices. For basic properties of lattices,
like distributivity and modularity, we refer the reader to the well-known
monographs [2, 14].

It was conjectured in [8] that, given a modular lattice L, for any
monomial order < on K[L], the initial ideal in<(IL) is not squarefree,
unless L is distributive. We give a proof of this conjecture in Section 1.
This result shows, in particular, that for deciding whether a join-meet
ideal IL of a modular and non-distributive lattice L is radical, one
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cannot use the known statement that a polynomial ideal is radical if
it has a squarefree initial ideal. Moreover, easy examples show that,
even if the lattice L is rather close to a distributive lattice, the ideal
IL might not be radical; see Example 3.1. A general characterization
of radical join-meet ideals associated with modular non-distributive
lattices seems to be difficult. However, in Section 3, we find a class of
modular non-distributive lattices L whose join-meet ideal IL is radical.
To prove this property, we intensively use the Gröbner basis theory.

For radical join-meet ideals, in Section 2, we describe the minimal
prime ideals. This description is used later, in Section 4, to obtain
a complete characterization of the minimal primes of the radical join-
meet ideals studied in Section 3.

1. The squarefree conjecture. Let L be a finite lattice and K[L]
the polynomial ring over a field K whose variables are the elements
of L. A binomial of K[L] of the form f = ab − (a ∧ b)(a ∨ b), where
a, b ∈ L are incomparable, is called a basic binomial. In some recent
papers, the basic binomials are called Hibi relations.

Definition 1.1. The join-meet ideal of L is the ideal of K[L]
generated by the basic binomials, that is,

IL = (ab− (a ∧ b)(a ∨ b) : a, b ∈ L, a, b incomparable ) ⊂ K[L].

The join-meet ideal of a lattice was introduced in [9]. For fundamen-
tal notions on lattices we refer to [2, 14].

The main result of this section answers positively a conjecture made in
[8]. We first need a preparatory result on modular and non-distributive
lattices which might be known, but we include its proof since we could
not find any reference.

Lemma 1.2. Let L be a modular non-distributive lattice. Then L
has a diamond sublattice L′ such that rank maxL′ − rank minL′ = 2.

Proof. Let δ be a diamond of L labeled as in Figure 1 (i) of minimal
rank, that is, rank e− rank a is minimal.
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FIGURE 2.

We show that ranka − rank e = 2. Let us assume that rank e >
rank a + 2. By duality, we may assume, for instance, that rank d >
rank a + 1, that is, there exists an f ∈ L such that a < f < d. Then
we get the lattice displayed in Figure 1 (ii) where c ∧ f = c ∧ d = a
and c ∨ f ≤ c ∨ d = e. If c ∨ f = e, then L has a pentagon sublattice
(with the elements a, c, f, d, e), which is impossible since L is modular.
Therefore, we must have c ∨ f < e.

We now look at the lattice with the elements a, b, c, c∨f , and e. Here
we have b ∨ (c ∨ f) = (b ∨ c) ∨ f = e ∨ f = e and b ∧ (c ∨ f) ≥ a. If
b ∧ (c ∨ f) = a, we again get a pentagon sublattice of L; see Figure
2 (i). Since L is modular, we must have b∧ (c∨ f) > a. We look at the
lattice with elements a, c, f, b∧ (c∨ f) and c∨ f , see Figure 2 (ii). The
following relations hold:

c ∧ (b ∧ (c ∨ f)) = (c ∧ b) ∧ (c ∨ f) = a,

and

c ∨ (b ∧ (c ∨ f)) = (c ∨ b) ∧ (c ∨ f) = e ∧ (c ∨ f) = c ∨ f,

the first equality in the latter relation being true by modularity.
Moreover, we have

f ∧ (b ∧ (c ∨ f)) = (f ∧ b) ∧ (c ∨ f) = a ∧ (c ∨ f) = a,
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and
f ∨ (b ∧ (c ∨ f)) = (f ∨ b) ∧ (c ∨ f),

again by modularity, and, thus,

f ∨ (b ∧ (c ∨ f)) ≤ c ∨ f.

If f ∨ (b ∧ (c ∨ f)) = c ∨ f , then we get a diamond sublattice of L
as in Figure 2 (ii) of smaller rank than δ, which is impossible by our
assumption. Hence, we must have

(f ∨ b) ∧ (c ∨ f) < c ∨ f.

Let us now consider the lattice with the elements a, c, (c∨ f) ∧ b, f ∨
(b∧ (c∨ f)) = (c∨ f)∧ (b∨ f) and c∨ f . The following equalities hold:

((c ∨ f) ∧ b) ∧ c = (c ∨ f) ∧ (b ∧ c) = a,

and, by modularity,

c ∨ (b ∧ (c ∨ f)) = (c ∨ b) ∧ (c ∨ f) = c ∨ f.

Next, we have:

c ∨ (f ∨ (b ∧ (c ∨ f))) = (c ∨ f) ∨ (b ∧ (c ∨ f)) = c ∨ f.

