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IDEALS GENERATED BY ADJACENT 2-MINORS

JÜRGEN HERZOG AND TAKAYUKI HIBI

ABSTRACT. Ideals generated by adjacent 2-minors are
studied. First, the problem when such an ideal is a prime
ideal as well as the problem when such an ideal possesses
a quadratic Gröbner basis is solved. Second, we describe
explicitly a primary decomposition of the radical ideal of
an ideal generated by adjacent 2-minors, and challenge the
question of classifying all ideals generated by adjacent 2-
minors which are radical ideals.

Introduction. Let X = (xij) i=1,... ,m
j=1,... ,n

be an m×n-matrix of indeter-

minates, and let K be an arbitrary field. The ideals of t-minors It(X)
in K[X ] = K[(xij) i=1,... ,m

j=1,... ,m
] are well understood. A standard reference

for determinantal ideals are the lecture notes [2] by Bruns and Vetter.
See also [1] for a short introduction to this subject. Determinantal ide-
als and the natural extensions of this class of ideals, including ladder
determinantal ideals arise naturally in geometric contexts which par-
tially explains the interest in them. One nice property of these ideals
is that they are all Cohen-Macaulay prime ideals.

Motivated by applications to algebraic statistics, one is led to study
ideals generated by an arbitrary set of 2-minors of X . We refer
the interested reader to the article [3] of Diaconis, Eisenbud and
Sturmfels where the encoding of the statistical problem to commutative
algebra is nicely described. In this paper we concentrate on studying
ideals generated by adjacent 2-minors, that is, minors of the form
xi,jxi+1,j+1 − xi+1,jxi,j+1. Hoşten and Sullivant [9] describe in a very
explicit way all the minimal prime ideals for the ideal generated by
all adjacent 2-minors of an m× n-matrix. In Theorem 3.3 we succeed
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in describing the minimal prime ideals of the ideal of a configuration
of adjacent 2-minors under the assumption that this configuration
is convex, a concept which had first been introduced by Qureshi
[10]. Convex configurations include the case considered by Hoşten and
Sullivant but are more general. Our description is not quite as explicit
as that of Hoşten and Sullivant, but explicit enough to determine in
each particular case all the minimal prime ideals. Part of the result
given in Theorem 3.3 can also be derived from [8, Corollary 2.1] of
Hoşten and Shapiro, since ideals generated by 2-adjacent minors are
lattice basis ideals. Though the minimal prime ideals are known,
knowledge about embedded prime ideals of an ideal generated by
2-adjacent minors is very little, let alone knowledge of its primary
decomposition. In [3] the primary decomposition of the ideal of all
adjacent 2-minors of a 4× 4-matrix is given and in [8] that of a 3× 5-
matrix. It is hard to see a general pattern from these results.

Ideals generated by adjacent 2-minors tend to have a nontrivial
radical and are rarely prime ideals. In the first section of this paper
we classify all ideals generated by adjacent 2-minors which are prime
ideals. The result is described in Theorem 1.1. They are the ideals
of adjacent 2-minors attached to a chessboard configuration with no
4-cycles.

One method to show that an ideal is a radical ideal is to compute its
initial ideal with respect to some monomial order. If the initial ideal is
squarefree, then the given ideal is a radical ideal. In Section 2 we clas-
sify all ideals generated by adjacent 2-minors which have a quadratic
Gröbner basis (Theorem 2.3). It turns out that these are the ideals of
adjacent 2-minors corresponding to configurations whose components
are monotone paths meeting in a suitable way. In particular, those
ideals of adjacent 2-minors are radical ideals. In general, the radical of
an ideal of adjacent 2-minors attached to a convex configuration can
be naturally written as an intersections of prime ideals of relatively
simple nature, see Theorem 3.2. These prime ideals are indexed by the
so-called admissible sets. These are subsets of the set S, which defines
the configuration, and can be described in a purely combinatorial way.

In Section 4 we aim at classifying configurations whose ideal of ad-
jacent 2-minors is a radical ideal. In this section we restrict ourselves
to considering only a particular class of configurations, which we call
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FIGURE 1. The vertices of the 2-minor [a1, a2|b1, b2] in matrix X.

FIGURE 2. A chessboard configuration inside a 4× 5-matrix.

strongly connected. It is not so hard to see (cf. Proposition 4.2) that
a strongly connected configuration whose ideal of adjacent 2-minors is
a radical ideal should be a path or a cycle. Computations show that
the cycles should have a length at least 12. We expect that the ideal
of adjacent 2-minors attached to any path is a radical ideal and prove
this in Theorem 4.3 under the additional assumption that the ideal has
no embedded prime ideals.

1. Prime ideals generated by adjacent 2-minors. Let X =
(xij) i=1,... ,m

j=1,... ,n
be a matrix of indeterminates, and let S be the polynomial

ring over a field K in the variables xij . Let δ = [a1, a2|b1, b2] be
a 2-minor with rows a1, a2 and columns b1, b2. The variables xai,bj

are called the vertices and the sets {xa1,b1 , xa1,b2}, {xa1,b1 , xa2,b1},
{xa1,b2 , xa2,b2} and {xa2,b1 , xa2,b2} the edges of the minor [a1, a2|b1, b2],
see Figure 1.
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The set of vertices of δ will be denoted by V (δ). The 2-minor
δ = [a1, a2 | b1, b2] is called adjacent if a2 = a1 + 1 and b2 = b1 + 1.

Let C be any set of adjacent 2-minors. We also call such a set
a configuration of adjacent 2-minors. We denote by I(C) the ideal
generated by the elements of C. The set of vertices of C, denoted V (C),
is the union of the vertices of its adjacent 2-minors. Two distinct
adjacent 2-minors δ, γ ∈ C are called connected, respectively weakly
connected, if there exist δ1, . . . , δr ∈ C such that δ = δ1, γ = δr, and δi
and δi+1 have a common edge, respectively a common vertex.