Therefore, if c ∧ ((c ∨ f) ∧ (b ∨ f)) = c ∧ (b ∨ f) = a, then L has a
pentagon sublattice; see Figure 3 (i). Hence, we must have

c ∧ (b ∨ f) > a.
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Finally, we look at the lattice with the elements a, c∧(b∨f), (c∨f)∧b, f
and (c ∨ f) ∧ (b ∨ f). The following equalities hold:

f ∧ (c ∧ (b ∨ f)) = (c ∧ f) ∧ (b ∨ f) = a ∧ (b ∨ f) = a,

and
f ∨ (c ∧ (b ∨ f)) = (f ∨ c) ∧ (b ∨ f) (by modularity).

Next,

f ∧ (b ∧ (c ∨ f)) = (f ∧ b) ∧ (c ∨ f) = a ∧ (c ∨ f) = a,

and
f ∨ (b ∧ (c ∨ f)) = (f ∨ b) ∧ (c ∨ f) (by modularity).

We also have:

(c ∧ (b ∨ f)) ∧ ((c ∨ f) ∧ b) = (b ∧ c) ∧ (b ∨ f) ∧ (c ∨ f) = a

and, by applying modularity,

(c ∧ (b ∨ f)) ∨ ((c ∨ f) ∧ b) = ((c ∧ (b ∨ f)) ∨ b) ∧ (c ∨ f)

= ((b ∨ c) ∧ (b ∨ f)) ∧ (c ∨ f)

= e ∧ (b ∨ f) ∧ (c ∨ f)

= (b ∨ f) ∧ (c ∨ f).

Consequently, we have got another diamond sublattice of L (see Figure
3 (ii)) with a smaller rank than δ, again a contradiction.

In the proof of the next theorem we use some arguments which are
taken from the proof of [8, Theorem 1.1], but we include them for the
convenience of the reader.

Theorem 1.3. Let L be a modular non-distributive lattice. Then,
for any monomial order < on K[L], the initial ideal in<(IL) is not
squarefree.

Proof. By Lemma 1.2, L has a sublattice L′ with a = minL′,
e = maxL′ such that rank e − ranka = 2. Let b1, b2, . . . , bk ∈ L,
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k ≥ 3, be the elements of L, distinct from a, e, such that, for any
1 ≤ i < j ≤ n, bi ∨ bj = e and bi ∧ bj = a. Therefore, we have the
following relations in IL: bibj − ae for 1 ≤ i < j ≤ k since, obviously,
bi and bj are incomparable for any i �= j.

Let < be an arbitrary monomial order on K[L]. We may assume
that, with respect to this order, we have b1 > · · · > bk. We are going to
show that in<(IL) is not squarefree. We have to analyze the following
two cases.

Case 1. Assume that ae < bibj for any 1 ≤ i < j ≤ k. Let b = bk,
and consider the binomial f = ab2e − a2e2 which, by the proof of [8,
Theorem 1.1], belongs to IL. Let us assume that in<(IL) is squarefree.
Then, since f ∈ IL, we must have abe ∈ in<(IL); hence, following the
arguments of the proof of [8, Theorem 1.1], there exists a binomial
g = abe − u ∈ IL where u = �mn with �,m, n ∈ L, all of them in the
interval [a, e] of L, and, in addition, with in<(g) = abe. Also, from the
arguments of the cited proof, it follows that at least two of the variables
�,m, n are distinct. Indeed, let

(1.1) g =

N∑
i=1

xi(vi − wi),

where each xi is a variable and vi − wi is a basic binomial of IL such
that x1v1 = abe, xiwi = xi+1vi+1 for 1 ≤ i < N , and xNwN = u. Then
each variable that appears in the binomial xi(vi − wi) must belong to
the interval [a, e] of L. This is true since, for any basic binomial v−w,
one has supp (v) ⊂ [a, e] if and only if supp (w) ⊂ [a, e]. In particular,
xNwN = u is of the form u = �mn with �,m, n ∈ [a, e] and, by (1.1),
at least two of �,m, n are distinct. Moreover, by (1.1), it also follows
that rank a + rank b + rank e = rank � + rankm+ rankn. Since in L′,
we have rank e − ranka = 2 and it follows that

(1.2) rank �+ rankm+ rankn = 3ranka+ 3.

Of course, we may assume that rank � ≥ rankm ≥ rankn. Let us
suppose that rankn > rank a. Then, by using equation (1.2), we obtain
rank � = rankm = rankn = rank a+1; hence, �,m, n ∈ {b1, b2, . . . , bk}.
It follows that g = abe − bibjbp for some i, j, p ∈ {1, 2, . . . , k} with
at least two of them distinct. Let us assume that i �= j. Then,
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since ae < bibj and b ≤ bp, we get a contradiction to the fact that
in<(g) = abe.

Now let rankn = rank a. This implies that rank � + rankm =
2ranka + 3, which leads to the conclusion that rank � = rank a + 2
and rankm = ranka + 1. Therefore, we get n = a, � = e and m = bi
for some 1 ≤ i ≤ k. We then have g = abe− abie, which is impossible
since obviously abe ≤ abie by the choice of b.

Hence, in Case 1, in<(IL) is not squarefree.

Case 2. There exist 1 ≤ i < j ≤ k such that ae > bibj. Let bd be the
smallest monomial among all the monomials bibj , 1 ≤ i < j ≤ k. In
particular, it follows that ae > bd. We first claim that b2d− bd2 ∈ IL.
Indeed, one may easily check the following identity:

b2d− bd2 = (b− d)(bd− ae)− b(cd− ae) + d(bc− ae),

where c is an arbitrary variable in {b1, . . . , bk} \ {b, d}. Let us assume
that in<(IL) is squarefree. Then we have bd ∈ in<(IL). This implies
that there exists a binomial g = bd− �m ∈ IL with bd ∈ in<(IL). Since
ae > bd, we cannot have �m = ae. Therefore, g = bd − bibj for some
1 ≤ i < j ≤ n, which is again impossible by our choice of the monomial
bd.

2. Radical join-meet ideals of finite lattices. In this section we
describe the associated primes of a radical join-meet ideal of a finite
lattice.

Proposition 2.1. Let S = K[x1, . . . , xn] be a polynomial ring over
a field K, and let I ⊂ S be a binomial ideal, that is, an ideal which is
generated by differences of two monomials. If I is a radical ideal, then:

(a) I : (
∏n

i=1 xi)
∞ = I :

∏n
i=1 xi.

(b) I :
∏n

i=1 xi is a prime ideal.

Proof. (a) Let Min∗(I) be the set of all prime ideals of I which contain
no variable. Then

I :
n∏

i=1

xi =
⋂

P∈Min(I)

(
P :

n∏
i=1

xi

)
=

⋂
P∈Min∗(I)

P

=
⋂

P∈Min(I)

(
P :

( n∏
i=1

xi

)∞)
= I :

( n∏
i=1

xi

)∞
.
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(b) By [3, 12], I :
∏n

i=1 xi is a lattice ideal, let us say IL where
L ⊂ Zn is a lattice. By [3, Theorem 2.1], it is enough to show that L is
saturated, in other words, if xma−xmb ∈ I :

∏n
i=1 xi for some positive

integer m, then xa − xb ∈ I :
∏n

i=1 xi.

The proof depends on the characteristic of the field. Let us first
assume that charK = 0. Since, by the proof of (a), we have I :∏n

i=1 xi =
⋂

P∈Min∗(I) P , we get xma − xmb ∈ P for any prime ideal

P ∈ Min∗(I). Since P does not contain any variable, it follows that the
polynomial g = x(m−1)a+ · · ·+x(m−1)b /∈ P since g(1, . . . , 1) = m �= 0;
hence, xa − xb ∈ P for any P ∈ Min∗(I). Therefore, we obtain
xa − xb ∈ I :

∏n
i=1 xi.

A similar proof works in positive characteristic. Indeed, let p > 0 be
the characteristic of the field, and let m = ptq for some non-negative
integer t and some positive integer q such that (p, q) = 1. Then

xma−xmb = (xqa−xqb)p
t

= (xa−xb)p
t

(x(q−1)a+ · · ·+x(q−1)b)p
t ∈ P

for all P ∈ Min∗(I). Let h = (x(q−1)a + · · ·+ x(q−1)b)p
t

= x(q−1)apt

+

· · · + x(q−1)bpt

. Then h(1, . . . , 1) = q �= 0. It follows by using the

same argument as in the zero characteristic that (xa − xb)p
t ∈ P ,

and thus xa − xb ∈ P for every P ∈ Min∗(I). This implies that
xa − xb ∈ I :

∏n
i=1 xi.

Now we are going to characterize the associated primes of a radical
join-meet ideal of a finite lattice. We first need the following.

Definition 2.2. Let L be a lattice and A a subset of L. A is
called admissible if it is empty or it is non-empty and has the following
property: for any basic binomial ab− cd of IL, if a ∈ A or b ∈ A, then
c ∈ A or d ∈ A.

In other words, the set A is admissible if and only if, for any basic
binomial, either A “covers” both monomials of the binomial or none of
them. Of course, the empty set and L are admissible sets for IL.

Remark 2.3. Let A be an admissible set for IL. We set LA = L \ A
Then LA is a sublattice of L with respect to the order induced from
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L. Indeed, let a, b ∈ LA be two incomparable elements. Since A is
admissible, it follows that a ∨ b and a ∧ b do not belong to A

Proposition 2.4. Let IL be a radical ideal. Then, for any admissible
set, the ideal ILA is radical.

Proof. Assume that there exists an A ⊂ L such that ILA is not
radical; hence, there exists a polynomial f ∈ K[{a : a ∈ L \ A}] such
that f ∈ √

ILA \ ILA . Then, obviously, f ∈ √
IL. We claim that f /∈ IL

which shows that IL is not radical, a contradiction. Let us assume that
f ∈ IL. Then we may write

f =
∑

a,b/∈A

hab(ab− (a ∧ b)(a ∨ b)) +
∑

a∈A or b∈A

hab(ab− (a ∧ b)(a ∨ b))

for some polynomials hab ∈ K[L]. We map to zero all the variables
of A. In this way, since A is admissible, it follows that the second
sum in the above formula vanishes while, in the first sum, all the basic
binomials survive. Therefore, f ∈ ILA , a contradiction.