Any maximal subset D of C with the property that any two minors of
D are connected, is called a connected component of C. To C we attach
a graph GC as follows: the vertices of GC are the connected components
of C. Let A and B be two connected components of C. Then there is
an edge between A and B if there exists a minor δ ∈ A and a minor
γ ∈ B which have exactly one vertex in common. Note that GC may
have multiple edges.

A set of adjacent 2-minors is called a chessboard configuration, if any
two minors of this set meet in at most one vertex. An example of a
chessboard configuration is given in Figure 2. An ideal I ⊂ S is called
a chessboard ideal if it is generated by a chessboard configuration. Note
that the graph GC of a chessboard configuration is a simple bipartite
graph. Indeed, in the case of a chessboard configuration, the set of
vertices V of the graph GC corresponds to the set of 2-minors of the
configuration. We define the vertex decomposition V = V1 ∪ V2 of V
by letting V1 be the set of 2-minors located in the odd floors and V2

the set of 2-minors located in the even floors.

Theorem 1.1. Let I be an ideal generated by adjacent 2-minors.
Then the following conditions are equivalent:

(a) I is a prime ideal.

(b) I is a chessboard ideal and GC has no cycle of length 4.

For the proof of this result, we shall need some concepts related to
lattice ideals.

Let L ⊂ Zn be a lattice, in other words, a subgroup of Zn. Let
K be a field. The lattice ideal attached to L is the binomial ideal
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IL ⊂ K[x1, . . . , xn] generated by all binomials

xa − xb with a− b ∈ L.
L is called saturated if, for all a ∈ Zn and c ∈ Z such that ca ∈ L it
follows that a ∈ L. The lattice ideal IL is a prime ideal if and only if
L is saturated ([4]).

Recall that any subgroup of Zn is a free group and finitely generated.
Let v1, . . . ,vm be a basis of L. Hoşten and Shapiro [8] call the ideal

generated by the binomials xv+
i − xv−

i , i = 1, . . . ,m, a lattice basis
ideal of L. Here v+ denotes the vector obtained from v by replacing
all negative components of v by zero, and v− = −(v − v+).

Fischer and Shapiro [5] and Eisenbud and Sturmfels [4] showed:

Proposition 1.2. Let J be a lattice basis ideal of the saturated lattice
L ⊂ Zn. Then J : (

∏n
i=1 xi)

∞ = IL, where J : (
∏n

i=1 xi)
∞ = ∪∞

k=1J :
(
∏n

i=1 xi)
k.

It is known from [4] that the ideal generated by all adjacent 2-minors
of X is a lattice basis ideal and that the corresponding lattice ideal
is just the ideal of all 2-minors of X . It follows that an ideal which
is generated by any set of adjacent 2-minors of X is again a lattice
basis ideal and that its corresponding lattice L is saturated. Thus, as
a consequence of Proposition 1.2, we obtain:

Lemma 1.3. Let I be an ideal generated by adjacent 2-minors. Then
I is a prime ideal if and only if all variables xij are nonzerodivisors of
S/I.

Proof. As observed before, I is a lattice basis ideal and its lattice
ideal IL is a prime ideal. Assume now that all variables xij are
nonzerodivisors of S/I. Then Proposition 1.2 implies that I = IL
so that I is a prime ideal. The converse implication is trivial.

For the proof of Theorem 1.1, we need the following two lemmata.

Lemma 1.4. Let I be an ideal generated by adjacent 2-minors. For
each of the minors we mark one of the monomials appearing in the
minor as a potential initial monomial. Then there exists an ordering
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of the variables such that the marked monomials are indeed the initial
monomials with respect to the lexicographic order induced by the given
ordering of the variables.

Proof. In general suppose that, in the set [N ] = {1, 2, . . . , N}, for
each pair (i, i+1) an ordering either i < i+1 or i > i+1 is given. We
claim that there is a total order < on [N ] which preserves the given
ordering. Working by induction on N , we may assume that there is
a total order i1 < · · · < iN−1 on [N − 1] which preserves the given
ordering for the pairs (1, 2), . . . , (N − 2, N − 1). If N − 1 < N , then
i1 < · · · < iN−1 < N is a required total order < on [N ]. If N − 1 > N ,
then N < i1 < · · · < iN−1 is a required total order < on [N ].

The above fact guarantees the existence of an ordering of the variables
such that the marked monomials are indeed the initial monomials with
respect to the lexicographic order induced by the given ordering of the
variables.

The following examples demonstrate the construction of the mono-
mial order given in the proof of Lemma 1.4.

Example 1.5. In Figure 3 each of the squares represents an adjacent
2-minor, and the diagonal in each of the squares indicates the marked
monomial of the corresponding 2-minor. For any lexicographic order
for which the marked monomials in Figure 3 are the initial monomials,
the numbering of the variables in the top row must satisfy the following
inequalities:

1 < 2 > 3 < 4 > 5 > 6.

1 2 3 4 5 6

7 8 129 10 11

13 14 15 16

17 18 19 20

FIGURE 3.
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4 5 3 6 2 1

7 8 1210 11 9

13 14 16 15

17 18 19 20

FIGURE 4. Labeling of the variables with for given initial monomials.

a
c

b
d

· · · · · ·· · ·· · ·

FIGURE 5. A sequence of 2-adjacent minors.

By using the general strategy given in the proof of Lemma 1.4, we
relabel the top row of the vertices by the numbers 1 up to 6, and
proceed in the same way in the next rows. The final result can be seen
in Figure 4.

We call a vertex of a 2-minor in C free, if it does not belong to any
other 2-minor of C, and we call the 2-minor δ = ad − bc free, if either
(i) a and d are free, or (ii) b and c are free.

Lemma 1.6. Let C be a chessboard configuration with |C| ≥ 2.
Suppose GC does not contain a cycle of length 4. Then the GC contains
at least two free 2-minors.

Proof. We may assume there is at least one nonfree 2-minor in C, say
δ = ad − bc. Since we do not have a cycle of length 4, there exists a
sequence of 2-minors in C as indicated in Figure 5. Then the left-most
and the right-most 2-minor of this sequence is free.

Proof of Theorem 1.1. (a) ⇒ (b). Let δ, γ ∈ I be two adjacent 2-
minors which have an edge in common. Say δ = ae−bd and γ = bf−ce.
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Then b(af − cd) ∈ I, but neither b nor af − cd belongs to I. Therefore,
I must be a chessboard ideal. Suppose GC contains a cycle of length 4.
Then there exist in I adjacent two minors δ1 = ae − bd, δ2 = ej − fi,
δ3 = hl− ik and δ4 = ch− dg. Then h(bcjk− afgl) ∈ I, but neither h
nor bcjk − afgl belongs to I.

(b) ⇒ (a). By virtue of Lemma 1.3, what we must prove is that all
variables xij are nonzerodivisors of S/I. Let G be the set of generating
adjacent 2-minors of I. Fix an arbitrary vertex xij . We claim that
for each of the minors in G we may mark one of the monomials in
the support as a potential initial monomial such that the variable xij

appears in none of the potential initial monomials and that any two
potential initial monomials are relatively prime.

We are going to prove this claim by induction on |G|. If |G| = 1, then
the assertion is obvious. Now assume that |G| ≥ 2. Then Lemma 1.6
says that there exist at least two free adjacent 2-minors in G. Let
δ = ad− bc be one of them, and assume that a and d are free vertices
of δ. We may assume that xij �= a and xij �= d. Let G′ = G \ {δ}. By
assumption of induction, for each of the minors of G′, we may mark one
of the monomials in the support as a potential initial monomial such
that the variable xij appears in none of the potential initial monomials
and that any two potential initial monomials are relatively prime. Then
these markings, together with the marking ad, are the desired markings
of the elements of G.
According to Lemma 1.4, there exists an ordering of the variables such

that, with respect to the lexicographic order induced by this ordering,
the potential initial monomials become the initial monomials. Since
initial monomials are relatively prime ([6, Lemma 2.3.1]), it follows
that G is a Gröbner basis of I and, since xij does not divide any initial
monomial of an element in G, it follows that xij is a nonzerodivisor
of S/in (I), where in (I) is the initial ideal of I. But then xij is a
nonzerodivisor of S/I as well.

2. Ideals generated by adjacent 2-minors with a quadratic
Gröbner basis. A configuration P of adjacent 2-minors is called a
path, if there exists an ordering δ1, . . . , δr of the elements of P such
that

δj
⋂

δi ⊂ δi−1

⋂
δi
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Decreasing Increasing
FIGURE 6. Monotone paths.

for all j < i, and

δi−1

⋂
δi is an edge of δi.

Such an ordering is called a path ordering. A path P with path
ordering δ1, . . . , δr where δi = [ai, ai + 1|bi, bi + 1] for i = 1, . . . , r
is called monotone if the sequences of integers a1, . . . , ar and b1, . . . , br
are monotone sequences. The monotone path P is called decreasing
if the sequences a1, . . . , ar and b1, . . . , br are both increasing or both
decreasing, and the monotone path is called increasing if one of the
sequences is increasing and the other one is decreasing, see Figure 6.

If for P we have a1 = a2 = · · · = ar, or b1 = b2 = · · · = br, then we
call P a line path. Notice that a line graph is both monotone increasing
and monotone decreasing.

Let δ = ad − bc be an adjacent 2-minor with a = xij , b = xij+1,
c = xi+1j and xi+1j+1. Then the monomial ad is called the diagonal of
δ.

Lemma 2.1. Let P be a monotone increasing (decreasing) path of
2-minors. Then, for any monomial order < for which I(P) has a
quadratic Gröbner basis, the initial monomials of the generators are
all diagonals (anti-diagonals).

Proof. Suppose first that P is a line path. If I(P) has a quadratic
Gröbner basis, then initial monomials of the 2-minors of P are all
diagonals or all anti-diagonals, because otherwise there would be two
2-minors δ1 and δ2 in P connected by an edge such that in (δ1) is a
diagonal and in (δ2) is an anti-diagonal. The S-polynomial of δ1 and δ2
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FIGURE 7. Sub-paths of a monotone increasing path.

Square Pin

· · · · · ·
· · · · · ·
Saddle

FIGURE 8.

is a binomial of degree 3 which belongs to the reduced Gröbner basis
of I, a contradiction. If all initial monomials of the 2-minors in P are
diagonals, we interpret P as a monotone increasing path and, if all
initial monomials of the 2-minors in P are anti-diagonals, we interpret
P as a monotone decreasing path.

Now assume that P is not a line path. We may assume that P is
monotone increasing. (The argument for a monotone decreasing path
is similar). Then, since P is not a line path, it contains one of the
following sub-paths displayed in Figure 7.

For both sub-paths the initial monomials must be diagonals, other-
wise I(P) would not have a quadratic Gröbner basis. Then, as in the
case of line paths, one sees that all the other initial monomials of P
must be diagonals.

A configuration of adjacent 2-minors which are of the form shown in
Figure 8, or are obtained by rotation from them, are called square, pin
and saddle, respectively.
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Lemma 2.2. Let A be a connected configuration of adjacent 2-
minors. Then A is a monotone path if and only if A contains neither
a square nor a pin nor a saddle.