Remark 2.5. We are going to see in Example 3.7 that the radical
property does not pass from a lattice to any of its proper sublattices.

For an admissible set A ⊂ L, we set

PA(L) = ILA :
∏
a/∈A

a+ (a : a ∈ A).

If IL is a radical ideal, then ILA is a radical ideal by Proposition 2.4,
and, by Proposition 2.1, it follows that ILA :

∏
a/∈A a is prime. Thus

PA(L) is a prime ideal for any admissible set A if IL is a radical ideal.
Obviously, PA(L) ⊃ IL for any admissible set A.

Theorem 2.6. Let L be a lattice such that IL is a radical ideal.
Then

IL =
⋂
A⊂L

A admissible

PA(L).
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Proof. It is enough to show that any minimal prime ideal of IL is of
the form PA(L) for some admissible set A ⊂ L.

Let P be a minimal prime of IL and A = {a : a ∈ P}. If A = ∅, that
is, P does not contain any variable, then P ⊃ IL :

∏
a∈L a ⊃ IL. Since,

by Proposition 2.1, IL :
∏

a∈L a is a prime ideal, we obtain P = P∅(L).

Now let A be nonempty. We claim that A is admissible. Indeed,
let ab − cd be a basic binomial such that a ∈ A. It follows that
cd ∈ P , which implies that c ∈ A or d ∈ A. We show that
P = PA(L). Indeed, since P ⊃ IL and P ⊃ (a : a ∈ A), we also
have P ⊃ IL + (a : a ∈ A) = ILA + (a : a ∈ A). It follows that
P ⊃ (ILA + (a : a ∈ A)) :

∏
a/∈A a = PA(L). Since P is minimal over I,

we must have P = PA(L).

Proposition 2.7. Let IL be radical. Then, for two admissible sets
A,B ⊂ L, we have PA(L) � PB(L) if and only if

A � B and ILA :
∏
a/∈A

a ⊂ ILB :
∏
b/∈B

b+ (b : b ∈ B \A).

Proof. Let A ⊂ B. Then PA(L) ⊂ PB(L) if and only if

ILA :
∏
a/∈A

a = PA(L)/(a : a ∈ A) ⊂ PB(L)/(a : a ∈ A)

= ILB :
∏
b/∈B

b+ (b : b ∈ B \A).

•a

•c•b

•e

•d

•f

•g

FIGURE 4.
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The following example illustrates Theorem 2.6 and Proposition 2.7.

Example 2.8. Let Q be the lattice of Figure 4. The Gröbner basis of
IQ with respect to the lexicographic order induced by a > b > · · · > g is
{ae− bc, ag− cf, bg− ef, cd− cf, de− ef}. Thus, in<(IQ) is squarefree,
which implies that IQ is a radical ideal and we may apply Theorem 2.6
and Proposition 2.7 to determine the minimal primes of IQ.

One easily sees that

IQ :
∏
x∈Q

x ⊃ J = (ae− bc, ag − cf, bg − ef, d− f) ⊃ IQ.

But K[a, b, c, d, e, f, g]/J ∼= K[a, b, c, d, e, g]/(ae− bc, ag − cd, bg − de),
and the latter quotient ring is a domain. Therefore, J is a prime ideal.
Moreover, IQ :

∏
x∈Q x = J = P∅(Q). The other minimal primes of

I are (a, b, c, e) and (c, e, g), that is, I = J ∩ (a, b, c, e) ∩ (c, e, g). Note
that, for instance, the set A = {g, d, f} is an admissible set, but the
corresponding prime ideal PA(Q) is not a minimal prime of IQ since
PA(Q) � P∅(Q).

3. Join-meet ideals of modular non-distributive lattices. It
is well known that, given an ideal I of a polynomial ring S over a
field, if in<(I) is radical for some monomial order < on S, then the
ideal I is radical as well; see [7, Proposition 3.3.7] or [4, Lemma 6.51]
for an alternative proof. This also gives a procedure to show that
a polynomial ideal is radical. However, there are radical polynomial
ideals whose initial ideals are always non-radical. For such ideals one
has to use other kind of arguments to prove the radical property.

In this section we mainly study a class of modular non-distributive
lattices whose join-meet ideals are radical. Before beginning our study,
let us look at the next example.

Example 3.1. Let N be the lattice of rank 4 of Figure 5. This is
rather a simple example of a modular non-distributive lattice. We
“included” only one diamond into a distributive lattice with eight
elements. However, as we are going to show, the join-meet ideal of
lattice N is not radical.
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FIGURE 5. Lattice N .

We claim that a�g(d−f)2 ∈ IN , which implies that (a�g(d−f))2 ∈ IN ;
therefore, a�g(d− f) ∈ √

IN . Indeed, one may easily see that

a�g(d− f)2 = a�gd2 − 2a�gdf + a�gf2

≡ ag2hd− ag2hf − agf(gh− �f)

≡ ag2h(d− f)− agf�(d− f)

≡ ag2h(d− f)− a�2c(d− f) mod IN .