Proof. Assume that A = δ1, δ2, . . . , δr with δi = [ai, ai + 1|bi, bi + 1]
for i = 1, . . . , r a monotone path. Without loss of generality, we may
assume the both sequences a1, . . . , ar and b1, . . . , br are monotone
increasing. We will show by induction on r that it contains no
square, no pin and no saddle. For r = 1, the statement is obvious.
Now let us assume that the assertion is true for r − 1. Since A′ =
δ1, δ2, . . . , δr−1 is monotone increasing, it follows that the coordinates
of the minors δi for i = 1, . . . , r − 1 sit inside the rectangle R with
corners (a1, b1), (ar−1+1, b1), (ar−1+1, br−1+1), (a1, br−1+1), and A′

has no square, no pin and no saddle. Since A is monotone increasing,
δr = [ar−1, ar−1 + 1 | br−1 + 1, br−1 + 2] or δr = [ar−1 + 1, ar−1 + 2 |
br−1, br−1 + 1]. It follows that, if A would contain a square, a pin or
a saddle, then the coordinates of one of the minors δi, i = 1, . . . , r − 1
would not be inside the rectangle R.

Conversely, suppose that A contains no square, no pin and no saddle.
ThenA′ contains no square, no pin and no saddle as well. Thus, arguing
by induction on r, we may assume thatA′ is a monotone path. Without
loss of generality, we may even assume that a1 ≤ a2 ≤ · · · ≤ ar−1 and
b1 ≤ b2 ≤ · · · ≤ br−1. Now let δr be connected to δi (via an edge). If
i ∈ {2, . . . , r − 2}, then A contains a square, a pin or a saddle which
involves δr, a contradiction. If i = 1 or i = r−1 and A is not monotone,
then A contains a square or a saddle involving δr.

With the notation introduced, we have

Theorem 2.3. Let C be a configuration of adjacent 2-minors. Then
the following conditions are equivalent:

(a) I(C) has a quadratic Gröbner basis with respect to the lexicographic
order induced by a suitable order of the variables.

(b) (i) Each connected component of C is a monotone path.

(ii) If A and B are components of C which meet in a vertex which
is not an endpoint of A nor an endpoint of B and, if A is monotone
increasing, then B must be monotone decreasing and vice versa.
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a b c

d e f

a b

c d e

f g

FIGURE 9.

(c) The initial ideal of I(C) with respect to the lexicographic order
induced by a suitable order of the variables is a complete intersection.

Proof. (a) ⇒ (b). (i) Suppose there is component A of C which
is not a monotone path. Then, according to Lemma 2.2, A contains a
square, a pin or a saddle. In all three cases, no matter how we label the
vertices of component A, it will contain, up to a rotation or reflection,
two adjacent 2-minors with leading terms as indicated in Figure 9.

In the first case the S-polynomial of the two minors is abf − bcd,
and in the second case it is aef − bcg. We claim that, in both cases,
these binomials belong to the reduced Gröbner basis of I(C), which
contradicts assumption (a).

Indeed, first observe that the adjacent 2-minors generating the ideal
I(C) is the unique minimal set of binomials generating I(C). Therefore,
the initial monomials of degree 2 are exactly the initial monomials of
these binomials. Suppose now that abf − bcd does not belong to the
reduced Gröbner basis of I; then one of the monomials ab, af or bf must
be the leading monomial of an adjacent 2-minor, which is impossible.
In the same way, one argues in the second case.

(ii) Assume A and B have a vertex c in common. Then c must be
a corner of A and B, that is, a vertex which belongs to exactly one
2-minor of A and exactly one 2-minor of B, see Figure 10.

If, for both components, the initial monomials are the diagonals (anti-
diagonals), then the S-polynomial of the 2-minor in A with vertex c
and the 2-minor of B with vertex c is a binomial of degree 3 whose
initial monomial is not divisible by any initial monomial of the gener-
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c

FIGURE 10. Two components of a configuration meeting at vertex c.

A

B

A

B

FIGURE 11. Monotone increasing paths meeting in a vertex.

ators of C, unless c is an endpoint of both A and B. Thus, the desired
conclusion follows from Lemma 2.1.

(b) ⇒ (c). Condition (b) implies that any pair of initial monomials
of two distinct binomial generators of I(C) are relatively prime. Hence,
the initial ideal is a complete intersection.

(c) ⇒ (a). Since the initial monomial of the 2-minors generating I(C)
belong to any reduced Gröbner basis of I(C), they must form a regular
sequence. This implies that S-polynomials of any two generating 2-
minors of I(C) reduce to 0. Therefore, I(C) has a quadratic Gröbner
basis.

Corollary 2.4. Let C be a configuration satisfying the conditions of
Theorem 2.3 (b). Then I(C) is a radical ideal generated by a regular
sequence.

Proof. Let C = δ1, . . . , δr. By Theorem 2.3, there exist a monomial
order < such that in<(δ1), . . . , in<(δr) is a regular sequence. It follows
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that δ1, . . . , δr is a regular sequence. Since the initial monomials are
squarefree and form a Gröbner basis of I(C), it follows that I(C) is a
radical ideal, see for example [7, Proof of Corollary 2.2].

To demonstrate Theorem 2.3, we consider the following two examples
displayed in Figure 11.

In both examples, the components A and B are monotone increasing
paths. In the first example, A and B meet in a vertex which is an
endpoint of A; therefore, condition (b) (ii) of Theorem 2.3 is satisfied,
and the ideal I(A∪B) has a quadratic Gröbner basis. However, in the
second example A and B meet in a vertex which is not an endpoint of
A nor an endpoint of B. Therefore, condition (b) (ii) of Theorem 2.3 is
not satisfied, and the ideal I(A∪B) does not have a quadratic Gröbner
basis for the lexicographic order induced by any order of the variables.

3. Minimal prime ideals of convex configurations of adjacent
2-minors. Let [a1, a2 | b1, b2] be a 2-minor. Each of the adjacent 2-
minors [a, a+1 | b, b+1] with a1 ≤ a < a2 and b1 ≤ b < b2 is called an
adjacent 2-minor of [a1, a2 | b1, b2].
Let C be a configuration of adjacent 2-minors, and let δ = [a1, a2 |

b1, b2] be a 2-minor whose vertices belongs to V (C). Then δ is called an
inner minor of C, if all adjacent 2-minors of δ belong to C. The set of
inner minors of C will be denoted by G(C) and the ideal they generate
by J(C).
Following Quereshi [10], we call a weakly connected configuration C

of adjacent 2-minors convex if each minor [a1, a2 | b1, b2] whose vertices
belong to V (C) is an inner minor of C. An arbitrary configuration C
of adjacent 2-minors is called convex if each of its weakly connected
components is convex.

In this section we want to describe a primary decomposition of√
I(C). For this purpose, we have to introduce some terminology. Let

C = δ1, δ2, . . . , δr be an arbitrary configuration of adjacent 2-minors.
A subset W of the vertex set of C is called admissible if, for each index
i, either W ∩ V (δi) = ∅ or W ∩ V (δi) contains an edge of δi. For
example, the admissible sets of the configuration shown in Figure 12
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a b c

d e
f

g

h i j

FIGURE 12.

are the following

∅, {c, g}, {d, h}, {a, e, i}, {b, f, j}, {a, b, c}, . . . , {a, b, c, d, e, f, g, h, i, j}.

Let W ⊂ V (C) be an admissible set. We define an ideal PW (C)
containing I(C) as follows: let C′ = {δ ∈ C : V (δ) ∩ W = ∅}.
Then the generators of PW (C) are the variables belonging to W and
the generators of the ideal J(C′) of inner minors of C′. Note that
PW (C) = (W,P∅(C′)).

For example, if we take the configuration displayed in Figure 12, then

P∅(C) = (af − be, aj − bi, ej − fi, ag − ce, bg − cf,

di− eh, dj − fh),

P{d,h}(C) = (d, h, af − be, aj − bi, ej − fi, ag − ce, bg − cf).

Lemma 3.1. Let C be a convex configuration of adjacent 2-minors,
and let PW (C) = (W,P∅(C′)), where C′ = {δ ∈ C : V (δ) ∩W = ∅} and
W ⊂ V (C) is an admissible set. Then C′ is again a convex configuration
of 2-adjacent minors. In particular, for any admissible set W ⊂ V (P),
the ideal PW (C) is a prime ideal.

Proof. Let C′′ be one of the weakly connected components of C′,
and let [a1, a2 | b1, b2] be a minor whose vertices belong to V (C′′).
We want to show that [a1, a2 | b1, b2] is an inner minor of C′′, in
other words, that all adjacent 2-minors δ = [a, a + 1 | b, b + 1] of
[a1, a2 | b1, b2] belong to C′′. Suppose one of these adjacent 2-minors,
say δ = [i, i+1 | j, j+1], does not belong to C′. Then one of the edges of
δ belongs to W , say {xi+1,j , xi+1,j+1}. If δ does not meet the vertices
on the border lines connecting the corners xa1,b2 and xa2,b2 , and xa2,b1

and xa2,b2 , then δ′ = [i+1, i+2 | j+1, j+2] belongs to [a1, a2 | b1, b2],



540 JÜRGEN HERZOG AND TAKAYUKI HIBI

and hence it belongs to C since C is convex. Since V (δ′) ∩ W �= ∅

and W is an admissible set of C, we see that either xi+1,j+2 ∈ W or
xi+2,j+1 ∈ W . Proceeding in this way, we see that W meets a border
line of [a1, a2 | b1, b2]. We may assume that xj,b2 ∈ W for some j with
a1 + 1 < j < a2 − 1.

Now, if the adjacent 2-minor [j, j + 1 | b2, b2 + 1] ∈ C, then either
xj+1,b2 ∈ W or xj,b2+1 ∈ W . Proceeding in this way, we find a sequence
of elements xi1,j1 , . . . , xir ,jr which belongs to W with the properties
that:

(i) (i1, j1) = (j, b2),

(ii) for all k with 1 ≤ k < r, we have (ik+1, jk+1) = (ik + 1, jk) or
(ik+1, jk+1) = (ik, jk + 1), and

(iii) the adjacent 2-minor [ir, ir + 1 | jr, jr + 1] does not belong to C
(otherwise the sequence could be extended).

Moreover, for 1 ≤ k < r, we have that δk = [ik, ik + 1 | jk, jk + 1] ∈ C
and δk∩W �= ∅ for all k. By construction, δr−1 = [ir−1, ir | jr, jr+1]
or δr−1 = [ir, ir + 1 | jr − 1, jr] belong to C. We may assume that
δr−1 = [ir − 1, ir | jr, jr + 1]. Then it follows that all the adjacent
2-minors γk = [k, k+ 1 | jr, jr + 1] for k = ir, . . . ,m− 1 do not belong
to C. Indeed, if γk ∈ C for some k, then since δr−1 = [ir − 1, ir |
jr, jr + 1] belongs to C and since C is convex, it would follow that
[ir, ir + 1 | jr, jr + 1] belongs to C, a contradiction. Similarly, there
exists xk1,l1 , . . . , xks,ls which belongs to W with the properties that

(i) (k1, l1) = (j, b2),

(ii) for all t with 1 ≤ t < s, we have (it+1, jt+1) = (it − 1, jt) or
(it+1, jt+1) = (it, jt − 1), and either the adjacent 2-minors [is − 1, is |
k − 1, k] do not belong to C for k = 1, . . . , js, or the adjacent 2-minors
[k − 1, k | js − 1, js] do not belong to C for k = 1, . . . , is.