On the other hand, ah(d − f) ∈ IN and �c(d − f) ∈ IN . One may
easily check this. For instance, for the first membership, we may use
the following identity:

ah(d− f) = b(de− ch) + (f − d)(be− ah)− b(ef − ch).

Thus, a�g(d − f) ∈ √
IN . The Gröbner basis of IN with respect to

reverse lexicographic order contains, apart from the basic binomials of
N , the following binomials: ce�− cf�, cd�− cf�, ceh− cfh, aeh− afh,
cdh−cfh, adh−afh, cf2�−c2h�, ad2�−ach�, cf2h−c2h2, af2h−ach2.
Thus, in<(a�gd−a�gf) /∈ in<(IN ), which implies that a�g(d−f) /∈ IN .

Let us still look a little at Example 3.1. Here we have obtained
a non-radical ideal by ”including” the vertex e (to get the diamond
with the vertices c, d, e, f, h) in the distributive lattice with the vertices
a, b, c, d, f, g, h, �. On the other hand, as one may easily check, the
sublattice of N with the vertices c, d, e, f, g, h, � has a radical join-meet
ideal. Moreover, as Figure 7 and Example 3.7 show, if we “complete”
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the square with vertices b, d, g in lattice N , then we again get a radical
ideal. These quite easy examples show that the join-meet ideals of
non-distributive lattices have a wild behavior.

The following question arises. May we find, however, a class of
distributive lattices such that by “including” just one small diamond
one may get a radical joint-meet ideal for the new lattice? We are going
to answer this question in the next theorem.

Let D be the distributive lattice of the divisors of 2 · 3n for some
integer n ≥ 1 with the elements labeled as in Figure 6 (a). For every
1 ≤ k ≤ n− 1, we denote by Lk the lattice of Figure 6 (b).

Before stating our first preparatory result, we need to introduce some
notation. For 1 ≤ k ≤ n− 1, let

pk = xk+1z − ykz; rk = y2kz − ykz
2;

gi = xiyk+1 − yiz, for 1 ≤ i < k;
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hj = xkyj − xjz, for k + 1 ≤ j ≤ n;

fij = xjyi − xiyj , for 1 ≤ i < j ≤ n, j �= k + 1, i �= k;

fi,k+1 = xk+1yi − yiz, for 1 ≤ i ≤ k;

fkj = xjyk − xjz, for j > k + 1;

pij = xixk+1yj − xiyjz, for 1 ≤ i < k < k + 1 < j ≤ n,

tij = xiykyj − xiyjz, for 1 ≤ i < k < k + 1 < j ≤ n, and

qik = yiykz − yiz
2, for 1 ≤ i < k.

Lemma 3.2. The set

G={pk, rk} ∪{gi, qik : 1≤ i<k}∪{hj : k + 1≤j≤n}
∪{fij : 1≤ i<j≤n}∪{pij, tij : 1≤ i<k<k+1<j≤n}

is a Gröbner basis of I = ILk
with respect to the reverse lexicographic

order induced by x1 > · · · > xn > y1 > · · · > yn > z. In particular, it
follows that in<(I) is generated by the following set of monomials:

M = {xjyi : 1 ≤ i < j ≤ n}
∪ {xiyk+1 : 1 ≤ i < k} ∪ {xkyj : k + 1 ≤ j ≤ n}
∪ {xixk+1yj , xiykyj : 1 ≤ i < k < k + 1 < j ≤ n}
∪ {yiykz : 1 ≤ i < k} ∪ {xk+1z, y

2
kz}.

Proof. We first note that G is a generating set of I and that next
one applies Buchberger’s criterion, that is, one checks that all the S-
polynomials of the pairs (f, g) ∈ G × G reduce to zero modulo G. Note
that, for many pairs (f, g) ∈ G×G, the checks are superfluous since the
initial monomials in<(f) and in<(g) are relatively prime. Moreover, in
order to eliminate many checks, one may use the following known fact.
If f, g are two polynomials with in<(f) and in<(g) relatively prime,
then, for any monomials u, v the S-polynomial S(uf, vg) reduces to
zero modulo uf and vg.

Theorem 3.3. For every 1 ≤ k ≤ n − 1, the join-meet ideal ILk
is

radical.

The proof of this theorem has several steps which are shown in the
following lemmas, but the basic idea of the proof is very simple. We
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actually show that one may decompose I as an intersection of two
radical ideals, namely, I = (I, xk+1 − yk) ∩ (I, z); hence, I itself is a
radical ideal.

Lemma 3.4. Let 1 ≤ k ≤ n − 1 and I = ILk
. Then I =

(I, xk+1 − yk) ∩ (I, z).

Proof. The inclusion I ⊂ (I, xk+1 − yk) ∩ (I, z) is obvious. For
obtaining the equality, we show that

(3.1) in<(I, xk+1 − yk) ∩ in<(I, z) ⊂ in<(I).