Since vertices xa1,b2 and xa2,b2 belong to the weakly connected com-
ponent C′′ of C′, there exists a chain σ1, . . . , σv of adjacent 2-minors in
C′ with V (σi) ∩ V (σi+1) �= ∅ for all i and such that xa1,b2 ∈ σ1 and
xa2,b2 ∈ σv. It follows that {xi1,j1 , . . . , xir ,jr , xk1,l1 , . . . , xks,ls}∩σi �= ∅

for some i. Therefore, V (σi) ∩W �= ∅, a contradiction since σi ∈ C′.

Now, since C′ is a convex configuration, it follows by a result of
Qureshi [10, Theorem 2.2] that P∅(C′) is a prime ideal. Therefore,
PW (C) is a prime ideal as well.
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Theorem 3.2. Let C be a convex configuration of adjacent 2-minors.
Let P be a minimal prime ideal of I(C). Then there exists an admissible
set W ⊂ V (C) such that P = PW (C). In particular.

√
I(C) =

⋂

W

PW (C),

where the intersection is taken over all admissible sets W ⊂ V (C).

Proof. Let P be any minimal prime ideal of I(C), and let W be the set
of variables among the generators of P . We claim that W is admissible.
Indeed, suppose that W ∩ V (δ) �= ∅ for some adjacent 2-minor of C.
Say, δ = ad− bc and a ∈ W . Then bc ∈ P . Hence, since P is a prime
ideal, it follows that b ∈ P or c ∈ P . Thus, W contains the edge {a, c}
or the edge {a, b} of δ.

Since I(C) ⊂ P , it follows that (W, I(C)) ⊂ P . Observe that
(W, I(C)) = (W, I(C′)), where W ∩ V (C′) = ∅ and C′ is again a convex
configuration, see the proof of Lemma 3.1. Modulo W , we obtain a
minimal prime ideal P , which contains no variables of the ideal I(C′).

By [10, Theorem 2.2] the ideal P∅(C′) is a prime ideal containing
I(C′). Thus, the assertion of the theorem follows once we have shown
that P∅(C′) ⊂ P .

Since P∅(C′) is generated by the union of the set of 2-minors of certain
r × s-matrices, it suffices to show that if P is a prime ideal having no
variables among its generators and containing all adjacent 2-minors of
the r×s-matrixX , then it contains all 2-minors of X . In order to prove
this, let δ = [a1, a2 | b1, b2] be an arbitrary 2-minor ofX . We prove that
δ ∈ P by induction on (a2−a1)+(b2−b1). For (a2−a1)+(b2−b1) = 2,
this is the case by assumption. Now let (a2 − a1) + (b2 − b1) > 2.
We may assume that a2 − a1 > 1. Let δ1 = [a1, a2 − 1|b1, b2] and
δ2 = [a2− 1, a2|b1, b2]. Then xa2−1,b1δ = xa2,b1δ1+xa1,b1δ2. Therefore,
by induction hypothesis, xa2−1,b1δ ∈ P . Since P is a prime ideal, and
xa+k−1,1 /∈ P , it follows that δ ∈ P , as desired.

In general, it seems to be pretty hard to find the primary decomposi-
tion for ideals generated by adjacent 2-minors. This seems to be even
difficult for ideals described in Theorem 2.3. For example, the primary
decomposition (computed with the help of Singular) of the ideal I(C)
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of adjacent 2-minors shown in Figure 13 is the following:

I(C) = (ae− bd, ch− dg, ej − fi, hl− ik)

= (ik − hl, fi− ej, dg − ch, bd− ae, bcjk − afgl)

∩ (d, e, h, i).

It turns out that I(C) is a radical ideal. On the other hand, if we
add the minor di− eh, we get a connected configuration C′ of adjacent
2-minors. The ideal I(C′) is not radical, because it contains a pin, see
Proposition 4.2. Indeed, one has

√
I(C′) = (ae− bd, ch− dg, ej − fi, hl− ik, di− eh,

fghl− chjl, bfhl− aejl, bchk − achl, bcfh− acej)

Applying Theorem 3.3, we get

√
I(C′) = (ae− bd, ch− dg, ej − fi, hl− ik, di− eh, fghl− chjl,

bfhl− aejl, bchk − achl, bcfh− acej)

= (−ik+hl,−fi+ej,−ek+dl,−fh+dj,−eh+di,−fg+cj,

− eg + ci,−dg + ch,−bk + al,−bh+ ai,−bd+ ae)

∩ (d, e, h, i) ∩ (a, d, h, i,j) ∩ (d, e, f, h, k) ∩ (c, d, e, i, l) ∩ (b, e, g, h, i)

∩ (a, d, h, k, ej − fi) ∩ (c, d, e, f, hl − ik) ∩ (b, e, i, l, ch− dg)

∩ (g, h, i, j, ae− bd).

The presentation of
√
I(C) as an intersection of prime ideals as given

in Theorem 3.2 is usually not irredundant. In order to obtain an
irredundant intersection, we have to identify the minimal prime ideals
of I(C) among the prime ideals PW (C).
For any configuration C, we denote by G(C) the set of adjacent 2-

minors generating P∅(C).

Theorem 3.3. Let C be a convex configuration of adjacent 2-minors,
let V,W ⊂ V (C) be admissible sets of C, and let PV (C) = (V,G(C′))
and PW (C) = (W,G(C′′)) where C′ = {δ ∈ C : V (δ) ∩ V = ∅} and
C′′ = {δ ∈ C : V (δ) ∩W = ∅}. Then
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FIGURE 13.

(a) PV (C) ⊂ PW (C) if and only if V ⊂ W , and for all elements

δ ∈ G(C′) \ G(C′′),

one has that W ∩ V (δ) contains an edge of δ.