This will imply that in<((I, xk+1 − yk) ∩ (I, z)) ⊂ in<(I); thus,

in<(I) = in<((I, xk+1 − yk) ∩ (I, z)),

which leads to the desired statement.

We know the generators of in<(I) from Lemma 3.2. We now compute
the Gröbner bases of (I, z) and (I, xk+1−yk) with respect to the reverse
lexicographic order induced by x1 > · · · > xn > y1 > · · · > yn > z. By
using the Gröbner basis of I, one easily sees that (I, z) is generated by
the binomials fij = xjyi − xiyj where 1 ≤ i < j ≤ n and j �= k + 1,
i �= k, and by the following set of monomials: {z} ∪ {xiyk+1 : 1 ≤ i <
k} ∪ {xkyj : k + 1 ≤ j ≤ n} ∪ {xk+1yi : 1 ≤ i ≤ k} ∪ {xjyk : j >
k + 1} ∪ {xixk+1yj , xiykyj : 1 ≤ i < k < k + 1 < j ≤ n}. By using
Buchberger’s criterion, one immediately checks that the above set of
generators of (I, z) is a Gröbner basis of (I, z). Consequently,

G(in<(I, z)) = (G(in<(I) \ {xk+1z, ykz
2, yiykz : 1 ≤ i < k}) ∪ {z},

which implies that
in<(I, z) = (in<(I), z).

Here we used the notation G(J) for the minimal set of monomial
generators of the monomial ideal J .

By using the Gröbner basis of I it follows that the ideal (I, xk+1−yk)
is generated by the binomials xk+1−yk, gi, 1 ≤ i < k, hj, k+1 ≤ j ≤ n,
fij , 1 ≤ i < j ≤ n, j �= k + 1, i �= k, f ′

i,k+1 = yiyk − yiz = fi,k+1 −
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yi(xk+1−z), 1 ≤ i ≤ k, fkj , j > k+1, rk and p′ij = tij = xiyjyk−xiyjz,
1 ≤ i < k < k + 1 < j ≤ n, since qik = zf ′

i,k+1. Buchberger’s criterion
applied to this set of generators shows that they form a Gröbner basis
of (I, xk+1 − yk). Moreover, we obtain

G(in<(I, xk+1 − yk)) = (G(in<(I) \ ({xk+1z, xk+1yi : 1 ≤ i ≤ k}
∪ {yiykz : 1 ≤ i < k}))
∪ {xk+1, yiyk : 1 ≤ i ≤ k};

therefore, we get the following equality:

(3.3) in<(I, xk+1 − yk) = (in<(I), xk+1, y1yk, . . . , yk−1yk, y
2
k).

By using relations (3.2) and (3.3), we get

in<(I, xk+1 − yk) ∩ in<(I, z)

= (in<(I), xk+1z, y1ykz, . . . , y
2
kz) ⊂ in<(I).

From the above proof, we may also derive the following:

Corollary 3.5. (I, z) is a radical ideal.

Proof. By (3.2), we have in<(I, z) = (in<(I), z). Since in<(I) has
only one non-squarefree generator, namely, y2kz which is “killed” by
z, it follows that in<(I, z) is square free and, consequently, (I, z) is a
radical ideal.

The last step in the proof of Theorem 3.3 is shown in the following.

Lemma 3.6. The ideal (I, xk+1 − yk) is radical.

Proof. We show that (I, xk+1 − yk) has a squarefree initial ideal with
respect to the lexicographic order induced by z > x1 > · · · > xn > y1 >
· · · > yn. We recall from the proof of Lemma 3.4 that (I, xk+1 − yk) is
generated by xk+1−yk, gi, 1 ≤ i < k, hj , k+1 ≤ j ≤ n, fij , 1 ≤ i < j ≤
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n, j �= k+1, i �= k, f ′
i,k+1 = yiyk−yiz, 1 ≤ i ≤ k, fkj , j > k+1, rk, and

p′ij = tij = xiyjyk−xiyjz, 1 ≤ i < k < k+1 < j ≤ n. In this generating
set, the generators rk and p′ij are redundant. Indeed, rk = zf ′

k,k+1 and
p′ij = (yk − z)fij − xjf

′
i,k+1 for any 1 ≤ i < k < k + 1 < j ≤ n.

Moreover, for every 1 ≤ i < k, we may replace the generator gi by
g′i = xiyk+1 − yiyk = f ′

i,k+1 − gi. Finally, for j > k+1, we may replace
the generator fkj by xkyj − xjyk = fkj − hj . Therefore, (I, xk+1 − yk)
is generated by the following binomials: xk+1 − yk, g

′
i = xiyk+1 − yiyk

for 1 ≤ i < k, hj = zxj − xkyj for k + 1 ≤ j ≤ n, f ′
i,k+1 = zyi − yiyk

for 1 ≤ i ≤ k, and fij = xiyj − xjyi for 1 ≤ i < j ≤ n with j �= k + 1.
By trivial calculations, one may check that this set of generators is a
Gröbner basis of (I, xk+1 − yk) with respect to the lexicographic order
induced by z > x1 > · · · > xn > y1 > · · · > yn. Since all these
generators have squarefree initial monomials, it follows that the initial
ideal of (I, xk+1−yk) is squarefree and, thus, (I, xk+1−yk) is a radical
ideal.

We end this section with a few comments. Going back to Example 3.1,
by applying Theorem 3.3, we see that every proper sublattice N ′ of N
has a radical join-meet ideal although IN is not radical. The following
example shows that the radical property does not pass from a lattice
to any of its proper sublattices.

Example 3.7. Let R be the lattice of Figure 7.

One may check with Singular [5] that IR is a radical ideal. However,
the ideal IN attached to its proper sublattice N is not radical, as we
have seen in Example 3.1.

4. The minimal primes of the join-meet ideal of Lk. In this
section we apply the results of Section 2 to determine explicitly the
minimal primes of the ideals ILk

for 1 ≤ k ≤ n− 1. We recall that we
denoted by D the distributive lattice displayed in Figure 6 (a), and by
Lk the lattice displayed in Figure 6 (b). We denote byDk the sublattice
of D with the elements xi, yi, 1 ≤ i ≤ k, and by D′

k the sublattice of
D with the elements xi, yi, k + 1 ≤ i ≤ n.

Before stating the main theorem of this section, we need to prove a
preparatory result.
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Lemma 4.1. For any 1 ≤ k ≤ n − 1, the ideal (ID, xk+1 − yk) is
prime.

Proof. It is enough to show that (ID, x2−y1) is a prime ideal since, by
an appropriate change of variables, we may map the ideal (ID, x2 − y1)
into (ID, xk+1 − yk).

Let fij = xiyj − xjyi, 1 ≤ i < j ≤ n, be the generators of ID. By
[8, Theorem 2.2], {fij : 1 ≤ i < j ≤ n} is a Gröbner basis of ID with
respect to any monomial order. Actually, if in<fij and in<fk� are not
relatively prime, then the S-polynomial of the pair (fij , fk�) may be
expressed as

(4.1) S(fij , fk�) = zfpq

for some variable z ∈ K[D] and 1 ≤ p < q ≤ n.

Let < be an arbitrary monomial order on K[D]. For any 1 ≤ i <
j ≤ n, we denote by gij the reduction of fij modulo x2 − y1. More
precisely, gij is obtained from fij by replacing x2 by y1 if x2 > y1 or
y1 by x2 if y1 > x2. Since {fij : 1 ≤ i < j ≤ n} is a Gröbner basis of
ID with respect to <, it follows that the set G = {gij : 1 ≤ i < j ≤
n} ∪ {x2 − y1} is a Gröbner basis of (ID, x2 − y1) with respect to <.
This is essentially due to equation (4.1). In particular, G is a Gröbner
basis of (ID, x2−y1) with respect to the lexicographic order induced by
x1 > · · · > xn > y1 > · · · > yn. In this case, it follows that the initial
ideal of (ID, x2−y1) is generated by the following squarefree monomials:
x2, xiyj for i, j �= 2, x1y2, and xjy2 for 2 < j ≤ n. This shows that
(ID, x2 − y1) is a radical ideal. On the other hand, by applying [15,
Lemma 12.1], it follows that all the variables are regular on (ID, x2−y1),
which implies that (ID, x2−y1) :

∏
1≤i≤n xi

∏
1≤j≤n yj = (ID, x2−y1).

Finally, by applying Proposition 2.1, we get the desired conclusion.

Theorem 4.2. Let 1 ≤ k ≤ n− 1 and I = ILk
be the join-meet ideal

of lattice Lk. The minimal primes of I are the following:

P = (I, z − xk+1, z − yk),

P1 = (z, x1, . . . , xn),

P ′
1 = (z, y1, . . . , yn),
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P2 = (z, x1, . . . , xk, y1, . . . , yk) + ID′
k
,

P ′
2 = (z, xk+1, . . . , xn, yk+1, . . . , yn) + IDk

,

P3 = (x1, . . . , xn, y1, . . . , yk),

P ′
3 = (y1, . . . , yn, xk+1, . . . , xn).

Proof. By Theorem 2.6, since I is a radical ideal, we know that any
minimal prime of I is of the form PA(Lk) where A is an admissible set
of I.

Let P = P∅(Lk). Then P = I : (z
∏

1≤i≤n xi

∏
1≤j≤n yj). We

obviously have

(4.2) P ⊃ (I, z − xk+1, x− yk) ⊃ I.

On the other hand,

K[Lk]

(I, z − xk+1, x− yk)
∼= K[D]

(ID, xk+1 − yk)
.

Since, by Lemma 4.1, (ID, xk+1 − yk) is a prime ideal, it follows that
(I, z − xk+1, x − yk) is a prime ideal as well. Therefore, since P is a
minimal prime of I, by using (4.2), we must have P = (I, z−xk+1, x−
yk).