(b) PW (C) = (W,G(C′′)) is a minimal prime ideal of I(C) if and only
if, for all admissible subsets V ⊂ W with PV (C) = (V,G(C′)), there
exists a

δ ∈ G(C′) \ G(C′′)

such that the set W ∩ V (δ) does not contain an edge of δ.

Proof. (a) Suppose that PV (C) ⊂ PW (C). The only variables in
PW (C) are those belonging to W . This shows that V ⊂ W . The
inclusion PV (C) ⊂ PW (C) implies that δ ∈ (W,G(C′′)) for all δ ∈ G(C′).
Suppose W ∩ V (δ) = ∅. Then δ belongs to P∅(C′′) = (G(C′′)). Let
f = u − v ∈ G(C′′). Neither u nor v appears in another element of
G(C′′). Therefore, any binomial of degree 2 in P∅(C′′) belongs to G(C′′).
In particular, δ ∈ G(C′′), a contradiction. Therefore, W ∩ V (δ) �= ∅.

Suppose that W ∩ V (δ) does not contain an edge of δ = ad− bc. We
may assume that a ∈ W ∩V (δ). Then, since δ ∈ PW (C), it follows that
bc ∈ PW (C). Since PW (C) is a prime ideal, we conclude that b ∈ PW (C)
or c ∈ PW (C). Then b ∈ W or c ∈ W , and hence either the edge {a, b}
or the edge {a, c} belongs to W ∩ V (δ).

The ‘if’ part of statement (a) is obvious.

(b) is a simple consequence of Theorem 3.2 and statement (a).

In Figure 14 we display all the minimal prime ideals I(P) for the path
P shown in Figure 12. The fat dots mark the admissible sets, and the
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FIGURE 14. The admissible sets of the configuration shown in Figure 12.

dark shadowed areas mark the regions where the inner 2-minors have
to be taken.

4. Strongly connected configurations which are radical. We
call a connected configuration of adjacent 2-minors strongly connected
if the following condition is satisfied: for any two adjacent 2-minors
δ1, δ2 ∈ C which have exactly one vertex in common, there exists a
δ ∈ C which has a common edge with δ1 and a common edge with δ2.

This section is devoted to studying the strongly connected configura-
tion of adjacent 2-minors C for which I(C) is a radical ideal.

We call a configuration C of adjacent 2-minors a cycle if, for each
δ ∈ C, there exist exactly two δ1, δ2 ∈ C such that δ and δ1 have a
common edge and δ and δ2 have a common edge.

Lemma 4.1. Let C be a strongly connected configuration which does
not contain a pin. Then C is a path or a cycle.

Proof. If C does not contain a pin, then for each adjacent 2-minor
δ ∈ C there exists at most two adjacent 2-minors in C which have a
common edge with δ. Thus, if C is not a cycle but connected, there
exist δ1, δ2 ∈ C such that δ1 has a common edge only with δ1. Now in
the configuration C′ = C \ {δ1}, the element δ2 has at most one edge in
common with another element of C′. If δ2 has no edge in common with
another element of C′, then C = {δ1, δ2}. Otherwise, continuing this
argument, a simple induction argument yields the desired conclusion.
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FIGURE 15.

a b

c f

g h i j

d e

k l

FIGURE 16.

Proposition 4.2. Let C be a strongly connected configuration of
adjacent 2-minors. If I(C) is a radical ideal, then C is a path or a
cycle.

Proof. By Lemma 4.1, it is enough to prove that C does not contain
a pin. Suppose C contains the pin C′ as shown in Figure 15.

Then q = acej − bcfh /∈ I(C′) but q2 ∈ I(C′) ⊂ I(C). We consider
two cases. In the first case, suppose that the adjacent 2-minors kd−ac
and bf − le do not belong to C, see Figure 16.

Then q /∈ (I(C),W ) whereW is the set of vertices which do not belong
to C′. It follows that q /∈ I(C). In the second case we may assume that
ac − kd ∈ C. Let C′′ be the configuration with the adjacent 2-minors
kd − ac, ae − bd, ch − dg, di − eh. Then r = kdi − aeg /∈ I(C′′) but
r2 ∈ I(C′′) ⊂ I(C). Then r /∈ (I(C), V ) where V is the set of vertices in
C which do not belong to C′. It follows that r /∈ I(C). Thus, in both
cases, we see that I(C) is not a radical ideal.

For the cycle C displayed in Figure 17, the ideal I(C) is not radical.
Indeed we have f = b2hino − abhjno /∈ I(C), but f2 ∈ I(C). By
computational evidence, we expect that the ideal of adjacent 2-minors
of a cycle is a radical ideal if and only if the length of the cycle is
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FIGURE 17.

≥ 12. On the other hand, if P is a monotone path, we know from
Theorem 2.3 that I(P) has a squarefree initial ideal. This implies
that I(P) is a radical ideal. More generally, we expect that ideal of
adjacent 2-minors of a path P is always a radical ideal, and prove
this under the assumption that the ideal I(P) has no embedded prime
ideals. In [3, Theorem 4.2], the primary decomposition of the ideal of
adjacent 2-minors of a 4× 4-matrix is given, from which it can be seen
that in general the ideal of adjacent 2-minors of a strongly connected
configuration may have embedded prime ideals.

Theorem 4.3. Let P be path, and suppose that I(P) has no embedded
prime ideals. Then I(P) is a radical ideal.

The proof will require several steps.

Lemma 4.4. Let I ⊂ S be an ideal, and let a, b ∈ S be such that a
is a nonzerodivisor modulo (b, I). Then

(ab, I) = (a, I) ∩ (b, I).