Now we look at the minimal primes which correspond to non-empty
admissible sets. Let A be such an admissible set, and assume first that
z ∈ A. If y� /∈ A for every 1 ≤ � ≤ n, then, by using the basic binomials
zyi − xiyk+1 for i ≤ k and xkyj − xjyk for j ≥ k + 1, it follows that
P ⊃ (z, x1, . . . , xn) ⊃ I; hence, we get PA(Lk) = (z, x1, . . . , xn) = P1.
Since the dual lattice of Lk obviously has the same relation ideal, it
follows that P ′

1 is the minimal prime which correspond to the admissible
set A which contains z and does not contain any of the variables xi,
i = 1, . . . , n.

Now we consider an admissible set A which contains z and has the
property that there exist 1 ≤ i, j ≤ n such that xi, yj /∈ A. If
i �= j, then, since xiyj − xjyi is a basic binomial, it follows that
xj , yi /∈ A. Therefore, we may assume that there exists 1 ≤ i ≤ n
such that xi, yi /∈ A. Let us suppose that xk, yk /∈ A. From the
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relations xjz − xkyj , we get yj ∈ A for j ≥ k + 1 and, next, from
the relations xjyk − xkyj , we get xj ∈ A for j ≥ k + 1. Thus, in this
case, PA(Lk) ⊃ P ′

2 ⊃ I. But P ′
2 is obviously a prime ideal, therefore,

PA(L) = P ′
2. The dual situation corresponds to xk+1, yk+1 /∈ A

and, in this case, one gets PA(Lk) = P2. It remains to consider
xk, yk, xk+1, yk+1 ∈ A. Then it follows that PA(Lk) � P , which implies
that PA(Lk) is not a minimal prime.

We still need to identify the minimal primes which correspond to
non-empty admissible sets A which do not contain z. Let A be such
that z /∈ A and PA(Lk) is a minimal prime of I. Since zyk − xkyk+1,
zxk+1−xkyk+1, ykxk+1−xkyk+1 ∈ I ⊂ PA(Lk), we get z(yk−xk+1) ∈
PA(Lk); hence, yk − xk+1 ∈ PA(L) and xk+1(z − yk) ∈ PA(L). If
xk+1 /∈ PA(L), it follows that z − xk+1 ∈ PA(L). But this further
implies that PA(Lk) � P ; hence, PA(Lk) is not a minimal prime.
Consequently, xk+1 ∈ A, and, next, yk ∈ PA(Lk). By again using
the basic binomial ykxk+1 − xkyk+1, we obtain xk ∈ A or yk+1 ∈ A.

We analyze the following cases.

Case 1. xk ∈ A and yk+1 /∈ A. By using the relations xjz − xkyj
for j > k + 1, we get xj ∈ A for j > k + 1. Similarly, by using
the basic binomials yk+1xi − yixk+1 for i < k, we get xi ∈ A for all
i < k. Therefore, we have xi ∈ A for all i = 1, . . . , n. By using the
basic binomials zyi − xiyk+1 for i < k, we also get yi ∈ A. Then we
have actually proved that PA(Lk) ⊃ (x1, . . . , xn, y1, . . . , yk) = P3 ⊃ I.
Since PA(Lk) is a minimal prime of I, we must have PA(Lk) = P3.

Case 2. xk /∈ A and yk+1 ∈ A. This is the dual of the above case and
leads to the conclusion that PA(Lk) = P ′

3.

Case 3. Let xk, yk+1 ∈ A. From the relations zyi − xiyk+1 for i < k,
and xjz − xkyj for j > k, we obtain yi ∈ A for i < k, and xj ∈ A for
j > k. If there exists an i < k such that xi /∈ A, by using the relations
xiyj − xjyi for j > k + 1, we get yj ∈ A for all j > k + 1. In this case,
it follows that A ⊃ {y1, . . . , yn, xk, . . . , xn} and PA(Lk) � P ′

3; hence,
PA(Lk) is not a minimal prime, a contradiction. In other words, Case 3
does not hold, and this completes the proof.

Corollary 4.3. The join-meet ideal ILk
is not unmixed and

dim (K[Lk]/ILk
) = n.
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Proof. It is known (see [9]), that if D is a distributive lattice, then
dim (K[D]/ID) is equal to the number of the join irreducible elements
of D plus 1. Therefore, we get

dim(K[Lk]/P ) = n = dim(K[Lk]/P1) = dim(K[Lk]/P
′
1),

dim(K[Lk]/P2) = n− k, dim(K[Lk]/P
′
2) = k,

dim(K[Lk]/P3) = n− k + 1, dim(K[Lk]/P
′
3) = k + 1.

The above equalities yield the desired statements.
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15. B. Sturmfels, Gröbner bases and convex polytopes, American Mathematical
Society, Providence, RI, 1995.



230 VIVIANA ENE AND TAKAYUKI HIBI

Faculty of Mathematics and Computer Science, Ovidius University, Bd.

Mamaia 124, 900527 Constanta, Romania

Email address: vivian@univ-ovidius.ro

Department of Pure and Applied Mathematics, Graduate School of In-

formation Science and Technology, Osaka University, Toyonaka, Osaka

560-0043, Japan

Email address: hibi@math.sci.osaka-u.ac.jp



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [432.000 648.000]
>> setpagedevice