Proof. Obviously one has (ab, I) ⊂ (a, I) ∩ (b, I). Conversely, let
f ∈ (a, I) ∩ (b, I). Then

f = ag1 + h1 = bg2 + h2 with g1, g2 ∈ S and h1, h2 ∈ I.

Therefore, ag1 ∈ (b, I). Since a is a nonzerodivisor modulo (b, I), it
follows that g1 = cb+ h for some c ∈ S and h ∈ I. Hence, we get that
f = ag1 + h1 = a(cb+ h) + h1 = abc+ (ah+ h1). Thus, f ∈ (ab, I).
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FIGURE 18.

Lemma 4.5. Let P = δ1, δ2, . . . , δr be a path which is not a line, and
let i > 1 be the smallest index for which δi has a free vertex c (which
we call a corner of the path). Let a be the free vertex of δ1 whose first
or second coordinate coincides with that of c, see Figure 18. Then a
does not belong to any minimal prime ideal of I(P).

In particular, if I(P) has no embedded prime ideals, element a is a
nonzerodivisor of S/I(P).

Proof. We may assume that, like in Figure 18, the first 2-adjacent
minors up to the first corner form a horizontal path. Let W be an
admissible set with a ∈ W . In our discussion, we refer to the notation
given in Figure 18. Then, since W is admissible, we have b ∈ W or
c ∈ W .

First suppose that c ∈ W . If W = {a, c}, then P∅(P) is a proper
subset of PW (P), and so PW (P) is not a minimal prime ideal of I(C).
Hence, we may assume that {a, c} is a proper subset of W . In case
of d ∈ W , it follows that V = W \ {a} is an admissible set with
G(V ) = G(W ). In case of b ∈ W , it follows that V = W \ {c} is an
admissible set with G(V ) = G(W ). Hence, in both cases it follows from
Theorem 3.3 that PW (P) is not a minimal prime ideal of I(C). On the
other hand, in case of d /∈ W and b /∈ W , it follows that V = W \{a, b} is
an admissible set with either G(V ) = G(W ) or G(W ) = G(V )∪{ad−bc}.
Hence by Theorem 3.3, PW (P) is not a minimal prime ideal of I(C).
In the second case, suppose that c /∈ W . Then b ∈ W . Let a = (i, j)

and p = (k, j) with k > i + 1, and let [a, p] = {(l, j) : i ≤ l ≤ k}.
Then b ∈ [a, c]. If W = [a, p], then PW (P) is not a minimal prime
ideal of I(C) because, in that case, P∅(P) is a proper subset of PW (P).
On the other hand, if W is a proper subset of [a, p], then W is not
admissible. Hence, there exists an e ∈ [a, p] such that [a, e] ⊂ W and,
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FIGURE 19.

moreover, f , as indicated in Figure 18, belongs to W . We may assume
that [b, f ′] ∩W = ∅. Let V = W \ [a, e′]. Then V is admissible. Since
G(V )\G(W ) consists of those adjacent 2-minors which are indicated in
Figure 18 as the dark shadowed area, it follows from Theorem 3.3 that
PW (P) is not a minimal prime ideal of I(C).
The vertex c in Figure 18 is the first corner of path C. Therefore,

according to Lemma 4.5, element a is not contained in any minimal
prime ideal of I(C).
Proof of Theorem 4.3. Let P = δ1, δ2, . . . , δr be a path, and choose

the vertex a ∈ δ1 as described in Proposition 4.5. Then our hypothesis
implies that a is a nonzerodivisor modulo I(P). The graded version of
Lemma 4.4.9 in [1] implies then that I(P) is a radical ideal if and only
if (a, I(P)) is a radical ideal. Thus, it suffices to show that (a, I(P)) is
a radical ideal.

Let δ1 = ad − bc and P ′ = δ2, . . . , δr be the path which is obtained
from P by removing δ1. Then (a, I(P)) = (a, bc, I(P ′)). Thus,
(a, I(P)) is a radical ideal if (bc, I(P ′)) is a radical ideal, because
a is a variable which does not appear in (bc, I(P ′)). Since c is
regular modulo (b, I(P ′)), we may apply Lemma 4.4 and get that
(bc, I(P ′)) = (b, I(P ′))∩ (c, I(P ′)). By using induction of the length of
the path, we may assume that I(P ′) is a radical ideal. Since c does not
appear I(P ′) it follows that (c, I(P)) is a radical ideal. Thus, it remains
to be shown that (b, I(P ′)) is a radical ideal. Observe that b is one of
the vertices of δ2. If it is a free vertex, we can argue as before. So we
may assume that b is not free. The following Figure 19 (i) and Figure
19 (ii) indicate (up to rotation and reflection) the possible positions of
b in P ′.
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In the case of Figure 19 (i), we have (b, I(P ′)) = (b, df, gf, I(P ′′))
where P ′ = δ4, . . . , δr. Since the variable b does not appear in
(df, gf, I(P ′′)), it follows that (b, I(P ′)) is a radical ideal if and only
if (df, gf, I(P ′′)) is a radical ideal. Applying Lemma 4.4, we see that
(df, gf, I(P ′′)) = (d, gf, I(P ′′)) ∩ (f, I(P ′′)). By induction hypothesis
we may assume that (f, I(P ′′)) is a radical ideal. Thus, it remains
to be shown that (d, gf, I(P ′′)) is a radical ideal which is the case if
(gf, I(P ′′)) is a radical ideal. Once again we apply Lemma 4.4 and get
(gf, I(P ′′)) = (g, I(P ′′)) ∩ (f, I(P ′′)). By assumption of induction, we
deduce as before that both ideals (g, I(P ′′)) and (f, I(P ′′)) are radical
ideals. Therefore, (gf, I(P ′′)) is a radical ideal.

In the case of Figure 19 (ii) a similar argument works.
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